

engineers | scientists | innovators

FOCUSED FEASIBILITY STUDY, REVISION 1

CSXT BRAMLETT ROAD SITE

400 East Bramlett Road, Greenville, South Carolina VCC 16-5857-RP

Prepared for

Duke Energy Carolinas, LLC

526 South Church St. Charlotte, North Carolina 28202

Prepared by

Geosyntec Consultants, Inc. 6770 South Washington Ave., Suite 3 Titusville, Florida 32780

Project FR7559C

October 2023

Focused Feasibility Study, Revision 1

CSXT Bramlett Road Site 400 East Bramlett Road, Greenville, South Carolina

Prepared for

Duke Energy Carolinas, LLC 526 South Church St. Charlotte, North Carolina 28202

Prepared by

Geosyntec Consultants, Inc. 6770 South Washington Ave., Suite 3 Titusville, Florida 32780

Jim Langenbach, P.E. _(FL, SC), BCEE Sr. Principal/Project Director South Carolina P.E. No. 19942 South Carolina Responsible-In-Charge (RIC)

Project Number: FR7559C

Michael Martin

Michael Martin, P.E. (SC, NC, GA)

October 10, 2023

Senior Engineer

TABLE OF CONTENTS

1.	INT 1.1	RODUCTION			
2					
2.	2 1	Gener	UND al Site Information	2	
	2.1	2 1 1	Site Description	2	
		2.1.1	Brief Site History	2	
		2.1.2	Vaughn Landfill History	3	
		214	Sediment Forensics and Surface Water	4	
		215	Site Operable Units	5	
		21.6	Potential Exposures to Human Recentors	6	
		2.1.7	Potential Exposures to Ecological Receptors	6	
3	SITI	Г СН АБ	ACTERISTICS	8	
5.	3.1	Geolo	gy and Hydrogeology	8	
		3.1.1	Regional Geology	8	
		3.1.2	Site Geology	8	
		3.1.3	Regional Hydrogeology	9	
		3.1.4	Site Hydrogeology	9	
		3.1.5	Surface Water Hydrology	11	
	3.2	Nature	e and Extent of Constituents of Concern	11	
		3.2.1	Operable Unit 1: Soil and Sediments	11	
		3.2.2	Operable Unit 2: Shallow- and Transition-Zone Groundwater and Surfa	ce	
			Water	13	
		3.2.3	Operable Unit 3: Bedrock Groundwater	14	
4.	REN	1EDIAI	L ACTION OBJECTIVES AND REMEDIAL GOALS	15	
	4.1	Reme	dial Action Objectives	15	
		4.1.1	OU-1: Soil and Sediments	15	
		4.1.2	OU-2: Shallow and Transition Zone Groundwater and Surface Water	16	
		4.1.3	OU-3: Bedrock Groundwater	16	
	4.2	Prelin	ninary Remediation Goals	16	
		4.2.1	Sediment	16	
		4.2.2	Groundwater	16	
		4.2.3	Surface Water	17	
		4.2.4	Site-Specific Remediation Standards	17	

5.	DEVELOPMENT OF APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS					
6.	IDENTIFICATION AND SCREENING OF TECHNOLOGY TYPES AND					
0.	PRO	PROCESS OPTIONS FOR OU-1 SOIL AND SEDIMENT				
	6.1	Parcel	s 1 and 2	20		
	6.2	Common Elements – Parcels 3, 4, 5 and LECE School Property				
		6.2.1	No Action	20		
		6.2.2	Land Use Controls	20		
	6.3	Parcel 3 and LECE School Property				
		6.3.1	Excavation	21		
		6.3.2	Selective Excavation with Containment and Capping	22		
		6.3.3	In Situ Stabilization	23		
	6.4	Parcel	s 4 and 5	24		
		6.4.1	Excavation	24		
7	IDEX	UTIFIC	ATION AND SCREENING OF TECHNOLOGY TYPES AND			
/.	PRO	CESS (OPTIONS FOR OU-2 SURFACE WATER AND GROUNDWATER	26		
	7.1	No Ac	ction			
		7.1.1	Effectiveness	26		
		7.1.2	Implementability	26		
		7.1.3	Cost	26		
		7.1.4	Conclusion	26		
	7.2 Land Use Controls			26		
		7.2.1	Effectiveness	26		
		7.2.2	Implementability	27		
		7.2.3	Cost	27		
		7.2.4	Conclusion	27		
	7.3	Surfac	e Water	27		
	7.4 Shallow and Transition Groundwater Zones			27		
		7.4.1	Monitored Natural Attenuation	27		
		7.4.2	Hydraulic Control	28		
		7.4.3	In Situ Chemical Oxidation	29		
_						
8.	FEA	SIBILI	TY STUDY EVALUATION CRITERIA			
	0.1 0.1).1 Theshold Unterla				
	ð.2	5.2 Datationing Chiteria				
	0.3	Ivioali	ying Omena			

9. DESCRIPTION AND DETAILED ANALYSIS OF COMBINED OU-1 AND				
	REMEDIAL ALTERNATIVES			
	9.1 Remedial Alternatives			33
	9.2	Constr	uctability Review	33
	9.3 Analysis of Combined Alternatives			34
		9.3.1	Combined Remedial Alternative 1: No Action	34
		9.3.2	Combined Remedial Alternative 2: MNA and LUCs	35
		9.3.3	Combined Remedial Alternative 3: Selective Excavation, Barrier Wall,	26
			Landin Capping, Hydraune Control, MINA, and LUCS	
		9.3.4	Combined Remedial Alternative 4: Excavation, MNA, and LUCs	40
		9.3.5	Combined Remedial Alternative 5: Excavation and Complete Removal of	•
			Vaughn Landfill, MNA, and LUCs	43
	9.4	Evaluation of Alternatives		45
		9.4.1	Numerical Evaluation and Alternatives Ranking	45
		9.4.2	Comparative Evaluation of Alternatives	46
10.	REFI	ERENC	ES	47

LIST OF TABLES

Table 2-1:	Site Parcel Information
Table 4-1:	Shallow and Transition Zone Groundwater Preliminary Remediation Goals
Table 5-1:	Potential Chemical-Specific ARARs and TBCs
Table 5-2:	Potential Location-Specific ARARs and TBCs
Table 5-3:	Potential Action-Specific ARARs and TBCs
Table 6-1:	OU-1 Soil and Sediment Technology Types and Process Options Screening
Table 7-1:	OU-2 Surface Water and Groundwater Technology Types and Process Options Screening
Table 9-1	OU-1 and OU-2 Combined Remedial Alternative Screening
Table 9-2	OU-1 and OU-2 Combined Remedial Comparative Evaluation
Table 9-3	Historical USGS Data Summary
Table 9-4:	OU-1 and OU-2 Combined Remedial Alternative 2 Cost Estimate
Table 9-5:	OU-1 and OU-2 Combined Remedial Alternative 3 Cost Estimate
Table 9-6:	OU-1 and OU-2 Combined Remedial Alternative 4 Cost Estimate
Table 9-7:	OU-1 and OU-2 Combined Remedial Alternative 5 Cost Estimate

LIST OF FIGURES

- Figure 2-1: Site Location Map
- Figure 2-2: Site Parcels
- Figure 2-3: 1964 Historical Aerial Layout
- Figure 3-1: Cross-Section A-A'
- Figure 3-2: Cross-Section B-B'
- Figure 3-3: Cross-Section C-C'
- Figure 3-4: Cross-Section D-D'
- Figure 3-5: Cross-Section E-E'
- Figure 3-6: Shallow Zone Potentiometric Surface Map (26 September 2022)
- Figure 3-7: Transition Zone Potentiometric Surface Map (26 September 2022)
- Figure 3-8: Extent of NAPL
- Figure 3-9: Shallow Zone COC Results
- Figure 3-10: Transition Zone COC Results
- Figure 3-11: Bedrock Zone COC Results
- Figure 9-1: Combined Remedial Alternative 3 LECE Remedial Elements
- Figure 9-2: Combined Remedial Alternative 3 Parcel 3, 4, and 5 Excavation Remedial Elements
- Figure 9-3: Combined Remedial Alternative 3 Barrier Wall and Cap Remedial Elements
- Figure 9-4: Combined Remedial Alternative 3 Post-Remedial Action
- Figure 9-5: Combined Remedial Alternative 4 Remedial Elements
- Figure 9-6: Combined Remedial Alternative 4 Post-Remedial Action
- Figure 9-7: Combined Remedial Alternative 5 Remedial Elements
- Figure 9-8: Combined Remedial Alternative 5 Post-Remedial Action

LIST OF APPENDICIES

Appendix A: SynTerra's Risk Estimation for Parcels 1 and 2

ACRONYMS AND ABBREVIATIONS

ANFEMP	Air, Noise and Fugitive Emissions Monitoring and Mitigation Plan
ARAR	applicable, relevant, and appropriate requirement
bcy	bank cubic yards
BMP	best management practice
C&D	construction and demolition
COC	constituent of concern
CSM	conceptual site model
CSXT	CSX Transportation
CWG	carbureted water gas
DNAPL	dense nonaqueous-phase liquid
FEMA	Federal Emergency Management Agency
FFS	focused feasibility study
ft	foot/feet
ft amsl	foot/feet above mean sea level
ft bls	foot/feet below land surface
ft/day	foot/feet per day
ft ²	square foot/feet
HHRA	human health risk assessment
ISB	in situ bioremediation
ISCO	in situ chemical oxidation
ISS	in situ stabilization
LECE	Legacy Early College Elementary
LUC	land use controls
MCL	maximum contaminant level
MGP	Manufactured Gas Plant
mg/kg	milligrams per kilogram
MNA	monitored natural attenuation
NAPL	nonaqueous-phase liquid
NCP	National Contingency Plan
O&M	operation and maintenance

OSHA	Occupational Safety and Health Administration
OU	operable unit
РАН	polycyclic aromatic hydrocarbon
PPE	personal protective equipment
PRG	preliminary remediation goal
psi	pounds per square inch
RAO	remedial action objective
RI	remedial investigation
RIR	remedial investigation report
RIR-A	remedial investigation report addendum
ROD	Record of Decision
RPM10	respirable particulate matter
RSL	regional screening level
RSV	Regional Screening Value
SCDHEC	South Carolina Department of Health and Environmental Control
SVOC	semivolatile organic compound
TBC	to be considered
UCS	unconfined compressive strength
USACE	United States Army Corps of Engineers
USEPA	United States Environmental Protection Agency
UDGS	United States Geological Survey
VCC	Voluntary Cleanup Contract
VOC	volatile organic compound

1. INTRODUCTION

This Focused Feasibility Study (FFS) report has been prepared by Geosyntec Consultants, Inc. (Geosyntec) on behalf of Duke Energy Carolinas, LLC (Duke Energy) for the CSXT Bramlett (also spelled Bramlette) Road Site located at 400 East Bramlett Road in Greenville, South Carolina (Site). This FFS report was prepared pursuant to the Responsible Party Voluntary Cleanup Contract (VCC) between the South Carolina Department of Health and Environmental Control (SCDHEC) and Duke Energy (VCC 16-5857-RP), executed on July 29, 2016.

The VCC obligates Duke Energy to prepare and submit for SCDHEC approval a Remedial Investigation Report (RIR). Item 3.C of the VCC also obligates Duke Energy, as determined necessary by SCDHEC, to conduct a feasibility study or other evaluation of remedial and/or removal alternatives for addressing manufactured gas plant (MGP)-related impacts. SynTerra Corp. (SynTerra) completed the RIR for the Site in June 2020 (SynTerra 2020) and a RIR Addendum (RIR-A) in July 2021 (SynTerra 2021). The RIR-A was approved by SCDHEC by letter dated 27 January 2022. The RIR and RIR-A define the nature and extent of impacted media and assess human and ecological risks which are addressed in this FFS.

A work plan for the FFS was submitted to SCDHEC in August 2022 (Geosyntec 2022). In correspondence dated 17 November 2022, SCDHEC approved the FFS work plan and requested that the Site be divided into two operable units (OUs) for remedial evaluation, which included 1) soil and sediment, and 2) surface water and groundwater. As such, OU-1 includes soil and sediment, and OU-2 is defined as surface water and groundwater. Groundwater has been separated into two OUs. OU-2 is defined as surface water and shallow- and transition-zone groundwater (approximately 4–40 feet below land surface [ft bls]). OU-3 is defined as groundwater within the deeper fractured bedrock at depths greater than approximately 40 ft bls. Because there is a limited historical data set for groundwater in the deeper fractured bedrock, OU-3 will be excluded from this FFS and addressed separately in the future following completion of the remedy and a period of post-construction monitoring. This FFS report focuses on OU-1 and OU-2.

1.1 Objectives

This FFS has been prepared in accordance with the August 2022 FFS work plan (Geosyntec 2022) which was approved by SCDHEC in their letter dated 17 November 2022. Objectives of this FFS for each OU are to (i) identify and screen remedial technologies, (ii) develop, screen, evaluate, and compare alternatives to remediate MGP-related impacted media, (iii) provide the SCDHEC with the results of the remedial alternative evaluation, and (iv) support SCDHEC in selecting the most appropriate cleanup action for the Site.

2. BACKGROUND

2.1 General Site Information

The Site location, relative to the surrounding area, is depicted on **Figure 2-1**. The Site setting and history have been covered extensively in prior documents such as the RIR (SynTerra 2020) and the RIR-A (SynTerra 2021). The following subsections summarize key information from the RIR and RIR-A.

2.1.1 Site Description

The Site as defined by the VCC is comprised of five parcels (Parcels 1 through 5) and a portion of the Legacy Early College Elementary (LECE) School property that total approximately 35 acres. The boundary includes the western edge of the LECE School parking lot based on the results of the RIR. The Site is bounded by the CSX Transportation (CSXT) railroad corridor to the north, west, and south, and by West Washington Street and the Greater Greenville Sanitation Department to the east. In addition to the railroad corridor, the Reedy River and Swamp Rabbit Trail also define the western boundary (**Figure 2-2**) (SynTerra 2021). General information for each parcel is provided in **Table 2-1**.

The topography of the area generally slopes south-southwest toward the Reedy River. Parcel 1, which includes the former Bramlette MGP east of the Reedy River, ranges in elevation from 932 to 944 feet above mean sea level (ft amsl) and slopes to the southwest. Parcel 2 elevations vary and slope generally to the west, but the topography is also controlled by drainage ditches that flow from the north to the south under East Bramlett Road. These ditches continue through Parcel 3 and eventually to Parcels 4 and 5, until ultimately joining the Reedy River near Willard Street to the south. The topography of Parcel 3 is altered by the Vaughn landfill. Historically, however, this parcel ranged in elevation from 925 to 930 ft amsl and included low-lying wetlands, with the general slope of the topography being toward the south-southeast. Parcels 4 and 5 are dominated by low-lying wetlands and waters associated with United States Army Corps of Engineers (USACE) jurisdictional wetlands and waters of the United States. Water from these parcels flows to the southeast, where it enters a lined drainage channel and then drains to the Reedy River.

2.1.2 Brief Site History

Southern Public Utilities built the MGP on East Bramlett Road in 1917. Duke Energy, then known as the Duke Power Company, assumed ownership and operation of the MGP in 1939 but then sold it to Piedmont Natural Gas in 1951. Between 1963 and 1967, ownership of Parcels 1–5 was transferred to the Seaboard Coast Line Railroad Company, a predecessor of CSXT.

Gas was manufactured at the Bramlette MGP from 1917 to 1952. A total of 5.5 billion cubic feet of gas was produced, 99% of which was predominantly via the coal gas process and smaller amounts in later years beginning around 1945 via the carbureted water gas (CWG) process. Tar was a byproduct waste stream in both manufacturing processes, with coal tar originating from bituminous coal and CWG tar originating from oil used to carburet the gas. CWG tar was only $\sim 0.3\%$ of the total gas production meaning that nearly all tar production at the MGP was coal tar. Volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs) associated with the coal tar and CWG tar have been the main constituents of concern (COCs) subject to

investigation. Both types of tar are non-aqueous phase liquid (NAPL) and are interchangeably referred to as NAPL in this FFS report.

An interim removal action was implemented at the Site by Duke Energy beginning in July 2001 and extending through December 2002. Excavation and backfilling were performed across approximately 3.8 total acres. The extents of the removal action are shown on **Figure 2-1**. Excavated depths ranged from 3 to 12 ft with removal of tar-impacted materials including a tar tank and tar wells associated with the former MGP (SynTerra 2020). In total, 61,088 tons of contaminated soil and debris were excavated, screened and shipped off-Site for treatment and/or disposal. Of this material, 27,144 tons of screened debris material was transported for disposal to the Waste Management – Palmetto Landfill (Welford, South Carolina). Approximately 33,944 tons of soil material was transported to the Southeastern Soil Recovery facility in Laurens County, South Carolina for thermal treatment. In total, approximately 33,926 tons of treated material was then returned for use a backfill (Duke Energy 2003).

2.1.3 Vaughn Landfill History

The Vaughn landfill is an unpermitted construction and demolition (C&D) debris landfill that occupies approximately 6.3 acres on Parcel 3 (**Figure 2-2**). Beginning in 1988, Vaughn Construction created the unpermitted landfill by placing C&D debris (including concrete, brick, wood, plastic, roofing materials, insulation, and glass) onto Parcel 3. During the RI (2019-2020), C&D debris was encountered in the Vaughn landfill area from land surface to a maximum depth of approximately 10 ft bls. Based on the measured depths of landfill materials, an estimated 84,000 cubic yards (or approximately 150,000 tons) of C&D debris is contained in the Vaughn landfill area. Observations from soil borings conducted on the landfill during an initial investigation in 1995 identified NAPL underlying the C&D waste. In some areas of the landfill, the topography and the instability of landfilled materials have limited investigatory access to the underlying soils, sediment, and groundwater on Parcel 3.

In correspondence from SCDHEC to the USACE dated February 26, 2001 regarding the Vaughn landfill, it was noted that removal of the landfill debris was not recommended and only continued groundwater monitoring near the landfill was required from a regulatory perspective. This recommendation was based on SCDHEC's evaluation of Site characteristics and Site risk conditions known at that time (in 2001). The 2001 letter from SCDHEC included the following summary conclusions:

- The MGP-related NAPL is viscous and relatively non-mobile.
- The areal extent of constituents in groundwater was stable.
- Biological assessments of the area demonstrated that the MGP-related constituents were not significantly affecting flora and fauna.
- No surface water or downstream/downgradient impacts related to the MGP were observed.
- No drinking water wells existed within 0.5 miles.

As part of a wetland mitigation project, CSXT restored a section of the Long Branch in Greenville to address the unpermitted landfill in the flood plain on Parcel 3, which constituted a Clean Water

Act violation. In 2007, Individual Permit #2004-1V-086 was issued by the USACE for the wetland mitigation work, and CSXT completed the Long Branch stream restoration in 2008.

The RIR and RIR-A investigations provided data which expanded upon the characteristics of the conceptual site model (CSM) since 2001 on several important elements, including the location of the historic drainage ditch system (**Figure 2-3**) and the extent and distribution of NAPL impacts. The amount and extent of MGP-related residuals in sediment, soil, and groundwater media (including the presence of NAPL in bedrock [OU-3]) was not known at the time of the February 2001 SCDHEC letter.¹ Therefore, this FFS report evaluates the removal of a portion of the Vaughn landfill unpermitted debris wastes.

Additional discussion of the nature and extent of impacts is provided in Section 3.2 of this FFS report.

2.1.4 Sediment Forensics and Surface Water

Data collected as part of the RIR-A (SynTerra 2021) included polycyclic aromatic hydrocarbon (PAH) forensics analysis. Multiple sediment samples were collected on and near the Site to determine the source(s) of PAH compounds within sediments at various locations. In general, the objective of the study was to evaluate whether MGP-related environmental impacts were present at off-Site locations within sediment and surface water. Findings from the sampling and forensics analysis are detailed in the *Forensics Analysis of NAPL, Sediments, and Soil Samples Collected from the Former Bramlette Road MGP Site and Surrounding Areas* report prepared by Corporate Environmental Solutions, LLC (December 2020) and are summarized below:

- MGP-related impacts (e.g., NAPL) were observed in some on-Site sediments in ditch assessment samples collected from Parcel 3, Parcel 4, and Parcel 5. Forensic analysis indicated pyrogenic sources consistent with CWG tar and coal tar. Total PAH concentrations in sediments where NAPL is present ranged from approximately 10 to 100 milligrams per kilogram (mg/kg).
- PAHs detected in sediment samples from ditches upgradient of the Site (e.g., along Washington Street) were consistent with urban background concentrations attributable to urban runoff and are unrelated to the former MGP. Total PAH concentrations in these sediments were on the order of approximately 1 to 10 mg/kg.
- PAHs detected in any of the Reedy River or off-Site sediment samples can be attributed to background conditions associated with urban runoff, unrelated to the former MGP. Total PAH concentrations in off-Site Reedy River sediments were generally less than 1 mg/kg.

Surface water monitoring results (inclusive of RIR data and data obtained via semiannual groundwater and surface water monitoring activities conducted following the RIR-A) indicate the following:

4

¹ The 26 February 2001 correspondence from SCDHEC to CSXT advised the USACE that removal of the C&D debris was not recommended because it would likely result in the destruction of unaltered wetlands. The correspondence also suggested off-site mitigation to address CSXT's Clean Water Act violation.

- Surface water samples collected from the Reedy River have not contained VOCs or SVOCs at concentrations greater than reporting limits or applicable regulatory criteria as discussed in the RIR.
- No VOCs or SVOCs were detected at concentrations greater than method detection limits (MDLs) in surface water samples collected from Parcel 4 and Parcel 5.
- SVOCs (specifically benzo(a)pyrene) were detected in surface water samples collected on Parcel 3, limited to areas adjacent to the Vaughn landfill, at concentrations above the applicable regulatory standards. The detections above applicable standards were limited to two sampling events in 2021 only.
- VOCs and SVOCs in surface water samples collected downstream of the Vaughn landfill continued to be less than screening criteria.

2.1.5 Site Operable Units

The RIR and RIR-A concluded that MGP-related impacts at the Site vary in respect to location, media, and physical characteristics. It is important to understand these variations when considering the alternatives presented in this FFS. The remedial alternatives developed in this FFS report include provisions for areas impacted by MGP residuals, except for areas defined as OU-3. A summary of each OU is provided below:

- OU-1: Soil and sediments.
- OU-2: Surface water, and groundwater within the shallow-zone and transition-zone (saturated depths of approximately 4-40 ft bls).
- OU-3: Groundwater within the deeper fractured bedrock (depths greater than approximately 40 ft bls).

The Site is comprised of five parcels and includes a portion of the LECE School property. The parcels are grouped according to similarities in COCs and/or MGP residuals type, location, or media to help develop manageable remedial alternatives for OU-1. Accordingly, the OU-1 media (sediment and soil) have been grouped into the following four areas for subsequent discussion in this FFS, as follows:

- Parcels 1 and 2 include the portion of the Site north of East Bramlett Road.
- Parcel 3 includes the Vaughn landfill and associated CSXT property.
- The LECE School property is the wetland area west of the school building.
- Parcels 4 and 5 include the wetlands and historical drainage ditch area south of Parcel 3, which ultimately discharges via a lined drainage channel to the Reedy River.

OU-2 includes groundwater in the shallow and transition flow zones (approximately 4 to 40 ft bls) and is not defined by parcel boundaries. Because seasonal groundwater level fluctuation results in the shallow zone water table intercepting the land surface in the wetland areas, surface water is

also grouped under OU-2. Groundwater impacted media within the deeper fractured bedrock (greater than 40 ft bls) has been grouped under OU-3 and is not the focus of this FFS report.

2.1.6 Potential Exposures to Human Receptors

The human health risk assessment (HHRA) in Section 7.2 and Appendix L of the RIR (SynTerra 2020) identified populations that could have been exposed to contaminants, including CSXT workers, trespassers, and recreators. The HHRA provides the following CSM characteristics to evaluate risk to human receptors:

- Sources: materials from historical MGP operations, including coal tar and CWG
- Release Mechanisms: percolation, leaching, and flooding (e.g., surface water runoff)
- Transport Media: soil, shallow- and transition-zone groundwater, surface water, sediment, and deep bedrock groundwater
- Potential Exposure Points: nonresidential properties, the Reedy River, and groundwater as a source of drinking water
- Potential Exposure Routes: incidental soil ingestion, incidental groundwater ingestion, dermal contact with groundwater, incidental surface water ingestion, and incidental sediment ingestion of dermal contact with sediment
- Potential Receptors: current and future Site workers, trespassers, and recreators

2.1.7 **Potential Exposure to Ecological Receptors**

As discussed in Section 7.3 and Appendix L of the RIR (SynTerra 2020), the ecological risk assessment involved an analysis of potential adverse effects on ecological receptors (i.e., species of plants or animals) associated with the Site. An ecological risk assessment identifies and characterizes the toxicities of contaminants of potential ecological concern, potential exposure pathways, potential ecological receptors, and the likelihood of adverse ecological effects under current and reasonably anticipated future land and water use conditions.

The ecological risk assessment used an ecological conceptual exposure model developed for the Site to focus on the most plausible ecological receptors and pathways in an ecological CSM. The ecological risk assessment provides the following CSM characteristics to evaluate potentially complete ecological exposure pathways:

- Sources: materials from MGP operations, including coal tar and CWG
- Release Mechanism: infiltration, stormwater runoff, and migration to surface water and sediment
- Transport Media: soil, groundwater, surface water, and sediment
- Potential Exposure Points: soil, biotic tissue, surface water, and sediment
- Potential Exposure Routes: incidental soil ingestion, direct soil contact, biotic tissue ingestion, surface water ingestion, and direct contact

• Potential Receptors: aquatic and terrestrial receptors

3. SITE CHARACTERISTICS

The following provides a summary of the characteristics. This includes a summary of the geology and hydrology, and the current nature and extent of the COCs.

3.1 Geology and Hydrogeology

3.1.1 Regional Geology

The Site is located within the Piedmont Physiographic Province, which is bound to the west by the Blue Ridge and to the east by the Sandhills and Coastal Plain. The Site is north of the Reedy River fault zone and within the Sixmile thrust sheet (Willoughby et al. 2005). Bedrock geology in this region consists of granite gneiss and sillimanite-mica schist (Nelson et al. 1998).

In general, the geology of the Piedmont is composed of a regolith-fractured rock system that includes regolith, a transition zone, and bedrock (Harned and Daniel 1992). The transition zone is described as a zone of weathered rock fragments, residual boulders, and lesser amounts of saprolite. This zone can serve as a preferential zone of groundwater flow because it is more permeable than the overburden or underlying bedrock (Harned and Daniel 1992).

3.1.2 Site Geology

The Site is within the Reedy River floodplain. Shallow soils include fill overlying alluvial soils consisting of lean clay and sands. Where fill is present, it varies in depth but extends to as deep as 8 ft bls on Parcel 1 where the former MGP was situated and where previous remedial excavation activities took place and on Parcel 2 to support various buildings and structures. On Parcel 3, the fill thickness varies based on the amounts of C&D debris that were landfilled and extends to depths of 10 ft in the south-central portion of the parcel. Fill material is generally absent on Parcel 4 and Parcel 5. Below the fill is alluvium, which is approximately 11 ft thick on average (i.e., from approximately 8 to 19 ft bls). The alluvium is underlain by saprolite, which ranges in thickness from approximately 1 to 21 ft (i.e., from approximately 19 to 40 ft bls). The transition zone, which consists of weathered bedrock present from 25 to 50 ft bls, is underlain by bedrock. The top of the bedrock ranges in depth from 30 to 50 ft bls. Bedrock under the Site consists of interbedded granite and sillimanite-mica schist. Details for each stratigraphic unit encountered are provided below:

Stra	atigraphic Unit	Flow Zone	Extent	Hydraulic Conductivity (feet per day)
	Fill	Shallow (OU-1)	Laterally extensive in Parcel 2 and Parcel 3 (Vaughn landfill). Fill is present from land surface to depths of approximately 8 to 10 ft bls.	1–2.4 (geomean: 1.6)
Regolith	Alluvium	Shallow (OU-2)	Laterally extensive. Lean clay over coarse- to fine-grained sands. Alluvium is present from approximately 8 ft bls to 19 ft bls.	0.7–35 (geomean: 5.6)
	Saprolite	Shallow (OU-2)	Laterally extensive. Consists of weathered bedrock in situ that retains the fabric/structure of the bedrock but is not indurated or competent. Saprolite is generally present at 19 ft bls to 40 ft bls (varying thickness across the Site).	2.6–6.9 (geomean: 4)
Transition Zone		Transition Zone (OU-2)	Transition zone present at depths of 25–50 ft bls. Consists of heavily weathered and decomposed bedrock overlying more competent bedrock. Diminishing thicknesses to absent in the southern portion of the Site.	0.06–100 (geomean: 0.9)
	Bedrock (OU-3)		Laterally extensive. Competent, fractured bedrock (granitic origin). Top of bedrock is encountered at depths ranging from 30–50 ft bls and extends to depths greater than 210 ft bls.	0.05–4 (geomean: 0.8)

The varying depths to the upper bedrock contact appear to represent areas where MGP residuals (e.g., NAPL) have accumulated and resulted in transport of contaminant mass vertically through and into bedrock fractures, which have resulted in deep groundwater bedrock impacts (OU-3).

Cross-section views of lithology and hydrostratigraphic units based on RIR and RIR-A data are presented as sections A-A' (Figure 3-1), B-B' (Figure 3-2), C-C' (Figure 3-3), D-D' (Figure 3-4), and E-E' (Figure 3-5).

3.1.3 Regional Hydrogeology

The regional groundwater system is an unconfined, interconnected aquifer system, which is characteristic of the Piedmont, and consists of a regolith-fractured rock network. Groundwater is recharged by drainage and rainfall infiltration in the uplands areas, which discharges to the perennial stream system. Groundwater flow in the regolith is typical of and consistent with porous media, while flow in the bedrock is primarily within secondary porosity features (e.g., fractures).

3.1.4 Site Hydrogeology

Site groundwater flow is generally controlled by the Reedy River, other drainages (on Parcels 4 and 5), and variations in the top of bedrock elevation. Groundwater flow direction is generally

southwest toward the Reedy River from Parcel 1. Groundwater is encountered within the alluvial and unconsolidated deposits from less than 1 ft bls up to approximately 12–14 ft bls. Groundwater occurs closer to the surface in the low-lying drainage that transects Parcel 1 and in and around the wetland environments (i.e., Parcel 3, Parcel 4, and Parcel 5). Groundwater occurs deeper where fill has been placed at the Vaughn landfill and along the banks of the Reedy River (e.g., the Swamp Rabbit Trail). Seasonal groundwater level fluctuation causes the shallow-zone groundwater table to intercept the land surface within the wetland areas during wet months of the year. **Figure 3-6** illustrates the September 2022 water level elevations and potentiometric surface for the shallow-zone groundwater system. **Figure 3-7** illustrates the September 2022 water level elevations and potentiometric surface for the transition-zone groundwater system. The 2022 groundwater gradients and flow directions are consistent with previous RI observations.

Groundwater is recharged by stormwater drainage and rainfall infiltration in the uplands areas and discharges to the perennial stream system. Groundwater flow velocity through the shallow and transition zones is derived from the horizontal hydraulic conductivity, the hydraulic gradient, and the effective porosities for each zone. Groundwater hydraulic conductivity for the shallow zone is calculated as 5.4 feet per day (ft/day) and 1.53 ft/day for the transition zone. Horizontal hydraulic gradients for the shallow groundwater zone and transition zone were calculated to be 0.03 ft/ft and 0.01 ft/ft, respectively (SynTerra 2021). The mean groundwater seepage velocity for the shallow groundwater zone has been calculated to be 0.44 ft/day, and 0.07 ft/day for the transition zone.

Vertical groundwater gradients between flow zones are generally neutral (SynTerra 2020). Longterm pressure transducer monitoring shows that groundwater levels in all flow zones correlate to precipitation events, which indicates a groundwater recharge response (SynTerra 2021). The wells along the Swamp Rabbit Trail appear to correlate with Reedy River staff gauge level changes, indicating connectivity between the shallow flow system and the Reedy River.

Bedrock fractures (OU-3) decrease in frequency and hydraulic aperture with depth (SynTerra 2020, SynTerra 2021). Fractures are predominantly shallow, dipping toward the northeast (SynTerra 2021). The upper 10 ft of the bedrock system is the most transmissive; the largest hydraulic fracture apertures are observed within the upper 10 ft of bedrock, according to Sitespecific borehole geophysical data.

The bedrock-zone groundwater underlies the transition-zone groundwater and is connected to the overlying aquifer through fractures that intercept the base of the alluvial deposits and/or transition-zone unit. Overall, the hydraulic conductivity of the bedrock decreases with depth. The hydraulic conductivity of the bedrock ranges from 1.0×10^{-2} ft/day at depths of 20 to 60 ft below the top of bedrock to hydraulic conductivities on the order of 1.0×10^{3} ft/day at a depth of approximately 10 ft below the top of bedrock (SynTerra 2020). Flow volumes and patterns are dictated by the degree to which the fractures are connected to each other and the hydraulic aperture widths. The hydraulic aperture width varies with depth but is generally larger in the shallow bedrock. Apertures were measured at approximately 0.024 inches in the upper 10 ft of bedrock as compared to 0.002 inches at a depth of 60 ft below the top of bedrock (SynTerra 2020). However, it should be noted that smaller hydraulic apertures ranging from approximately 0.002 to 0.004 inches were identified in some of the monitoring wells at depths less than 20 ft below top of bedrock (SynTerra 2020). These collective observations suggest that there are some locations where the NAPL transport through shallow bedrock would be limited. The flow of groundwater and, more importantly, the

transport of the COCs are controlled not only by groundwater forces but also by subsurface geology. Specifically, rises in the fractured bedrock surface elevation appear to limit transport of COCs west and south beyond Parcel 3.

There are multiple locations where the groundwater and surface water interface at ground level. Stormwater runoff from upgradient locations flows as surface water flows through a series of natural and manmade ditches, culverts, and wetland areas from upgradient locations. Two natural ditches leading from Parcels 1 and 2 transport surface water generally to the west, where they then turn south under East Bramlett Road and on to Parcel 3. Surface water through Parcel 3 runs through wetlands and natural drainages that have been modified over the years because of the installation of the Vaughn landfill. On Parcel 3, the surface water and groundwater interface frequently because of seasonal water level fluctuations. The course of surface water from Parcel 3 to Parcels 4 and 5 is generally confined to one natural drainage channel that flows to the southeast before turning to the southwest and discharging into the Reedy River via a concrete cloth-lined ditch.

3.1.5 Surface Water Hydrology

The Site's watershed is characterized by ephemeral or intermittent streams and wetlands that discharge rainfall from the surrounding areas to the Reedy River. Two ephemeral tributaries traverse Parcels 1 and 2 and run under East Bramlett Road to Parcel 3, where surface water flows through wetland areas. The two ephemeral streams eventually join in the middle of Parcel 3 and lead generally to the southeast as a single drainage flow through Parcels 4 and 5, ultimately discharging into the Reedy River.

3.2 Nature and Extent of Constituents of Concern

The RIR and RIR-A evaluated the nature and distribution of MGP-related impacts detected in soil, sediment, groundwater, and surface water (SynTerra 2020, SynTerra 2021). This FFS report groups impacted media into three Ous for the purpose of remedial evaluation. OU-1 and OU-2 are included for remedial evaluation in this FFS report. OU-3 (bedrock groundwater) will be evaluated in a separate report.

3.2.1 Operable Unit 1: Soil and Sediments

OU-1 includes soil and sediment on Parcels 1 through 5 and a portion of LECE School Property. A summary of the soil and sediment impacts on the various parcels is provided below. NAPL has been observed in shallow soil at various places throughout the Site, including within historical drainages, on the LECE School property, and below the Vaughn landfill debris material. **Figure 3-8** presents the distribution of NAPL based on RI data and soil borings.

3.2.1.1 Parcel 1 and Parcel 2

Parcels 1 and 2 underwent remediation in 2001–2002 that removed soils and debris impacted by MGP residuals. The footprint of the excavated area is shown on **Figure 3-8**. The United States Environmental Protection Agency (USEPA) industrial and residential regional screening levels (RSLs) are the standards for screening soil (USEPA 2022). NAPL was observed on Parcels 1 and 2, and PAHs were present at concentrations above residential screening criteria.

Parcels 1 and 2 are zoned as Industrial District (I-1) (**Table 2-1**). To evaluate the potential risk of industrial/commercial use of Parcels 1 and 2, human health risk estimation of surface soil data for a construction worker was completed by SynTerra (**Appendix A**). Based on the construction worker risk estimation, the total non-cancer hazard index is less than 1.0 and the cancer risk is 2.88×10^{-8} , which is less than the cancer risk threshold of 1×10^{-6} for Parcels 1 and 2. Parcels 1 and 2 in their current condition, without remedial activities, meet the criteria for industrial/commercial use with land use controls (LUCs).

Furthermore, based on the residential risk estimation scenario, removal and replacement of surficial soil within the 40 by 40-foot area around SA-SB-46 and the RI-SB-15 locations would result in a total non-cancer hazard index which is less than 1.0 and a cancer risk of 1.03×10^{-7} , which is less than the cancer risk threshold of 1×10^{-6} for Parcels 1 and 2. However, this removal is not required based on the current zoning of Parcels 1 and 2.

3.2.1.2 Parcel 3 and Legacy Early College Elementary School

Sediments and soils present on Parcel 3 and the LECE School property contain MGP residuals which include sorbed COCs and NAPL. VOCs and SVOCs are present in sediment samples at concentrations above the USEPA Region 4 sediment Regional Screening Value (RSV) where NAPL is observed. NAPL was identified in sediments in these areas at thicknesses exceeding 4.5 ft.

The nature and extent of MGP-related impacts within and adjacent to the former drainage ditch system (e.g., the drainage that was present during MGP operations) was investigated during the RIR and the RIR-A. **Figure 2-3** illustrates the locations of the former drainage ditch system. The RIR-A provided accumulated data to indicate that the former traces of the ditch system contain MGP-related residuals (e.g., coal tar, clinker, and slag). The results of the RIR-A indicate that the former ditch system is located directly underneath portions of the Vaughn landfill on Parcel 3 and ran through the wetland area of the LECE School property. As of 2001, it was reported that no MGP-related sheens or other signs of visible impacts had been noted or otherwise observed within the ditch system between the Vaughn landfill and the railroad embankment to the west of Parcel 3. However, the RIR and RIR-A assessment work concluded that sediments underneath and adjacent to the western edge of the Vaughn landfill material do contain MGP-related residuals such as NAPL, clinker, and slag. These findings differ from observations made prior to the early 2000's.

3.2.1.3 Parcels 4 and 5

The extent of the impacts on Parcels 4 and 5 are defined by the drainage ditch that enters Parcel 4 from Parcel 3 and exits Parcel 5 via the outfall to the Reedy River. Impacts from MGP residuals to the sediment within Parcels 4 and 5 are limited to COCs exceeding the USEPA Region 4 sediment RSVs and to NAPL, which were identified only in the drainage ditch system at thicknesses up to 4.5 ft. The presence of the NAPL on Parcels 4 and 5 was not characterized in 2001 and represents a significant change to the CSM with respect to the nature and extent of the MGP-related residuals since that time. This area was not part of characterization activities prior to the RI.

3.2.2 Operable Unit 2: Shallow- and Transition-Zone Groundwater and Surface Water

3.2.2.1 Constituents of Concern – Shallow- and Transition-Zone Groundwater

COCs in the shallow- and transition-zone groundwater include benzene, naphthalene, benzo(a)pyrene, and toluene, which are detected in these groundwater zones at concentrations above the drinking water maximum contaminant levels (MCLs) set by SCDHEC (SCDHEC Regulation 61-58 State Primary Drinking Water Standards, effective October 2014, Appendix B MCL and R.61-68, Water Classifications & Standards, effective June 27, 2014, groundwater classification as GB, Human Health drinking water MCLs provided in the Appendix of R.61-68).

NAPL is considered as a COC because NAPL (from the coal gas and CWG processes) contains VOCs and SVOCs that may partition into groundwater as aqueous phase compounds. These aqueous phase constituents include benzene and naphthalene (among other VOCs and SVOCs), which have been measured at concentrations exceeding regulatory cleanup standards. NAPL has been visually observed in monitoring wells and measurable amounts have accumulated in two monitoring wells; dense nonaqueous-phase liquid (DNAPL) has been observed in shallow-zone well MW-03 and transition-zone well MW-20. DNAPL has a propensity to sink below the water table because its overall density is greater than water. The DNAPL will migrate vertically through the unsaturated zone until it encounters the water table. Once the DNAPL has accumulated enough mass for gravitational pressure to overcome the entry pressure of the underlying capillary fringe, migration vertically through the water column will continue until an impermeable or less permeable matrix is encountered. This is evident with the NAPL present within the coarse sand atop the saprolite on Parcels 2 and 3 and the distribution of dissolved COCs within groundwater (SynTerra 2020). Visual observations of NAPL have been identified within the clay deposits near historical ditch traces and within the sandy deposits that directly overlie the saprolite on Parcels 1, 2, and 3. Coarse sand deposits provide a relatively porous overburden matrix for the accumulation of residual NAPL while the less permeable saprolite matrix inhibits additional downward migration. These MGP residual impacts have resulted in the elevated benzene and naphthalene concentrations in groundwater at wells MW-01, MW-02TZ, MW-20, MW-29TZ, and MW-36S.

The RIR and RIR-A provide data and evidence that NAPL is present in soils, saprolite, and bedrock media underlying a portion of the Vaughn landfill. Monitoring wells MW-20, MW-3 and MW-49BR, all located within the footprint of the Vaughn landfill on Parcel 3, have contained NAPL in measurable thicknesses. This FFS will evaluate the feasibility of removing a portion of CSXT's Vaughn landfill materials to remediate the underlying NAPL within sediments (OU-1) and OU-2 (excluding deeper bedrock [OU-3]), which will depend on the remedial alternative ultimately selected by SCDHEC. Duke Energy was not responsible for placing the landfill materials that overlie both the historic drainage ditch system and the native alluvial materials that contain NAPL.

Multiple rounds of groundwater sampling since 2019 have provided data to delineate the extent of impacted shallow-zone groundwater to Parcels 1 and 3 and a small portion of the LECE School property. **Figure 3-9** presents the current distribution of COCs (dissolved phase benzene and naphthalene) within shallow-zone groundwater. **Figure 3-10** presents the current distribution of COCs (dissolved benzene and naphthalene) within transition-zone groundwater. These are the groundwater areas to be considered for remedial evaluation in this FFS report.

Geosyntec conducted Mann-Kendall Tests for statistical trends on 16 monitoring well data sets to quantitatively evaluate the temporal stability of select VOC and PAH compounds (as groundwater concentrations) in the Site aquifers. The trend analyses included the groundwater monitoring data from samples collected starting in 2019 and up through September/October 2022. Benzene and naphthalene were used as VOC and PAH "indicator" compounds, respectively. The analysis assumes that trends associated with benzene and naphthalene are applicable to other Site COCs. The Mann-Kendall trend analyses indicate that benzene and naphthalene concentrations in groundwater (where concentration data sets are currently viable with a minimum of four temporally spaced sampling events) are generally decreasing or stable (Geosyntec 2023). Of the 16 trend analyses completed, 13 of the location/compound pairs have 1 or more compounds with either decreasing or stable trend results. The MW-29TZ location/compound pair had no apparent trend for either constituent. Two bedrock wells (MW-21BRL and MW-29BR) indicated increasing concentrations of one or more compounds based on the data set.

3.2.2.2 Constituents of Concern – Surface Water

Historically, surface water has not contained COCs at concentrations above their respective screening levels, with the exception of two samples at one sample location. At this sample location (SW-5) benzo(a)pyrene was the only constituent detected above SCDHEC's R.61-68, Water Classifications & Standards, effective June 27, 2014, established drinking water MCL in surface water during RI sampling. The most recent surface water sampling results (conducted in March 2022, September 2022, and March 2023) indicate no current COC exceedances (Geosyntec, 2023).

3.2.3 Operable Unit 3: Bedrock Groundwater

3.2.3.1 Constituents of Concern

The COCs within the bedrock groundwater are consistent with those observed in the shallow- and transition-zone groundwater. Bedrock groundwater included benzene and naphthalene at concentrations that exceed SCDHEC standards (SCDHEC Regulation 61-58 State Primary Drinking Water Standards, effective October 2014, Appendix B MCL and R.61-68, Water Classifications & Standards, effective June 27, 2014, groundwater classification as GB, drinking water Human Health MCLs provided in the Appendix of R.61-68). NAPL is also considered a COC as it has been observed in monitoring wells screened in the bedrock groundwater zone. **Figure 3-11** presents the current distribution of COCs (dissolved phase benzene and naphthalene) within OU-3. Remedial evaluation for bedrock-zone groundwater is not included in this FFS report. Additional semiannual groundwater monitoring for longer-term concentration trends will be required for a detailed analysis of bedrock-zone remedial technologies. Thus, a separate FFS for OU-3 will be developed under separate cover.

4. REMEDIAL ACTION OBJECTIVES AND REMEDIAL GOALS

The following sections present the remedial action objectives (RAOs) for OU-1 (soil and sediment) and OU-2 (shallow- and transition-zone groundwater and surface water), a summary of risk assessment approach and findings, and preliminary remediation goals (PRGs). The RAOs are based on the human health and ecological CSMs which were developed in the RIR. Factors considered in development of the RAOs included the affected media and uses, zoning, and physical locations. The PRGs are derived from the human and ecological risk assessments in the RIR and the chemical-specific applicable, relevant, and appropriate requirements (ARARs).

4.1 Remedial Action Objectives

When the RAOs are achieved, human health and the environment will be adequately protected. The RAOs selected for the Site as a whole will be satisfied when the COCs identified for each parcel in Section 3.2 meet their remedial goals.

4.1.1 OU-1: Soil and Sediments

For the FFS, soils are weathering profiles that develop in place and sediments are from depositional environments or locations where standing water was routinely observed. The Site's operational history and CSM for Parcels 3, 4, 5 and the LECE School property indicate these areas have previously been formed by deposition and that the sorbed COCs and NAPL are in the vicinity of the historical ditch footprint that transported the COCs and NAPL. Therefore, the media contained within these areas is considered sediment rather than soil. For Parcels 1 and 2, the media present developed in place or was placed during backfilling of the remedial efforts on Parcel 1 and is considered soil. Theses definitions effect the RAOs and PRGs for the various Parcels and areas of the Site.

The RAOs for OU-1 are as follows:

- RAO 1: Soils
 - Parcels 1 and 2: Remediate soil to Industrial/Commercial (I/C) criteria to comply with current land use. Parcels 1 and 2 in their current condition, without remedial activities, meet the criteria for I/C use with land use controls (LUCs). Based on the risk estimation, this RAO will be achieved with the formalization of LUCs.
 - Parcels 3, 4 and 5 and LECE School Property: As discussed earlier in the section, these areas of the Site only contain sediment that is of concern. Therefore, there is no soil RAO for these areas.
- RAO 2: Sediment
 - Parcels 1 and 2: As discussed earlier in the section, these parcels only contain soil that is of concern. Therefore, there is no sediment RAO for Parcels 1 and 2.
 - Parcels 3, 4, and 5 and LECE School Property: Remediate sediment to USEPA Region 4 sediment RSV and comply with current land use by removing sediment containing visual NAPL.

4.1.2 OU-2: Shallow and Transition Zone Groundwater and Surface Water

The RAOs for OU-2 are as follows:

- RAO 1: Prevent ingestion and/or contact with groundwater or surface water containing COCs at concentrations exceeding applicable MCLs or Site-specific remediation standards and restore the groundwater to unrestricted use, where practicable.
- RAO 2: Prevent groundwater containing COCs from impacting surface water at concentrations exceeding applicable MCLs or Site-specific remediation standards.

4.1.3 OU-3: Bedrock Groundwater

The groundwater impacts within the bedrock, inclusive of NAPL observations, were only recently identified during the RI. Because there is limited temporal data on the bedrock groundwater, this FFS does not include remedial alternatives to address impacts in the bedrock. Additional groundwater monitoring will be conducted by Duke Energy following completion of the remedy and a period of post-construction monitoring to obtain relevant COC trend and geochemical attenuation/degradation data for remedial evaluation of OU-3.

4.2 Preliminary Remediation Goals

This section presents the PRGs for sediment and groundwater for Parcels 3, 4, and 5 and LECE School Property, which are predicated on the screening levels provided in the RIR and RIR-A. The risk estimate completed indicated that the surficial soils for the combined area of Parcels 1 and 2, have an acceptable total hazard index and cancer risk for the construction worker scenario. Therefore, no PRGs have been established for soil or sediment on Parcels 1 and 2. PRGs are not final cleanup levels. Final cleanup levels will be set in the Record of Decision (ROD).

4.2.1 Sediment

NAPL is visibly present in the drainage ditches and wetlands on Parcels 3, 4, and 5 and the wetlands on the LECE School property. The greatest accumulation is within a low-lying depositional area of a wetland near the southern end of the Vaughn landfill. Based on the sampling completed during the RIR-A, visible NAPL is an indicator that there may be USEPA Region 4 sediment RSVs exceedances in sediment. Therefore, removal of visual NAPL from sediment will achieve the RAO and is considered the PRG.

4.2.2 Groundwater

NAPL is visibly present within the shallow-zone, transition-zone, and bedrock groundwater systems. Groundwater is classified as Class GB, or suitable for drinking water without treatment. Unless site-specific remediation standards are developed (see Section 4.2.4), the PRGs for Class GB groundwater for organic and inorganic chemicals are the drinking water MCLs as set forth in R.61-58, State Primary Drinking Water Regulations, R.61-68, Water Classifications & Standards, or concentration promulgated by the SCDHEC, if no PRG is available (e.g., naphthalene and methyl t-butyl ether). **Table 4-1** presents the PRGs for the analytes that were detected during the RI in groundwater at concentrations above applicable MCLs set by R.61-58, R61-68, or above standards promulgated by the SCDHEC if no PRG is available. For analytes that were not detected above the screening criteria during the RI, no PRGs are proposed.

4.2.3 Surface Water

The surface water is classified as freshwater in accordance with SCDHEC regulation document R.61-68, Water Classifications and Standards, effective June 27, 2014. Human health MCLs for freshwater are provided in R.61-68 E.14.b(1). Since 2019, only benzo(a)pyrene was detected at a concentration greater than the freshwater human health MCL, in one sampling location near the Vaughn landfill (SW-5) during two sampling events (March 23, 2021, and September 15, 2021). No analytes were detected in the surface water at concentrations above the freshwater human health MCL during the most recent sampling events (semiannual sampling conducted during March 2022, September 2022, and March 2023), and MGP-related constituent concentrations above analytical reporting limits were not detected in the Reedy River. Therefore, a PRG for benzo(a)pyrene ($0.2 \mu g/L$) is proposed for surface water. Based on recent sampling, surface water currently meets this PRG. For analytes that were not detected above the screening criteria, no PRGs are proposed.

4.2.4 Site-Specific Remediation Standards

Depending on the selected remedial alternative, the use of site-specific standards will be evaluated during the remedial design process. South Carolina's Amendment to Section 44-56-200, Hazardous Waste Cleanup, provides a mechanism for site-specific remediation standards for soil and groundwater.

For groundwater, natural attenuation can be considered a site-specific remediation standard, provided that (i) the current and probable future use is identified, (ii) site-specific sources of contaminants and potential receptors are identified, and (iii) potential receptors are protected, controlled, or eliminated.

For soil, site-specific remediation standards for carcinogens can be established for exposures that represent an excess lifetime cancer risk of 10⁻⁶, provided that soils are remediated to levels that are no longer a continuing source of groundwater impacts in excess of the site-specific standards and remediated to residential or commercials standards dependent on property zoning. These remediation standards would not apply where remediation is impractical because of preexisting structures. Where such removal is impractical, engineering and institutional controls that are sufficient to protect public health, safety, and welfare and the environment must be implemented.

5. DEVELOPMENT OF APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS

This FFS has developed chemical-specific, location-specific, and action-specific ARARs, which are included as **Table 5-1**, **Table 5-2**, and **Table 5-3**. The ARARs are potential until selected as part of the final ROD. Potential ARARs have been classified as either "applicable" or "relevant and appropriate."

Applicable requirements are those cleanup standards, standards of control, and other substantive environmental protection requirements, criteria, or limitations promulgated under federal or state law that specifically address a hazardous substance, pollutant, contaminant, remedial action, location, or other circumstance.

Relevant and appropriate requirements are those cleanup standards, standards of control, and other substantive environmental protection requirements, criteria, or limitations promulgated under federal or state law that, while not applicable to a hazardous substance, pollutant, contaminant, remedial action, location, or other circumstance, are well-suited to a particular site because they address problems or situations sufficiently similar. In addition, non-promulgated criteria advisories or guidance that do not meet the ARAR definition but may assist in determining what is necessary to be protective are listed as "to be considered" (TBC).

Three types of ARARs and the TBC criteria were considered as part of this FFS to further clarify how to identify and comply with environmental requirements: chemical-specific, action-specific, and location-specific.

- Chemical-specific ARARs are concentration limits in the environment promulgated by government agencies. Where such limits do not exist and there is a concern with their health or environmental impacts, Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) regulations require the development, where possible, of health-based, site-specific levels for chemicals or media. A list of chemical-specific ARARs that may be pertinent to OU-1 and OU-2 is presented in **Table 5-1**.
- Location-specific ARARs must consider federal, state, and local requirements that reflect physiographical and environmental characteristics. Remedial actions may be restricted or precluded depending on the characteristics of a location and the resulting requirements. A list of location-specific ARARs that are potentially pertinent to OU-1 and OU-2 is presented in **Table 5-2**.
- Action-specific ARARs set controls or restriction on the design, performance, and other aspects of implementation of specific remedial activities. Examples include Resource Conservation and Recovery Act regulations for off-site disposal of hazardous materials and the Clean Water Act standards for discharge of treated groundwater. A list of action-specific ARARs that may be pertinent to OU-1 and OU-2 is presented in **Table 5-3**. The following also may be applicable or relevant and appropriate: (i) design standards affecting the construction of a remedy; (ii) performance standards affecting operation of a remedy

(specifically, treatment requirements and management of residuals); and (iii) discharge standards for a particular process.

6. IDENTIFICATION AND SCREENING OF TECHNOLOGY TYPES AND PROCESS OPTIONS FOR OU-1 SOIL AND SEDIMENT

This section evaluates the technology types and process options for each parcel group. Technology types and process options are specific to the COCs in OU-1. Each technology type and process option will be evaluated for effectiveness, implementability, and cost. Based on this evaluation, the technology type and process option will be retained for inclusion in the combined remedial alternatives or not retained for further consideration. A summary of the identification and screening of technology types and process options for each parcel group is presented in **Table 6-1**.

6.1 Parcels 1 and 2

LUCs will be implemented for Parcels 1 and 2. The goal of the remedy for soils in Parcels 1 and 2 is to record land use restrictions that are compatible with their current land use. These parcels are zoned for industrial/commercial land use. Potential exposure to impacted soils left in place above risk-based criteria will be addressed through LUCs.

6.2 Common Elements – Parcels 3, 4, 5 and LECE School Property

6.2.1 No Action

The No Action alternative leaves the Site as-is, with no provision for future monitoring or LUCs. This alternative is evaluated to provide a baseline for comparison to other remedial alternatives. The National Contingency Plan (NCP) requires an evaluation of the No Action alternative (USEPA 1992).

6.2.1.1 Effectiveness

No Action would not be effective at meeting the RAOs. Although the toxicity of the contaminants would likely reduce over time, there would be no monitoring to verify this decrease.

6.2.1.2 Implementability

There are no implementability concerns because no remedial action would be implemented.

6.2.1.3 Cost

The only cost associated with the No Action alternative would be the cost of continuing 5-year reviews.

6.2.1.4 Conclusion

No Action is retained as a baseline for a comparison of other remedial alternatives.

6.2.2 Land Use Controls

LUCs, typically in the form of deed restrictions or environmental covenants, are necessary for a remedy when material above health or risk-based levels is left in place. LUCs are institutional or administrative measures that govern future development (e.g., soil disturbances) and protection and maintenance of engineering controls.

6.2.2.1 Effectiveness

LUCs alone will not be effective at reducing the toxicity, mobility, and volume of COCs and NAPL in sediments. However, LUCs would be effective at limiting the types of activities conducted (e.g.,

use of groundwater) and limiting the types of land uses (e.g., limiting the property use to industrial through deed restrictions).

6.2.2.2 Implementability

LUCs can be readily implemented at each parcel and can be used in combination with other remedial alternatives and can provide additional protection throughout the lifecycle.

6.2.2.3 Cost

The costs associated with LUCs would be low. Costs consist of the administrative cost of preparing and filing the deed restrictions and the cost of periodic (annual) inspections to ensure compliance.

6.2.2.4 Conclusion

LUCs are retained to be used in conjunction with other technologies for the development of remedial alternatives.

6.3 Parcel 3 and LECE School Property

In addition to No Action and LUC alternatives discussed in Sections 6.2.1 and 6.2.2, the following remedial alternatives will be evaluated for Parcel 3 and the LECE School Property:

- Excavation (NAPL-focused or including complete removal of Vaughn landfill)
- Selective excavation with containment and capping
- In situ stabilization

6.3.1 Excavation

Under this scenario, the sediment with observed NAPL, including (a) the portion of the Vaughn landfill with underlying NAPL or (b) the overall landfill, will be excavated and disposed at a Duke Energy approved Subtitle D landfill. The excavated Vaughn landfill is assumed to be disposed of at a permitted C&D landfill. Depending on the Vaughn landfill excavation strategy (NAPL-focused or complete removal), the portion of Vaughn landfill that does not overlay NAPL could remain in place. A temporary barrier wall (i.e., sheet piling) could be used for excavation stability and reduction of groundwater infiltration into excavation areas. Clean fill will be brought in for backfilling. This scenario can result in the complete removal of NAPL-impacted sediments. It is likely that LUCs will only be required for the impacted groundwater. Excavated wetland areas and the excavated Vaughn landfill will be replanted and restored as a wetland. Limited areas of excavation outside the wetland areas will be restored to match existing grade.

6.3.1.1 Effectiveness

Excavation is a well-proven, easily implemented, and effective remedy for removing NAPL. Backfilling with clean soil would restore the wetlands to their original condition, and there would be no unacceptable risk to human health or the environment.

6.3.1.2 Implementability

Excavation of the observed NAPL, including the overall Vaughn landfill or only the portion of the Vaughn landfill with underlying NAPL, can be implemented. Excavation equipment and contractors are readily available. Some specialized equipment for working in the wetlands would be required as well as equipment utilized for the installation of temporary sheet piling. During

excavation, it would be necessary to comply with Site-specific health and safety procedures and regulations to minimize the risk of exposing workers to COCs. The substantive requirements of a USACE Nationwide 38 permit and South Carolina's erosion and sedimentation control regulations would need to be followed. Temporary erosion and sedimentation control (e.g., hay bales, silt fence) would be required during construction.

Managing truck traffic would be one of the most challenging aspects of the excavation. Thousands of loads of impacted material would be trucked out of Parcel 3 and the LECE School property through neighboring streets. The excavation and truck traffic could last several years. The material would be disposed of at an off-Site Subtitle D landfill.

6.3.1.3 Cost

The cost of excavating observed NAPL, including the portion of the Vaughn landfill with underlying NAPL or the overall landfill (including area without NAPL) would be high.

6.3.1.4 Conclusion

Excavation of the observed NAPL, including the portion of the Vaughn landfill with underlying NAPL or the overall landfill (including area without NAPL), will be retained and used in conjunction with other alternatives.

6.3.2 Selective Excavation with Containment and Capping

Under this scenario, selective excavation is defined as the sediments within the wetland areas with NAPL impacts, excluding most of the Vaughn landfill with underlying NAPL. A small portion (approximately 0.3 acres) of Vaughn landfill will be excavated to access the underlying NAPL on the southwestern portion of the Vaughn landfill. Sediments will be excavated and disposed at a Duke Energy approved Subtitle D landfill. The excavation of a portion of Vaughn landfill is assumed and will be disposed of at a permitted C&D landfill. The unexcavated portion of Vaughn landfill will remain in place. A temporary barrier wall (i.e., sheet piling) could be used for excavation stability and reduction of groundwater infiltration into the excavation area. Clean fill will be brought in to restore the excavated wetlands. NAPL beneath the Vaughn landfill would remain in place. Additional sheet piling and landfill capping in combination with pumping (via mechanical groundwater extraction [initially] and engineered phytoremediation) could be used for containment of the remaining NAPL beneath the Vaughn landfill. Landfill capping in combination with containment and pumping would reduce the overall downward hydrostatic pressure by minimizing the infiltration into the subsurface in combination with removal via active (initially) and passive pumping.

6.3.2.1 Effectiveness

Selective excavation is a well-proven, easily implemented, and effective remedy for removing the majority of NAPL. Similarly, capping in combination with containment and hydraulic control is a proven effective technology, which would also be anticipated to have a long-term positive impact on groundwater, as discussed in Section 7.4.2. Backfilling with clean soil would restore the wetlands to their original condition and there would be no unacceptable risk to human health or the environment.

6.3.2.2 Implementability

Selective excavation of the observed NAPL can be implemented. Excavation equipment and contractors are readily available. Some specialized equipment for working in the wetlands would be required as well as equipment utilized for the installation of approximately 1,000 feet of temporary sheet piling on the LECE School property and 1,135 feet of sheet piling which would remain in place on Parcel 3 to provide containment. Additionally, as a component of selective excavation, engineered phytoremediation using TreeWell[®] or equivalent, with an initial period of mechanical pumping from two extraction wells during the establishment period of phytoremediation would be implemented. Hydraulic control via engineered phytoremediation is further discussed and described in Section 7.4.2.

During implementation, it would be necessary to comply with Site-specific health and safety procedures and regulations to minimize the risk of exposing workers to COCs. The substantive requirements of the USACE Nationwide 38 permit and South Carolina's erosion and sedimentation control regulations would need to be followed. Temporary erosion and sedimentation control (e.g., hay bales, silt fence) would be required during construction.

Managing truck traffic would be one of the most challenging aspects of the selective excavation. Thousands of loads of impacted material would be trucked out of Parcel 3 and the LECE School property through neighboring streets and the community. The excavation and truck traffic could last two to three years. The material would be disposed of at an off-Site Subtitle D landfill.

6.3.2.3 Cost

The cost of the selective excavation of the observed NAPL with containment and landfill capping would be high.

6.3.2.4 Conclusion

Selective excavation of the observed NAPL in combination with containment and landfill capping will be retained and used in conjunction with other alternatives.

6.3.3 In Situ Stabilization

Under this scenario, targeted areas with observed NAPL will be stabilized or encapsulated using in situ stabilization (ISS). ISS typically involves adding a stabilizer to the sediment (e.g., Portland cement) which binds COCs within the sediment matrix and reduces hydraulic conductivity to minimize COC leaching to groundwater. The swell from ISS will be excavated and disposed of off-Site before restoring the wetlands. This remedial technology may be combined with excavation or on-Site containment.

6.3.3.1 Effectiveness

Geosyntec completed an ISS treatability study to evaluate the effectiveness and practicality of implementing ISS for the sediments in the wetlands/uplands and to provide design basis information for the development of remedial alternatives during the preparation of a feasibility study, if practical.

Based on the results of the ISS mix design testing, no ISS mix design was greater than the primary defining unconfined compressive strength (UCS) criteria of 50 pounds per square inch (psi) after 28 days of curing. Therefore, hydraulic conductivity and leach testing were not conducted. Mix

design 3A for each soil composite (i.e., total cement additions $\geq 24\%$ by dry mass of soil) was evaluated in an attempt to determine whether a commercially viable mix design could be developed for ISS implementation. These mixes were not above the lower bound of the UCS criteria (50 psi) at 28 days for each soil composite. As a result, ISS implementation as a remedial alternative is not recommended.

6.3.3.2 Implementability

ISS of the observed NAPL can be implemented. ISS equipment and contractors are readily available. Some specialized equipment for working in the wetlands would be required. During ISS implementation, it would be necessary to comply with Site-specific health and safety procedures and regulations to ensure that the exposure of the workers to COCs is minimized. The substantive requirements of the USACE Nationwide 38 permit and South Carolina's erosion and sedimentation control regulations would need to be followed. Temporary erosion and sedimentation control (i.e., hay bales, silt fence) would be required during construction activities.

6.3.3.3 Cost

ISS of the observed NAPL would have a moderate cost.

6.3.3.4 Conclusion

Based on the results of the treatability study, ISS implementation as a remedial alternative is not retained.

6.4 Parcels 4 and 5

In addition to No Action and LUC alternatives discussed in sections 6.2.1 and 6.2.2, the only alternative proposed for Parcels 4 and 5 will be excavation of NAPL located in the drainage ditch. No other technology types or process options will be considered.

6.4.1 Excavation

Under this scenario, sediments with observed NAPL within the ditch will be excavated and disposed at a Duke Energy approved Subtitle D landfill. Clean fill will be brought in to restore the excavated wetlands. This scenario can result in both Parcels 4 and 5 meeting residential standards for OU-1. Sediment management controls (e.g., riprap or sediment traps) will be installed within drainage ditches to further minimize potential sediment transport toward the Reedy River.

6.4.1.1 Effectiveness

Excavation is a well-proven, easily implemented, and effective remedy for removing NAPL from the parcels. Backfilling with clean soil would restore the wetlands and ditch banks to their original condition and there would be no unacceptable risk to human health or the environment.

6.4.1.2 Implementability

Excavation of the observed NAPL can be implemented. Excavation equipment and contractors are readily available. Some specialized equipment for working in the wetlands would be required. During excavation, it would be necessary to comply with Site-specific health and safety procedures and regulations to minimize the risk of exposing workers to COCs. The substantive requirements of a USACE Nationwide 38 permit and South Carolina's erosion and sedimentation control

regulations would need to be followed. Temporary erosion and sedimentation controls (e.g., hay bales, silt fence) would be required during construction activities.

Managing truck traffic would be one of the most challenging aspects of the excavation. Hundreds of loads of impacted material would be trucked out of Parcels 4 and 5 through neighboring streets. The excavation and truck traffic could last two to three months. Material would be disposed of at an off-Site Subtitled D landfill.

6.4.1.3 Cost

Selective excavation of the observed NAPL will be retained and used in conjunction with other alternatives.

6.4.1.4 Conclusion

Excavation of sediment with observed NAPL in Parcel 4 and 5 will be retained and used in conjunction with other alternatives.

7. IDENTIFICATION AND SCREENING OF TECHNOLOGY TYPES AND PROCESS OPTIONS FOR OU-2 SURFACE WATER AND GROUNDWATER

This section evaluates the technology types and process options for each parcel group. The alternatives evaluated here are specific to the COCs in OU-2. Each technology type and process option will be evaluated for effectiveness, implementability, and cost. Based on this evaluation, the technology type and process option will be retained for inclusion in the combined remedial alternatives or not retained for further consideration. A summary of the identification and screening of technology types and process options for each parcel group is presented in **Table 7-1**.

7.1 No Action

The No Action alternative leaves the Site as-is with no provision for future monitoring or LUCs. This alternative is evaluated to provide a baseline for comparison of other remedial alternatives. Evaluation of the No Action alternative is required under the NCP (USEPA 1992).

7.1.1 Effectiveness

No Action would not be effective at meeting the RAOs. The toxicity of the contaminants would likely reduce over time, but there would be no monitoring to verify this decrease.

7.1.2 Implementability

There would be no implementability concerns because remedial action would not be implemented.

7.1.3 Cost

The only cost associated with the No Action alternative would be continuing to conduct 5-year reviews.

7.1.4 Conclusion

No Action is retained as a baseline for comparison of other remedial alternatives.

7.2 Land Use Controls

LUCs, typically in the form of deed restrictions or environmental covenants, are a necessary component of a remedy when material above health or risk-based levels is left in place. LUCs are institutional or administrative measures that govern future development (e.g., no use of groundwater) and the protection and maintenance of engineering controls.

7.2.1 Effectiveness

LUCs alone will not be effective at reducing the toxicity, mobility, and volume of COCs and NAPL in surface water and groundwater. However, LUC would be effective by limiting use of groundwater and limiting the types of land uses (e.g., limiting the property use to industrial through deed restrictions).

7.2.2 Implementability

LUCs controls can be readily implemented at each parcel and, when used in combination with other remedial alternatives, can provide additional protection throughout the lifecycle.

7.2.3 Cost

The costs associated with LUCs would be low. Costs consist of the administrative cost of preparing and filing the deed restrictions and the cost of periodic (annual) inspections to ensure compliance

7.2.4 Conclusion

LUCs are retained to be used in conjunction with other technologies for the development of remedial alternatives.

7.3 Surface Water

Impacts to surface water are minimal with only one sample location near Vaughn landfill to date exhibiting a COC, benzo(a)pyrene, with a concentration above applicable screening criteria during two semiannual monitoring events in 2021. During the last three semiannual events, detections above applicable screening criteria were not observed. Surface water samples collected from the six locations along the Reedy River have not contained VOCs or SVOCs at concentrations greater than reporting limits or applicable regulatory criteria as discussed in the RIR-A. These six surface water locations are generally located west of the Site along the Reedy River, with one of the surface water sample locations immediately downgradient of the outfall from Parcel 5 that discharges into the Reedy River. The historical impacts to surface water (limited to an area adjacent to the Vaughn landfill) are expected to be addressed via successful remediation of source material in sediment and groundwater.

7.4 Shallow and Transition Groundwater Zones

In addition to the No Action and LUC alternatives discussed in Sections 7.1 and 7.2, the following remedial alternatives will be evaluated for the shallow and transition groundwater zones:

- MNA
- Hydraulic control
- In situ chemical oxidation

7.4.1 Monitored Natural Attenuation

EPA defines MNA as the "reliance on natural attenuation processes (within the context of a carefully controlled and monitored site cleanup approach) to achieve site-specific remediation objectives within a time frame that is reasonable compared to that offered by other more active methods. The 'natural attenuation processes' that are at work in such a remediation approach include a variety of physical, chemical, or biological processes that, under favorable conditions, act without human intervention to reduce the mass, toxicity, mobility, volume, or concentration of contaminants in sediment or groundwater. These *in-situ* processes include biodegradation; dispersion; dilution; sorption; volatilization; radioactive decay; and chemical or biological stabilization, transformation, or destruction of contaminants."

7.4.1.1 Effectiveness

MNA would not be effective for NAPL that remains in the groundwater but could be effective for the dissolved phase of the benzene and naphthalene plume. Trend analyses performed on the current groundwater data set indicate that the groundwater plume is mostly stable and or shrinking where NAPL is not present in OU-2 or OU-3. Groundwater modeling and ongoing statistical trend analysis would likely be required to document and support effectiveness of MNA.

7.4.1.2 Implementability

MNA can easily be implemented though long-term access agreements will be required. Aside from groundwater sampling equipment, no special equipment is required.

7.4.1.3 Cost

Cost associated with MNA would be low.

7.4.1.4 Conclusion

MNA is retained to be used in conjunction with other technologies for the development of remedial alternatives.

7.4.2 Hydraulic Control

Under this scenario, hydraulic control measures (groundwater extraction wells or TreeWell[®] installation [or similar phytoremediation technology], or both) will be evaluated to induce a hydraulic gradient that restricts COC migration. The need to treat extracted groundwater and obtain discharge permits will be evaluated. Hydraulic control of the shallow zone may complement some of the containment approaches for impacted sediments discussed in Section 6. Hydraulic control will be coupled with MNA within the capture zone to monitor contaminant degradation.

Engineered phytoremediation via TreeWell[®] is a plant-based remediation technology where the tree serves as the "pump" and offers a cost-effective alternative to more traditional pumping wells and provides an aesthetically pleasing approach to site cleanup, with the potential for significant cost savings compared to active remediation systems.

Engineered phytoremediation systems such as TreeWell[®] transpire water equivalent to a forest canopy at the time of canopy closure, which is estimated at 5 years. Cottonwood and willow, the two species most likely to be employed for this alternative, have been documented to achieve average transpiration rates of approximately 5,200 gallons per acre per day (Schaeffer, et al., 2000). This is consistent with the industry "rule of thumb" of between 1 and 1.5 million gallons per acre per year (annual average) for forested land. The approximately 1.5-acre capped area within the barrier wall where the engineered phytoremediation system would be applied would be anticipated to provide a net extraction rate (based on the average transpiration rate, and assuming a nine-month season of active transpiration) of over 2 million gallons per year (equivalent to approximately 4 gallons per minute). Installation of an engineered phytoremediation system in C&D material does present some minor implementation challenges; however, installations have been successfully completed under similar conditions at multiple sites throughout the United States.
7.4.2.1 Effectiveness

Hydraulic control will be highly effective at limiting potential migration of COCs in groundwater. Hydraulic control can be achieved through the installation of groundwater extraction wells or TreeWell[®] installation (or similar phytoremediation technology). Typical pumping rates are low, removing just enough water to limit the flow of groundwater. Hydraulic control is also effective at maintaining an upward groundwater gradient from lower groundwater zones (e.g., bedrock groundwater zone).

7.4.2.2 Implementability

Hydraulic control uses groundwater extraction wells that are readily implementable and do not require specialty contractors or equipment that is not readily accessible. The use of TreeWell[®] systems is implementable, but it typically takes time (~5 years) for the trees to become established and capture the required volume of water to maintain hydraulic control. Therefore, it is common to install groundwater extractions wells and plant trees at the start of the remedial action and to use the extraction wells until the trees are established before transitioning to trees only.

7.4.2.3 Cost

The short-term costs are low to moderate. However, once the transition is made to using only trees, the costs become low.

7.4.2.4 Conclusion

Hydraulic control, through the use of pumping wells and TreeWell[®] systems, is retained to be used in conjunction with other technologies for the development of remedial alternatives.

7.4.3 In Situ Chemical Oxidation

In situ chemical oxidation (ISCO) is a remedial approach that uses commercially available reagents to oxidize COCs. To distribute the reagents in the subsurface, technologies such as injection wells or direct push technology would be used. Persulfate and permanganate are two of the more common reagents.

7.4.3.1 Effectiveness

For ISCO to be highly effective, the reagents must come into contact with the target dissolved phase COCs. Thus, delivery and distribution are critical factors for success. However, ISCO is not as effective for NAPL since the COCs must be in the dissolved phase. Where NAPL is present, multiple injections or application of ISCO reagents may be required to achieve measurable COC concentration reductions.

7.4.3.2 Implementability

The equipment required to inject oxidizing chemicals into the groundwater is readily available. The chemicals that would be used to oxidize benzene and naphthalene are commonly available in the manufacturing and chemical industries. However, achieving effective distribution in the subsurface could be challenging, because much of the COCs and NAPL is in areas that are difficult to access (i.e., wetlands).

7.4.3.3 Cost

The cost for ISCO is moderate to high, depending on the implementation.

7.4.3.4 Conclusion

Because of the difficulty of implementation, ISCO will not be retained.

8. FEASIBILITY STUDY EVALUATION CRITERIA

USEPA guidance provides nine criteria, divided into three broader categories, to consider when screening remedial alternatives (USEPA 1988). The nine criteria and their associated categories are presented below.

8.1 Threshold Criteria

- Overall Protection of Human Health and the Environment. The assessment for this criterion describes how each alternative achieves and maintains adequate protection of human health and the environment.
- *Compliance with ARARs.* The assessment for this criterion describes how each alternative complies with potential federal and state ARARs. In addition, the assessment addresses other information from advisories, criteria, and guidance that may be applicable to the Site.

8.2 Balancing Criteria

- Long-Term Effectiveness and Permanence. The assessment for this criterion evaluates the long-term effectiveness of alternatives in maintaining protection of human health and the environment after response objectives have been met.
- Reduction of Toxicity, Mobility, and Volume through Treatment. The assessment for this criterion evaluates the alternative with respect to how well it can permanently and significantly reduce toxicity, mobility, and volume of impacted media.
- Short-Term Effectiveness. The assessment for this criterion evaluates the alternative with respect to its effects on human health and the environment during construction and implementation of the remedial action.
- Implementability. The assessment for this criterion evaluates the technical and administrative feasibility of each alternative and the availability of materials and services required during its implementation.
- *Cost.* This assessment evaluates estimated capital and operation and maintenance (O&M) costs of each alternative. In accordance with the USEPA's *Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA*, a level four cost estimate was developed for each combined alternative in Section 9.3 (USEPA, October 1988). The cost estimate has a goal to meet a plus 50 percent and minus 30 percent accuracy level. For post-construction costs, a present value approach was utilized which applied a seven percent discount factor, consistent with *A Guide to Developing and Documenting Cost Estimates During the Feasibility Study* (USEPA, July 2000).

8.3 Modifying Criteria

- *State Acceptance*. This criterion pertains to the potential technical and administrative issues and concerns the state may have regarding each alternative.
- *Community Acceptance*. This criterion pertains to the potential issues and concerns the public may have regarding each of the alternatives.

9. DESCRIPTION AND DETAILED ANALYSIS OF COMBINED OU-1 AND OU-2 REMEDIAL ALTERNATIVES

9.1 Remedial Alternatives

Based on the retained technology types and process options presented in Section 6 and Section 7, the following four combined OU-1 and OU-2 remedial alternatives have been developed for the Site.

- Combined Remedial Alternative 1: No Action
- Combined Remedial Alternative 2: MNA and LUCs
- Combined Remedial Alternative 3: Selective Excavation, Barrier Wall, Landfill Capping, Hydraulic Control, MNA, and LUCs
- Combined Remedial Alternative 4: Excavation, MNA, and LUCs
- Combined Remedial Alternative 5: Excavation and Complete Removal of Vaughn Landfill, MNA, and LUCs

In the following sections, each combined OU-1 and OU-2 remedial alternative is compared to the nine USEPA guidance criteria: threshold, balancing, and modifying criteria. A numerical evaluation of the alternatives and guidance criteria is provided in **Table 9-1**. A comparative summary with descriptions of each alternative relative to the strengths and weaknesses of each evaluation criteria is provided in **Table 9-2** and discussed in Section 9.4

9.2 Constructability Review

Due to the complexity of the proposed combined remedial alternatives, Duke Energy contracted with highly qualified remediation contractors to complete a constructability review for Combined Remedial Alternatives 3 through 5, described in Sections 9.3.3 through 9.3.5, respectively. The objective of the review was to identity if some part or all of an alternative may not be physically possible without significant risks to the community and/or the environment.

Each contractor identified significant constructability issues, including storm water management, truck and traffic routing, and sediment and material handling (stabilization and odor control). It was generally agreed that management of stormwater in the rainy season would propose a significant risk due to potential flooding issues, therefore, it was assumed that the remedial activities could only be actively performed eight months of the year (May through December). The January through April shut-down period was based upon a review of the United States Geological Survey (USGS) gauge, discharge, and precipitation station data from the last 10 years for the Reedy River and the visual identification of this period of time via direct Site experience as having a higher preponderance for flooding conditions and elevated water levels within the wetlands area which would impact operations in the project area. **Table 9-3** includes USGS gauging station data which supports a basis for establishing a seasonal schedule.

Truck and traffic routing was identified as a significant risk and disruption to the surrounding community. Since Combined Alternative 3 has less truck trips and a shorter schedule, it was thought to be less disruptive to the community. Due to the high potential for nuisance odors while

excavating the NAPL from the LECE School property, it has been assumed that a sprung structure may be constructed over the excavation to mitigate this risk. A sprung structure is a high-performance tensioned membrane structure, typically with aluminum arches that can be rapidly erected over a large footprint (typical size of 20,000+ square feet) and moved, as needed. Remediation work is performed inside the sprung structure with an associated air collection and treatment system to provide odor management (see photograph inset included on **Figure 9-1**). These constructability issues have been factored into the analysis of the combined alternatives below and the numerical evaluation presented in Section 9.4.

9.3 Analysis of Combined Alternatives

9.3.1 Combined Remedial Alternative 1: No Action

9.3.1.1 Description

The No Action alternative maintains the Site in its current condition (i.e., as-is). This alternative has been retained to provide a baseline for comparison to other alternatives.

9.3.1.2 Overall Protection of Human Health and the Environment

Combined OU-1 and OU-2 Remedial Alternative 1 does not involve any remedial actions and the Site would remain in its current condition. No land use restrictions would be placed on any of the parcels or the LECE School property. This alternative does not protect human health and the environment.

9.3.1.3 Compliance with ARARs

This alternative would not comply with the chemical-specific ARARs because no action would be taken to reduce contaminant concentrations. Because no remedial action would be taken, there are no action-specific ARARs. No location-specific ARARs are relevant to this alternative.

9.3.1.4 Long-Term Effectiveness and Permanence

This alternative would have no long-term effectiveness or permanence. COCs may attenuate over time, but there would be no method to monitor this trend. Because there are no LUCs, there would be no method to protect future Site occupants.

9.3.1.5 Reduction of Toxicity, Mobility, and Volume through Treatment

This alternative would have no reduction of toxicity, mobility, or volume because there would be no treatment. COCs may attenuate over time, but there would be no method to monitor this trend.

9.3.1.6 Short-Term Effectiveness

Because there would be no remedial action, there would be no risk to human health and the environment during construction and implementation of the remedial action; however, the timeframe to achieve remedial objectives would be an extended period.

9.3.1.7 Implementability

This alternative is readily implementable. The technical and administrative feasibility this alternative and the availability of materials and services required during its implementation are not relevant.

9.3.1.8 Cost

Under this alternative, there would be no capital or O&M construction costs.

•	Construction Costs (Capital)	\$0
•	30-Year O&M Costs (Present Value)	\$22,000
•	Total	\$22,000
•	Cost Range (-30% to +50%)	\$15,000 - \$33,000

9.3.2 Combined Remedial Alternative 2: MNA and LUCs

9.3.2.1 Description

The MNA and LUCs alternative maintains the Site in its current condition (i.e., as-is) with continued monitoring for a period of 30 years. Soil, sediment, and groundwater LUCs will be implemented on the parcels and LECE School property.

9.3.2.2 Overall Protection of Human Health and the Environment

Combined OU-1 and OU-2 Remedial Alternative 2 does not involve active remedial actions and the Site would remain in its current condition with LUCs that would be placed on the parcels and the LECE School property. The LUCs would not algin with the current use of the LECE School property or Parcel 4. This alternative does not protect human health and the environment since impacted media remain in place on Parcels 3, 4, 5, and the LECE School property.

9.3.2.3 Compliance with ARARs

This alternative would likely not comply with the chemical-specific ARARs because no active remediation would be taken to reduce or contain the source of the contaminant concentrations. Since the Site will be maintained "as is", there are no action-specific ARARs. No location-specific ARARs are relevant to this alternative.

9.3.2.4 Long-Term Effectiveness and Permanence

This alternative would have minimal long-term effectiveness or permanence. COCs may attenuate over time, but without plume source removal, contaminant concentrations are not likely to significantly decrease within the 30-year timeframe. The needed soil sediment LUC would not align with the current use of the LECE School Property or Parcel 4.

9.3.2.5 Reduction of Toxicity, Mobility, and Volume through Treatment

Because there would be no active treatment, this alternative would not significantly reduce the toxicity, mobility, or volume of impacted NAPL, but could be effective for the dissolved phase of the groundwater benzene and naphthalene plume. Reduction of the toxicity and volume of COCs in the soils, sediment, and groundwater will occur through natural attenuation, but without plume source removal (NAPL), contaminant concentrations are not likely to significantly decrease.

9.3.2.6 Short-Term Effectiveness

Because the remedial action requires continued routine groundwater monitoring, there would be minimal risk to human health and the environment during implementation of the remedial action; however, the timeframe to achieve remedial objectives would be an extended period.

9.3.2.7 Implementability

This alternative is readily implementable. The technical and administrative feasibility of this alternative and the availability of materials and services required during its implementation are not relevant.

9.3.2.8 Cost

Under this alternative, there would be capital construction costs for the implementation of the proposed remedy. Other costs for this alternative are associated with the O&M as follows:

•	Construction Costs (Capital)	\$150,000
•	30-Year O&M Costs (Present Value)	\$1,200,000
•	Total	\$1,350,000
•	Cost Range (-30% to +50%)	\$950,000 - \$2,000,000

A summary of the Remedial Alternative 2 costs is provided in Table 9-4.

9.3.3 Combined Remedial Alternative 3: Selective Excavation, Barrier Wall, Landfill Capping, Hydraulic Control, MNA, and LUCs

9.3.3.1 Description

Remedial Alternative 3 would include the following primary components:

- Selective excavation on Parcel 3, 4, 5, and LECE
- Installation of a barrier wall in combination with capping of a portion of the Vaughn landfill
- Hydraulic control of the shallow- and transition-zone groundwater via mechanical pumping (~5 years) and engineered phytoremediation on the capped portion of the Vaughn landfill
- MNA of groundwater, and implementation of LUCs for long-term effectiveness

A description of each element in this alternative is provided below and shown graphically on **Figures 9-1** through **9-4**.

Selective Excavation: Overview

It is likely that dewatering and surface water management will be required during the selective excavations described above. The excavations will be backfilled with clean sediment to match the existing elevations and restored to its preconstruction condition (i.e., wetlands). This option meets the RAOs for the LECE School property and facilitates the removal of the majority of the NAPL-impacted sediments identified in the RIR-A.

Selective Excavation: LECE School Property

This alternative includes the excavation of the sediments within the wetlands with visible NAPL, including a portion of the turnaround/parking area on LECE School property, to a depth of 16 ft bls based on the RIR-A (SynTerra 2021). The total areal extent of excavation is approximately 1.02 acres as identified on **Figure 9-1**. To excavate to this depth, it has been assumed that a 1,000

ft long temporary, sheet pile wall would be installed to an estimated depth of 25 ft at the location shown on **Figure 9-1**. The estimated volume of sediment for Alternative 3 is 26,400 bcy.

Excavation of MGP materials has the potential to cause unwanted emissions. Potential emissions include vapor phase organic compounds, respirable particulate matter (RPM10), dust, odor, and noise. It is anticipated that mitigation of potential air and noise will include implementation of an Air, Noise and Fugitive Emissions Monitoring and Mitigation Plan (ANFEMP) and may include the construction of a temporary moveable sprung structure over the LECE School excavation area. The ANFEMP will summarize the roles and responsibilities for mitigation of air and fugitive emissions and noise; detail monitoring requirements, period of monitoring anticipated, and frequency/methodology of analysis. The temporary sprung structure, if needed, is a large enclosure that can be placed over the LECE school property excavation area (in phases) and kept at a negative air pressure to facilitate capture of air emissions. The area where a temporary sprung structure would be placed (and moved as necessary during implementation) is shown on Figure 9-1 and corresponds directly to the area to be excavated. Challenges associated with the use of a sprung structure on the LECE school property include: (i) construction and placement of the structure within a wetland environment, (ii) logistics associated with moving and anchoring the structure in the wetland setting, and (iii) maintaining and/or moving the structure during or in response to storm events/flooding conditions.

Selective Excavation: Parcel 3

Parcel 3 is divided into two areas, north and south excavation areas as illustrated on Figure 9-2. The total areal extent of the excavation for north and south excavation areas is 0.5 and 1.35 acres, respectively. Parcel 3 south excavation area includes approximate 0.3 acres of the Vaughn landfill. This area has been included because the majority of the area has thicker NAPL-impacted sediments present (remaining area which was not included was identified as visually observed trace NAPL in the RIR-A) and the overlying Vaughn landfill is relatively thin, making the NAPL more accessible. To minimize the extent of removal of the Vaughn landfill, the excavation will be limited to the area shown on Figure 9-2. At an expected maximum depth of 7 ft of NAPL, the estimated sediment excavation volumes of NAPL for north and south excavation areas are approximately 5,700 and 15,300 bcy, respectively. At an expected maximum depth of 10 ft bls, the estimated sediment excavation volumes of the Vaughn landfill for the south area are approximately 3,900 bcy. The proposed excavation will be completed based on the estimated depth in the RIR and on visual observation with standard excavation equipment and a dewatering/treatment system. The excavation would be backfilled with clean sediment, along with the restoration of the wetland vegetation (Figure 9-4). BMPs (e.g., silt fences, sediment tubes, rock ditch check, and turbidity curtains) will be placed to prevent the migration of sediment off-Site during construction.

Selective Excavation: Parcels 4 and 5

The total areal extents of the excavation for Parcels 4 and 5 are 0.24 and 0.20 acres, respectively as shown on **Figure 9-2**. At an expected maximum depth of 7 ft bls, the estimated sediment excavation volume for Parcels 4 and 5 are approximately 2,800 and 2,300 bcy, respectively. The proposed sediment excavation will be completed based on the estimated depth in the RIR-A and on visual observation using standard excavation equipment. BMPs (e.g., silt fences, sediment

tubes, rock ditch check and turbidity curtains) will be placed to prevent sediment from migrating off-Site during construction.

Barrier Wall, Capping, and Hydraulic Control

To prevent remaining sorbed COCs and NAPL, which will remain in place, from migrating from beneath the Vaughn landfill, an approximately 1,425 ft long permanent barrier wall (e.g., sheet pile) will be installed in the northwestern portion of the Vaughn landfill to the top of the transition zone (depth of approximately 25 ft bls) as shown on **Figure 9-3**. Leaving the Vaughn landfill in place in this area (beneath the cap and within the barrier wall), would (i) allow the current monitoring well network to remain in place and/or to be re-installed following construction, (ii) allow for the installation of a groundwater hydraulic control system, and (iii) significantly reduce construction schedule, the amount of truck traffic, and impact to the surrounding community.

To control infiltration of precipitation within the barrier wall, a low-permeability engineered cap (e.g., geomembrane with drainage layer and 2 ft of soil) will be installed within the limits of the barrier wall.

To prevent the buildup of groundwater within the barrier wall and create an upward hydraulic head on the transition and bedrock zones of groundwater, a groundwater extraction system will be installed that consists of approximately 100 TreeWell[®] installations and two groundwater extraction wells. The groundwater extraction wells would be operated until the trees have been established.

MNA and LUCs

Based on the results of the groundwater sampling, MNA is a viable alternative for the remediation of the shallow- and transition-zone groundwater. LUCs would be required to (i) prevent or limit the use of groundwater until the groundwater reaches PRGs, (ii) protect and maintain the barrier, cap and hydraulic control (e.g., TreeWell[®]), and (iii) maintain current property zoning.

9.3.3.2 Overall Protection of Human Health and the Environment

Select excavation of the majority of NAPL on Parcel 3, and the identified NAPL on Parcel 4, and 5 and on the LECE School property would aid in protecting human health and the environment because the NAPL-impacted material would be excavated and disposed of off-Site. Additionally, the barrier wall would prevent the migration of impacted groundwater and NAPL; and the cap area would be fenced and provide protection from contact with landfill materials on the capped portion of Vaughn landfill. LUCs would provide an additional layer of protection.

9.3.3.3 Compliance with Applicable or Relevant and Appropriate Requirements

This alternative would meet location- and action-specific ARARs. Chemical-specific ARARs would be met over time through MNA.

9.3.3.4 Long-Term Effectiveness and Permanence

Excavation would permanently remove the NAPL from the wetlands on Parcels 3, 4, and 5 and on LECE School property. A limited area of NAPL would be contained within the barrier wall and visually observed trace NAPL would be left under a portion of the Vaughn landfill to remain. This alternative would provide long-term effectiveness. Installation of the barrier wall, cap, and TreeWell[®] systems would require routine O&M to protect human health and the environment after response objectives have been met. The mechanical groundwater extraction component would

require routine (monthly at a minimum) O&M until the trees reach a size where groundwater uptake by the trees is high enough to facilitate shutting down the mechanical pumping system. Once the mechanical pumping system is shut down, O&M and inspection would be required (cap inspection and maintenance and tree inspection and pruning); however, the frequency would be on an annual basis or after a major storm event.

9.3.3.5 Reduction of Toxicity, Mobility, and Volume Through Treatment

Because there would be no active treatment, this alternative would not reduce the toxicity or volume of impacted media overall, though it would reduce it at the Site. The excavated sediment would be disposed at a Duke Energy approved Subtitle D landfill without treatment which would provide for a reduction in mobility, since it is a lined landfill. Reduction of the toxicity and volume of COCs and NAPL in the remaining capped areas and groundwater will occur through natural attenuation over the course of an extended period of time (likely greater than 30 years).

9.3.3.6 Short-Term Effectiveness

Short-term risks for this alternative would include (i) exposure to impacted media by Site workers, (ii) impacts to the community from the work on the LECE School property and the high volume of truck traffic, and (iii) short-term impacts to the community from fugitive dust and odors. The potential for exposure to workers would be minimized by implementing engineering controls, wearing appropriate PPE, and complying with OSHA regulations and Site-specific health and safety procedures.

Any potential negative short-term impacts to the surrounding community and environment from fugitive emissions or spillage of impacted sediment could be minimized by implementing appropriate engineering controls (e.g., dust control, perimeter air monitoring, spill prevention procedures).

The most significant short-term impacts would most likely be from truck traffic and odors. Negative impacts from truck traffic could be minimized by limiting when trucks can operate and identifying the least disruptive truck routing plan. Negative impacts from odors would be minimized through BMPs such as the temporary sprung structure. The estimated construction schedule and truck frequency is approximately two to three years and requiring approximately 9,400 truck trips (assuming 30 trucks/day). The schedule assumes only a portion of the year (8 months) would be available, due to weather and flooding conditions within the wetlands, to conduct the combined remedial alternative construction activities.

9.3.3.7 Implementability

Excavation of the observed NAPL can be implemented. Excavation equipment and contractors are readily available. Some specialized equipment for working in the wetlands would be required and the installation, maintenance, and movement of a sprung structure on the LECE school property would be challenging. During excavation, it would be necessary to comply with Site-specific health and safety procedures and regulations to minimize the risk of exposing workers to COCs. The substantive requirements of USACE Nationwide 38 permit and South Carolina's erosion and sedimentation control regulations would need to be followed. Temporary erosion and sedimentation control (e.g., hay bales, silt fence) would be required during construction activities. The material would be disposed of at an off-Site Duke Energy approved Subtitle D landfill.

9.3.3.8 Cost

Under this alternative, there would be capital construction costs for the implementation of the proposed remedy. Other costs for this alternative are associated with the O&M as follows:

Alternative 3

•	Construction Costs (Capital)	\$17,300,000
•	30-Year O&M Costs (Present Value)	\$1,300,000
•	Total	\$18,600,000
•	Cost Range (-30% to +50%)	\$13,000,000 - \$28,000,000

A summary of the Remedial Alternative 3 costs is provided in Table 9-5.

9.3.4 Combined Remedial Alternative 4: Excavation, MNA, and LUCs

9.3.4.1 Description

Alternative 4 would include the excavation of the portion of the Vaughn landfill with underlying NAPL; excavation of the impacted sediments on Parcels 3, 4, and 5 and LECE School property; MNA of groundwater; and implementation of LUCs for long term effectiveness. A description of each element in this alternative is provided below and shown on **Figure 9-5**. **Figure 9-6** shows the key features following implementation of Combined Remedial Alternative 4.

Parcel 3: Excavation

This alternative would include the excavation of Parcel 3 NAPL impacted areas, including the portion of the Vaughn landfill with underlying NAPL. The excavation areal extent of Parcel 3 totals approximately 4.8 acres. At an expected maximum depth of 7 ft of NAPL, the estimated sediment excavation volumes for Parcel 3 within the wetlands area is 21,000 bcy. Assuming the thickness of the Vaughn landfill C&D debris is 10 ft and the thickness of underlying NAPL is 10 ft, the volume of excavated C&D debris and NAPL are both 50,700 bcy (101,400 bcy total). The excavations would be backfilled with clean soil and sediment along with the restoration of the wetland vegetation. During restoration, the excavation within the Vaughn landfill footprint would be backfilled to match the existing contours of the wetlands area on either side of Vaughn landfill. BMPs (e.g., silt fences, sediment tubes, rock ditch check, and turbidity curtains) will be placed to prevent sediment from migrating off-Site during construction.

Parcels 4 and 5: Excavation

The total areal extents of the excavation for Parcels 4 and 5 are 0.24 and 0.20 acres, respectively. At an expected maximum depth of 7 ft bls, the estimated sediment excavation volumes for Parcels 4 and 5 are approximately 2,800 and 2,300 bcy, respectively. The proposed sediment excavation will be completed based on the estimated depth in the RIR and on visual observation using standard excavation equipment. BMPs (e.g., silt fences, sediment tubes, rock ditch check, and turbidity curtains) will be placed to prevent sediment from migrating off-Site during construction.

LECE School Property: Excavation

This alternative includes the excavation of the sediments within the wetlands and uplands that are visibly stained with NAPL to a depth of 16 ft bls. This alternative includes the parking area on LECE School property. The total areal extent of excavation is approximately 1.02 acres.

As described above, excavation on the LECE School property would require the implementation of an AFEMP to address noise and air and fugitive dust emissions. Additionally, the use a temporary sprung structure, if needed, over the excavation area would further reduce potential impacts to the LECE School property during the excavation.

Dewatering and surface water management will likely be required during the excavation. The excavation will be backfilled with soil to match the existing elevations and restored to its preconstruction condition. This alternative meets the RAOs for the LECE School property and facilitates the removal of the NAPL that the RIR identifies in this area, excluding the parking area on LECE School property.

MNA and LUCs

Following excavation activities, the remedy for the shallow- and transition-zone groundwater will be MNA. The removal of a portion of the landfill with restoration as wetlands will limit the area available for the installation of monitoring wells and assessing natural attenuation over time. Based on the results of the groundwater sampling and the proposed removal of NAPL, MNA is a viable alternative for groundwater remediation over the course of an extended period of time (likely greater than 30 years). LUCs would be required to prevent or limit the use of groundwater until the groundwater reaches PRGs and to maintain current property zoning.

9.3.4.2 Overall Protection of Human Health and the Environment

Excavation of impacted sediment on Parcels 3, 4, and 5 and the LECE School property would help to protect human health and the environment because the NAPL-impacted material would be excavated and removed from the Site. LUCs would also provide an additional layer of protection.

9.3.4.3 Compliance with Applicable or Relevant and Appropriate Requirements

This alternative would meet location- and action-specific ARARs. Chemical-specific ARARs would be met over time through MNA.

9.3.4.4 Long-term Effectiveness and Permanence

Excavation would permanently remove the NAPL from the wetlands on Parcels 3, 4, and 5, the LECE School property and from beneath the Vaughn landfill. This alternative would provide long-term effectiveness. Additionally, Federal Emergency Management Agency (FEMA) flood insurance maps would need to be updated for the partial removal of Vaughn landfill. Select monitoring wells would need to be reinstalled to establish and continue long-term groundwater monitoring (for OU-2 and OU-3).

9.3.4.5 Reduction of Toxicity, Mobility, or Volume Through Treatment

The toxicity, mobility, and volume of waste would be reduced at the Site through excavation. However, because the excavated impacted media would be disposed of at a Duke Energy approved Subtitle D landfill without treatment, there is no overall reduction in toxicity or volume of waste. The mobility would be reduced due to placement in an engineered waste containment cell at the landfill. Reduction of the toxicity and volume of COCs and NAPL in the groundwater will occur

41

through natural attenuation over the course of an extended period of time (likely greater than 30 years).

9.3.4.6 Short-Term Effectiveness

Short-term risks for this alternative would include (i) exposure to impacted media by Site workers, (ii) potential impacts to the community from the work on the LECE School property and the high volume of truck traffic, and (iii) short-term impacts to the community from fugitive dust and odors. The risk of exposure to workers would be minimized by implementing engineering controls, wearing appropriate PPE, and complying with OSHA regulations and Site-specific health and safety procedures. Any potential negative short-term impacts to the surrounding community and environment could be minimized by implementing appropriate engineering controls (e.g., dust control, perimeter air monitoring, spill prevention procedures).

Because of the large volume of excavated material (153,900 bcy), Alternative 4 could have significant negative impacts from truck traffic. It is estimated that approximately 18,500 trucks trips would be required and the timeframe for completion would be approximately 5 to 6 years. The schedule assumes only a portion of the year (8 months) would be available, due to weather and flooding conditions, to conduct the combined remedial alternative construction activities. The disruption to the community could be minimized by limiting when trucks can operate and identifying the least disruptive truck routing plan.

9.3.4.7 Implementability

Excavation of the observed NAPL, including the portion of the Vaughn landfill, can be implemented. Excavation equipment and contractors are readily available. Some specialized equipment for working in the wetlands would be required and the installation, maintenance, and movement of a sprung structure on the LECE school property would be challenging. During excavation, it would be necessary to comply with Site-specific health and safety procedures and regulations to minimize the risk of exposing workers to COCs. The substantive requirements of USACE Nationwide 38 permit and South Carolina's erosion and sedimentation control regulations would need to be followed. Temporary erosion and sedimentation control (e.g., hay bales, silt fence) would be required during construction. The material would be disposed of at an off-Site Subtitle D landfill.

9.3.4.8 Cost

Under this alternative, there would be capital construction costs for the implementation of the remedy. Other costs for this alternative are associated with the 5-year review as follows:

•	Construction Costs (Capital)	\$32,200,000
•	30-Year O&M Costs (Present Value)	\$1,100,000
•	Total	\$33,300,000
•	Cost Range (-30% to +50%)	\$23,300,000 - \$50,000,000

A summary of the Remedial Alternative 4 costs is provided in **Table 9-6**.

9.3.5 Combined Remedial Alternative 5: Excavation and Complete Removal of Vaughn Landfill, MNA, and LUCs

9.3.5.1 Description

Alternative 5 would include the excavation of the overall Vaughn landfill (areas with and without underlying NAPL); excavation of the impacted sediments on Parcels 3, 4, and 5 and LECE School property; MNA of groundwater; and implementation of LUCs for long term effectiveness. A description of each element in this alternative is provided below and shown on **Figure 9-7**. **Figure 9-8** shows the key features following implementation of Combined Remedial Alternative 5.

Parcel 3: Excavation

This alternative would include the excavation of the NAPL on Parcel 3 as shown on **Figure 9-7**, in addition to the overall Vaughn landfill (including the area which is not underlain by NAPL). The excavation areal extents of Parcel 3 wetlands areas, portion of the Vaughn landfill underlain by NAPL, and area not impacted by NAPL are approximately 1.63, 3.14, and 3.15 acres, respectively. At an expected maximum depth of 7 ft of NAPL, the estimated sediment excavation volume for Parcel 3 wetlands area is approximately 21,000 bcy. Assuming the thickness of the Vaughn landfill C&D debris is 10 ft and the thickness of the area with underlying NAPL is 10 ft, the estimated volume of excavated C&D debris and NAPL are both 50,700 bcy (101,400 bcy total). Assuming a thickness of the Vaughn landfill C&D debris is 50,900 bcy. The excavations would be backfilled with clean soil and sediment along with the restoration of the wetland vegetation. During restoration, the Vaughn landfill footprint would be backfilled to match the existing contours of the surrounding wetlands area. BMPs (e.g., silt fences, sediment tubes, rock ditch check, and turbidity curtains) will be placed to prevent sediment from migrating off-Site during construction.

Parcels 4 and 5: Excavation

The total areal extents of the excavation for Parcels 4 and 5 are 0.24 and 0.20 acres, respectively. At an expected maximum depth of 7 ft bls, the estimated sediment excavation volumes for Parcels 4 and 5 are approximately 2,800 and 2,300 bcy, respectively. The proposed sediment excavation will be completed based on the estimated depth in the RIR-A and on visual observation using standard excavation equipment. BMPs (e.g., silt fences, sediment tubes, rock ditch check, and turbidity curtains) will be placed to prevent sediment from migrating off-Site during construction.

LECE School Property: Excavation

This alternative includes the excavation of the sediments within the wetlands and uplands that are visibly stained with NAPL to a depth of 16 ft bls. This alternative includes a portion of the parking area on LECE School property. The total areal extent of excavation is approximately 1.02 acres, and the estimated volume is 26,400 bcy.

As described above, excavation on the LECE School property would require the implementation of an ANFEMP to address noise and air and fugitive dust emissions. Additionally, the use a temporary sprung structure, if needed, over the excavation area would further reduce potential impacts to the LECE School property during the excavation.

Dewatering and surface water management will likely be required during the excavation. The excavation will be backfilled with soil to match the existing elevations and restored to its preconstruction condition. This alternative meets the RAOs for the LECE School property and

facilitates the removal of the NAPL that the RIR identifies in this area, excluding the parking area on LECE School property.

MNA and LUCs

The remedy for the shallow- and transition-zone groundwater will be MNA; however, with the footprint of the Vaughn landfill being returned to wetlands, due to access constraints the monitoring well network will need to be focused around the Site periphery (outside the wetlands footprint). Based on the results of groundwater sampling and the proposed removal of NAPL-impacted soil and sediments, MNA is a viable alternative for groundwater remediation over the course of an extended period of time (likely greater than 30 years). LUCs would be required to prevent or limit the use of groundwater until the groundwater reaches PRGs and to maintain current property zoning.

9.3.5.2 Overall Protection of Human Health and the Environment

Excavation of the impacted sediment on Parcels 3, 4, and 5 and the LECE School property would help to protect human health and the environment because the NAPL-impacted material would be excavated and removed from the Site. LUCs would also provide an additional layer of protection.

9.3.5.3 Compliance with Applicable or Relevant and Appropriate Requirements

This alternative would meet location- and action-specific ARARs. Chemical-specific ARARs would be met over time through MNA.

9.3.5.4 Long-term Effectiveness and Permanence

Excavation would permanently remove the NAPL from the wetlands on Parcels 3, 4, and 5, the LECE School property and from beneath the Vaughn landfill. This alternative would provide long-term effectiveness. Additionally, FEMA flood insurance maps would need to be updated for the overall removal of Vaughn landfill. Select monitoring wells (around the periphery of the wetland area) would need to be installed to establish and continue long-term groundwater monitoring (for OU-2 and OU-3).

9.3.5.5 Reduction of Toxicity, Mobility, or Volume Through Treatment

The toxicity, mobility, and volume of waste would be reduced at the Site through excavation. However, because the excavated impacted media would be disposed of at a Duke Energy approved Subtitle D landfill without treatment, there is no overall reduction in toxicity or volume of waste. The mobility would be reduced due to placement in an engineered waste containment cell at the landfill. Reduction of the toxicity and volume of COCs and NAPL in the groundwater will occur through natural attenuation over the course of an extended period of time (likely greater than 30 years).

9.3.5.6 Short-Term Effectiveness

Short-term risks for this alternative would include (i) exposure to impacted media by Site workers, (ii) potential impacts to the community from the work on the LECE School property and the high volume of truck traffic, and (iii) short-term impacts to the community from fugitive dust and odors. The risk of exposure to workers would be minimized by implementing engineering controls, wearing appropriate PPE, and complying with OSHA regulations and Site-specific health and safety procedures. Any potential negative short-term impacts to the surrounding community and

environment could be minimized by implementing appropriate engineering controls (e.g., dust control, perimeter air monitoring, spill prevention procedures).

Because of the large, estimated volume of excavated material (183,800 bcy), Alternative 5 will have the greatest negative impacts from truck traffic. It is estimated that approximately 22,700 trucks trips would be required and the timeframe for completion would be approximately 6 to 7 years. The schedule assumes only a portion of the year (8 months) would be available, due to weather and flooding conditions, to conduct the combined remedial alternative construction activities. The disruption to the community could be minimized by limiting when trucks can operate and identifying the least disruptive truck routing plan.

9.3.5.7 Implementability

Excavation of the observed NAPL, including the overall Vaughn landfill including the area which is not underlain by NAPL, can be implemented. Excavation equipment and contractors are readily available. Some specialized equipment for working in the wetlands and for the installation of sheetpiling and operations of dewatering and treatment systems would be required and the installation, maintenance, and movement of a sprung structure on the LECE school property would be challenging. During excavation, it would be necessary to comply with Site-specific health and safety procedures and regulations to minimize the risk of exposing workers to COCs. The substantive requirements of USACE Nationwide 38 permit and South Carolina's erosion and sedimentation control (e.g., hay bales, silt fence) would be required during construction. The material would be disposed of at an off-Site Subtitle D landfill.

9.3.5.8 Cost

Under this alternative, there would be capital construction costs for the implementation of the remedy. Other costs for this alternative are associated with the 5-year review as follows:

• Construction Costs (Capital)	\$38,400,000
• 30-Year O&M Costs (Present	Value) \$1,100,000
• Total	\$39,500,00
• Cost Range (-30% to +50%)	\$27,700,000 - \$59,300,000

A summary of the Remedial Alternative 5 costs is provided in **Table 9-7**.

9.4 Evaluation of Alternatives

A numerical evaluation and comparative discussion of the alternatives is provided below.

9.4.1 Numerical Evaluation and Alternatives Ranking

Table 9-1 provides a numerical evaluation of the relative score of 1 through 6 for each criteria, with 6 being the highest score (i.e., excellent) and 1 being the lowest score (i.e., unacceptable). Scores were assigned to rank the evaluation criterion for each alternative, with the exception of cost. The criteria scores were then summed to give a total score for each alternative for ranking purposes. The rankings for each alternative are listed below:

Alternative	Ranking
Combined Remedial Alternative 1: No Action	11
Combined Remedial Alternative 2: MNA, and LUCs	15
Combined Remedial Alternative 3: Selective Excavation, Barrier Wall, Landfill Capping, Hydraulic Control, MNA, and LUCs	23
Combined Remedial Alternative 4: Excavation, MNA, and LUCs	30
Combined Remedial Alternative 5: Excavation and Complete Removal of Vaughn Landfill, MNA, and LUCs	30

9.4.2 Comparative Evaluation of Alternatives

Table 9-2 presents a comparative summary with descriptions of each alternative relative to the strengths and weaknesses of each evaluation criteria. Alternative 1 was typically considered unacceptable when evaluating the criteria and provided a baseline against which the other combined remedial alternatives could be compared. Alternative 2 scores higher in a few evaluation criteria, when compared to Alternative 1; however, scores are lower when compared to Alternatives 3 through 5, which include incrementally more aggressive actions to address the NAPL. Relative to Alternatives 3 through 5, the only areas in which Alternative 1 and 2 score high are related to implementability, because the actions required to implement these alternatives are minimal.

When comparing the three highest-scoring alternatives, Alternatives 3 through 5, scores are the same for Alternatives 4 and 5 and slightly lower for Alternative 3. Alternative 3 tends to score lower because trace NAPL impacts are not removed from under a portion of the Vaughn landfill, where NAPL impacts would remain underneath the engineered cap and within the barrier wall on a portion of the Vaughn landfill. Alternative 3 also scores lower than Alternatives 4 and 5 because the long-term effectiveness and permanence and overall protection of human health and the environment is anticipated to be less due to the remaining NAPL and the O&M requirements associated with the pumping of groundwater and maintenance of the cap. Additionally, there is more immediate reduction in toxicity, mobility, and volume of NAPL impacts provided by Alternatives 4 and 5 than with Alternative 3.

The major difference between Alternatives 4 and 5 is the complete removal of Vaughn landfill. Since the scope, timeframe, and remedial technologies are similar, these alternatives are scored the same for all categories.

10. REFERENCES

- Corporate Environmental Solutions, LLC. 2020. "Forensic Analysis of Non-Aqueous Phase Liquids (NAPL) Collected form the Former Bramlette Road Manufactured Gas Plant (MGP) Site". December 2020.
- Duke Energy Site Remediation Services Group. 2003. "Remedial Action Plan Final Report: CSXT/Vaughn Landfill and Bramlette Road MGP Sites."
- Geosyntec. 2022. Focused Feasibility Study Work Plan, Former Bramlette MGP Site, East Bramlett Road, Greenville, South Carolina. Geosyntec Consultants, Inc. VCC 16 5857-RP. August 19.
- Geosyntec. 2023. Semiannual Monitoring Report, Semiannual Monitoring Event #6, September– October 2022, Former Bramlette MGP Site, East Bramlett Road, Greenville, South Carolina. Geosyntec Consultants, Inc. VCC 16-5857-RP. January.
- Harned, D. A., and C. C. Daniel, III. 1992. "The Transition Zone between Bedrock and Saprolite: Conduit for Contamination?" In *Groundwater in the Piedmont: Proceedings of a Conference* on Ground Water in the Piedmont of the Eastern United States, edited by D. A. Harned and C. C. Daniel, III, 336-348. Clemson, SC: Clemson University.
- Nelson, Arthur E., J. Wright Horton, and James W. Clarke. 1998. Geologic Map of the Greenville 1° by 2° Quadrangle, Georgia, South Carolina, and North Carolina. Report. United States Geological Survey. Index ID i2175.
- Schaeffer, S., D. Williams and D. Goodrich, 2000. *Transpiration of cottonwood/willow forest estimated from sap flux*. Department of Biological Sciences, University of Arkansas.
- SynTerra. 2020. Remedial Investigation Report. SynTerra Corp. June.
- SynTerra. 2021. Remedial Investigation Report Addendum. SynTerra Corp. July.
- USEPA. 1988. Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA: Interim Final. EPA/540/G-89/004. United States Environmental Protection Agency, Office of Emergency and Remedial Response. October.
- USEPA. 1992. National Oil and Hazardous Substances Pollution Contingency Plan. United States Environmental Protection Agency. 1992.
- USEPA. 2000. A Guide to Developing and Documenting Cost Estimates During the Feasibility Study. EPA 540-R-00-002, United States Environmental Protection Agency. July 2000.
- USEPA. 2022. "Regional Screening Levels for Chemical Contaminants at Superfund Sites." United States Environmental Protection Agency. Last modified December 5, 2022. https://www.epa.gov/risk/regional-screening-levels-rsls.
- Washington Department of Ecology. 2021. Sediment Cleanup User's Manual (SCUM): Guidance for Implementing the Cleanup Provisions of the Sediment Management Standards, Chapter

173-204 WAC. Department of Ecology, State of Washington. Publication No. 12-09-057. December.

Willoughby, Ralph H., et al. 2005. *Generalized Geologic Map of South Carolina*. South Carolina Department of Natural Resources, Geological Survey. GGMW-1.

TABLES

Table 2-1Site Parcel InformationCSXT Bramlett Road SiteVCC 16-5857-RPGreenville, SC

Tax Map Serial Number	Parcel ID	Zoning Classification	Land Use	Current Owner
140000300300	Parcel 1	I-1, Industrial District	Vacant lot and location of former MGP operations	Seaboard Coast Line Railroad Company
140000300200	Parcel 2	I-1, Industrial District	Active rail operations, location of a former asphalt manufacturing plant, and debris pile	Seaboard Coast Line Railroad Company
Portion of 0138000100300	Legacy Early College Elementary School	R-6, Single Family Residential	The jurisdictional wetland adjacent to CSXT's Vaughn landfill and a portion of the Legacy Early College Elementary School parking lot	Legacy School Properties LLC
138000100100	Parcel 3	I-1, Industrial District	Vaughn landfill, the jurisdictional wetland adjacent to Vaughn landfill to the west, active rail operations and location of CSX field office, and numerous sewer lines and access manholes	Seaboard Coast Line Railroad Company
54000300100	Parcel 4	R-6, Single Family Residential	Jurisdictional wetland; vacant lot	Seaboard Coast Line Railroad Company
54000600100	Parcel 5	S-1, Services District	Jurisdictional wetland; vacant lot	Seaboard Coast Line Railroad Company

Notes:

1. Tax Map Serial Numbers, Owner information, and zoning obtained from Greenville County Property Appraiser. Last accessed on 31 May 2023.

2. Greenville County Property Appraiser database: gcgis.org/apps/greenvillejs/

3. Seaboard Coast Line Railroad was acquired by CSXT.

Table 4-1 Shallow and Transition Zone Groundwater Preliminary Remediation Goals CSXT Bramlett Road Site VCC 16-5857-RP Greenville, SC

Analyte	Regulatory Standard (µg/L)	Preliminary Remedial Goal (PRG) (µg/L)			
Shallow and Transition Zones					
Benzene	5 ¹	5			
Naphthalene	25 ²	25			
Toluene	1000				
Benzo(a)pyrene	0.2	0.2			
Styrene	100	100			

Notes:

1 - Class GB Groundwater, R.61-58, State Primary Drinking Water Regulations Regulation 61-68, Water Classifications and Standards.

2 - Risk Based Screening Level (RBSL) referenced in Appendix D, Table 1 of the South Carolina Department of Environmental Health and Control (SCDHEC) Quality Assurance Program Plan for the Underground Storage Tank (UST) Management Division.

µg/L - microgram per liter

Table 5-1Potential Chemical-Specific ARARs and TBCsCSXT Bramlett Road SiteVCC 16-5857-RPGreenville, SC Greenville, SC

Action	Potential Local, State, or Federal ARAR	Requirements	Classification	Citation
Cleanup of Contaminated Soil (OU1)	Potential State ARAR	For soil, the soil shall be remediated to levels that are no longer a continuing source of groundwater contamination in excess of the site-specific standards. Soil shall be remediated to residential use standards on residential property with the following exceptions:	To Be Considered	Title 44 Chapter 56 Section 200.E.5.
		(a) For mixed-use developments where ground level uses are nonresidential and all potential exposure to contaminated soil has been eliminated, the department may allow soil to remain on-site in excess of unrestricted use standards.		
		(b) If soil remediation is impractical because of preexisting structures or if removal is impractical, then all areas of the real property where a person may come into contact with soil must be remediated to unrestricted use standards. All other areas of the real property engineering and institutional controls that are sufficient to protect public health, safety, and welfare and the environment must be implemented.		
Cleanup of Contaminated Soil (OU1)	Potential State ARAR	For known or suspected carcinogens, site-specific remediation standards shall be established at exposures that represent an excess lifetime cancer risk of one in one million. The site-specific remediation standard may depart from the one-in-one million risk level based on the criteria set out in 40 C.F.R. Section 300.430(e)(9). The cumulative excess lifetime cancer risk to an exposed individual shall not be greater than one in ten thousand based on the sum of carcinogenic risk posed by each contaminant present.	Relevant and appropriate	Title 44 Chapter 56 Section 200.E.7.
Cleanup of Contaminated Sediment (OU1)	Potential Federal ARAR	Based on the sampling completed during the RIR-A, visible NAPL is an indicator that there may be USEPA Region 4 sediment RSVs exceedances in sediment. Removal of impacted sediment for Parcels 3, 4 and 5 and the LECE School property, shall be based on the visual observed NAPL.	Relevant and appropriate	USEPA Region 4 Ecological Risk Assessment Supplemental Guidance, Table 2c, March 2018
Cleanup of Shallow and Transition Zone	Potential State ARAR	Unless site-specific remediation standards are developed per South Carolina's Amendment to Section 44-56-200, Hazardous Waste Cleanup, groundwater quality shall meet the Class GB	Relevant and appropriate	S.C. Code Ann. §§ 41-1-150, Regulation 61-68 Water Classifications and Standards,

Table 5-1 Potential Chemical-Specific ARARs and TBCs CSXT Bramlett Road Site VCC 16-5857-RP Greenville, SC Greenville, SC

Action	Potential Local, State, or Federal ARAR	Requirements	Classification	Citation
Groundwater (OU2)		groundwater for organic and inorganic chemicals.		June, 2020. Maximum contaminated levels as set forth in R.61-58, State Primary Drinking Water Regulations, December 2022
Cleanup of Surface Water (OU2)	Potential State ARAR	Unless site-specific remediation standards are developed per South Carolina's Amendment to Section 44-56-200, Hazardous Waste Cleanup, surface water quality shall meet the freshwater classification, human health drinking water MCL for benzo(a)pyrene ($0.2 \mu g/L$).	Relevant and appropriate	 S.C. Code Ann. §§ 41-1-150, Regulation 61-68 Water Classifications and Standards, June, 2020. Human health drinking water MCLs defined in R.61-68 E.14.b(1)

Notes:

ARAR: applicable, relevant, and appropriate requirement COC: constituent of concern MCLs: maximum contaminant levels MGP: manufactured gas plant SC: South Carolina TBC: to be considered USEPA: United States Environmental Protection Agency

Location	Potential Local, State, or Federal ARAR	Requirements	Classification	Citation
Presence of floodplain designated as such on a map	Federal ARAR	Shall notify, in riverine situations, adjacent communities and State Coordinating Office prior to any alteration or relocation of a watercourse and submit copies of such notification to the Federal Insurance Administrator.	Relevant and applicable	44 C.F.R. § 60.3 (b) (6) and (7)
		Assure that flood carrying capacity within the altered or relocated portion of any watercourse is maintained.		
Presence of floodplain designated as such on a map	Local ARAR	Application for a development permit shall be made to the local administrator. The application permit shall include: A description of the extent of watercourse alteration.	Relevant and applicable	Chapter 8, Article II of the Code of Greenville County, South Carolina Entitled "Floods and Flood Control" Sections 8-29 1 8-29 1 1 8-
		Federal Emergency Management Agency (FEMA), United States Army Corps of Engineers (USACE), and any other applicable federal or state regulatory agencies, on the effects of the proposed project on the flood-carrying capacity of the watercourse and the effects to properties located both upstream and downstream; and, a map showing location of the proposed watercourse alteration or relocation, and notification of the proposal to the appropriate authorities of all affected agencies.		29.1.2, 8-29.1.3, 8-29.1.4, 8- 29.1.5, 8-29.1.6, 8-29.1.9 and 8-29.1.10
		An application shall submit to the local administrator any applicable federal or state approval or permits including a conditional letter of map revision (CLOMR).		
		Within 60 days of completion of an alteration of a watercourse, the applicant shall submit as-built certification, by a SC Registered Professional Engineer, to the Local Administrator, FEMA, National Flood Insurance Program as a Letter of Map Revision, and the State of South Carolina, Department of Natural Resources, Flood Mitigation Program.		
		If the configuration of the watercourse, floodway, or base flood elevation for which a detailed Flood Insurance Study has been developed, the applicant shall apply for and must receive approval for a CLOMR with the FEMA National Flood Insurance Program. The floodplain development permit will not be issued until FEMA		

Location	Potential Local, State, or Federal ARAR	Requirements	Classification	Citation
		has issued the CLOMR. When a CLOMR has been issued for a project, the following shall apply. Within 30 calendar days of completion of construction activities, the applicant shall apply to FEMA for a Letter of Map Revision (LOMR). The applicant is responsible for all technical submissions and fees required to obtain the CLOMR/LOMR.		
		Engineer, Land Surveyor, or Architect (whichever professional is appropriate) shall certify that an alteration was completed in accordance with the submitted plans and previous predevelopment certifications.		
Presence of wetlands and waters of the United States	Federal ARAR	Clean Water Act (CWA) § 404 prohibits the discharge or fill material into waters of the U.S., including adjacent wetlands, without a permit. Both the USEPA and the USACE have jurisdiction over wetlands. The remedial alternatives evaluate excavation within defined water of the U.S. as result the substantive requirements contained in the Nationwide Permit No. 38 to control the discharge of dredge or fill and complete compensatory mitigation of impacted wetlands at a minimum of one-for-one ratio is required if wetland losses exceed 0.1 acres. Wetland restoration is planned after remedial activities are complete. A pre-construction notification shall be prepared and submitted to the USACE for review and approval. The pre-construction notification shall include a statement describing how the mitigation requirement will be satisfied, if needed.	Relevant and applicable	Section 404 CWA, 33,C.F.R 330.1 through 33, C.F.R 330.6, NWP Final Notice, 86 FR 73522, Effective date February 25, 2022, expiration date March 14, 2026
Presence of wetlands and waters of the United States	Federal/State ARAR	Pursuit to CWA § 401 requires South Carolina to issue certification for any activity which requires a federal permit (CWA § 404) and may result in discharge to South Carolina waters. Previous certification in accordance with Section 401 has been granted by the SCDHEC (March 7, 2017) for activities that will result in the placement of fill or dredge of wetlands and waters of	Applicable and relevant	CWA § 401, South Carolina Regulation 61-68, Water Classifications and Standards and the Coastal Zone Management Program 15 C.F.R 930

Location	Potential Local, State, or Federal ARAR	Requirements	Classification	Citation
		the U.S. under Nationwide Permit 38 and subject to provided conditions detailed in the Nationwide Permit 38.		
Biological Resources	Federal ARAR	Biological evaluation and a reconnaissance-level biological survey has been previously completed and agency consultation with United State Fish and Wildlife Service and SC DNR. Notification shall be made to the USACE must identify if any listed species or designated critical habitat might be affected. The USACE, in consultation with United States Fish and Wildlife Service, will determine whether the proposed activity "may effect" or will have "no effect" to listed species and designated critical habitat.	To be considered	16 U.S.C. §1531 et seq. Section 7 of the Endangered Species Act
Biological Resources	Federal ARAR	The Migratory Bird Treaty Act makes it illegal to take, capture, or kill any migratory bird or the parts, nests, or eggs of any migratory bird. Migratory birds are present. Therefore, the Migratory Bird Treaty Act § 703 is a potential ARAR. Remedial alternatives should avoid taking migratory birds during implementation by avoiding tree clearing activities during nesting season (March 15th to September 15th).	Applicable and relevant	16 U.S.C § 703 et seq.
Biological Resources	State ARAR	South Carolina Code of Laws Title 50 is identified as a potential state ARAR related to the protection of endangered wildlife and birds (not merely migratory birds). The remedial actions should avoid the direct effect of endangered wildlife and birds during implementation.	To be considered	S.C. Code Ann. §§50-15-10 through 90 and 50-15-500
Historical Resources	Federal ARAR	The National Historic Preservation Act § 106 and its implementing regulations 36 CFR 800 are identified as a potential ARAR. This section requires federal agencies consider the effect of their undertakings on historic properties. Remedial alternatives include excavation. If the remedial alternatives are determined to effect areas were historical properties consultation with the state historical preservation office (SHPO) and tribal historic preservation office	To be considered	Section 106, 54 U.S.C § 306108 et seq.

Location	Potential Local, State, or Federal ARAR	Requirements	Classification	Citation
		(THPO) will be completed.		
Historical Resources	Federal ARAR	The Archaeological and Historic Preservation Act provides for the preservation of historical and archeological data that might otherwise be lost. The Archaeological and Historic Preservation Act is identified as a potential ARAR.	To be considered	54 U.S.C § 312502, 312503, and 312507
Historical Resources	Federal ARAR	The Federal American Graves Protection and Repatriation Act is identified as a potential ARAR. No survey related to Native American burial sites has been conducted, but not expected.	To be considered	25 U.S.C 32 § 3011, 3013
Historical Resources	State ARAR	The South Carolina Archeological Resources Protection Act provides protection of archaeological resources on state lands.	To be considered	S.C. Code Ann. §§ Section 60-13-510 through 540, and 60-13-710

Notes:

ARAR: applicable, relevant, and appropriate requirement
DNR: Department of Natural Resources
MGP: manufactured gas plant
SC: South Carolina
SCDHEC: South Carolina Department of Health and Environmental Control
TBC: to be considered
USEPA: United States Environmental Protection Agency

Action	Potential Local, State, or Federal ARAR	Requirements	Classification	Citation
		General Construction Standards – Excavation		
Activities causing storm water runoff (e.g., clearing, grading, excavation)	State ARAR	USEPA's delegation of the NPDES Permit Program to South Carolina in 1975 did not include the authority to issued NPDES General Permits. In 1992, NPDES general permit authority from USEPA was granted. Since then, 12 statewide NPDES general permits have been issued. Two NPDES general permits are potential ARARs. These include the general permit for Stormwater Discharge from Construction Activities and the general permit for Discharges from Petroleum Contaminated Groundwater.	Applicable and relevant	S.C. Code Ann. Section §§ 48-1-10 et seq, Regulation 61-9.122.6
Activities causing storm water runoff (e.g., clearing, grading, excavation)	Local ARAR	A Major Stormwater Permit is required by the City of Greenville because the proposed construction activities (i) will disturb more than two acres, (ii) are located within a regulatory floodplain, and (iii) will impact a wetland or riparian environment of 0.1 acres or more within an area defined as Waters of the U.S. or Waters of the State.	Applicable and relevant	Chapter 19, Article VII of the Code of Greenville County, South Carolina Entitled "Stormwater Management" Section 19-7- 5
Activities causing storm water runoff (e.g., clearing, grading, excavation)	Local ARAR	No person shall do any grading or filling without first obtaining a site preparation/grading permit from the city	Applicable and relevant	Chapter 6, Article III of the Code of Greenville County, South Carolina Entitled "Stormwater Management" Section 6-92
Activities causing storm water runoff (e.g., clearing, grading, excavation)	Local ARAR	A Site Plan Permit is required by the City of Greenville for all construction activity in the City of Greenville.	Applicable and relevant	Chapter 19, Article II of the Code of Greenville County, South Carolina Entitled "Specific standards and other requirements for applications for development approval" Section 19-2-3

Action	Potential Local, State, or Federal ARAR	Requirements	Classification	Citation
Activities causing storm water runoff (e.g., clearing, grading,	Federal ARAR	Implement good construction management techniques in accordance with the substantive requirements for permits issued pursuant to 40 CFR § 122.26(c) – storm water discharges associated with construction activities.	Applicable and Relevant	40 C.F.R Part 122.26(c)(1), 40 C.F.R 122.26(b)(15), 40 C.F.R Part 122.26(c)(1)(ii)
excavation)		The Operator shall provide a narrative description of the following:		
		(A) The location (including a map) and the nature of the construction activity		
		(B) The total area of the site and the area of the site that is expected to undergo excavation		
		(C) Proposed measures, including BMPs to control stormwater discharges during construction, including a brief description of applicable State and local erosion and sediment control requirements		
		(D) Proposed measures to control pollutants in storm water discharges that will occur after construction operations have been completed, including a brief description of applicable State or local erosion and sediment control requirements		
		(E) Estimate of the runoff coefficient of the site and the increase in impervious area after the construction is completed, the nature of fill material and existing data describing the soil or the quality of the discharge		
		(F) The name of the receiving water		
		Note: Above Information to be provided in Remedial Design or Remedial Action Work Plan.		

Action	Potential Local, State, or Federal ARAR	Requirements	Classification	Citation	
Activities causing fugitive dust emissions	State ARAR	No person shall cause or permit any fugitive particulate matter to go beyond property boundaries below a height of 150 feet. Necessary precautions shall be taken to prevent such occurrence and be in accordance with good dust control practices as determined by the SCDHEC taking into consideration economic, reasonableness, the seriousness of the dust considerations, and anticipated benefits.	Applicable and relevant	S.C. Code Ann. §§ 48-1- 310 and 48-1-320, Regulation 61-62.6	
Activities causing noise	Local ARAR	Exemptions specifically indicates that the sounds produced by construction machinery, heavy duty equipment, and machines and equipment used for construction, repair, cleaning, and maintenance of buildings, streets, or public or private premises when operated between the hours of 7:00 a.m. and 9:00 p.m. Monday through Friday and between the hours of 8:00 a.m. and 7:00 p.m. on Saturdays and 9:00 a.m. and 7:00 p.m. on Sundays are exempt. In general, actions will be taken to limit noise to less than 80 decibels adjacent to occupied structures, which is consistent with the City of Greenville daytime noise limit for the Central Business District for the hours between 7:00 am and 10:00 pm.	To be considered	Chapter 16, Article II Division 3 of the Code of Greenville County, South Carolina Entitled "Noise" Sections 16-92 and 16-95	
Waste Generation, Characterization–Primary waste (excavated soils/sediments)					
Characterization of solid waste (all primary and secondary wastes)	Federal ARAR	Must determine if solid waste is hazardous waste or if waste is excluded under 40 CFR § 261.4	Applicable	40 C.F.R § 262.11(a)	

Action	Potential Local, State, or Federal ARAR	Requirements	Classification	Citation
Characterization of solid waste (all primary and secondary wastes)	Federal ARAR	Must determine if waste is listed as a hazardous waste under 40 CFR Part 261.	Applicable	40 C.F.R § 262.11(b)
Characterization of solid waste (all primary and secondary wastes)	Federal ARAR	 Must determine whether the waste is (characteristic waste) identified in subpart C of 40 CFR part 261 either by testing the waste according to the methods set forth in subpart C of 40 CFR part 261, or according to an equivalent method approved by the Administrator under 40 CFR 260.21, or by applying knowledge of the hazard characteristic of the waste in light of the materials or the processes used. 	Applicable	40 C.F.R § 262.11(c)(1) and (2)
Characterization of solid waste (all primary and secondary wastes)	Federal ARAR	Must refer to 40 CFR Parts 261, 262, 264, 265, 266, 268, and 273 for possible exclusions or restrictions pertaining to management of the specific waste.	Applicable	40 C.F.R § 262.11(d)
Characterization of hazardous waste (all primary and secondary wastes)	Federal ARAR	Must obtain a detailed chemical and physical analysis on a representative sample of the waste(s), which at a minimum contains all the information that must be known to treat, store, or dispose of the waste in accordance with pertinent sections of 40 CFR §§ 264 and 268	Applicable	40 C.F.R § 264.13(a)(1)
Determinations for management of hazardous waste	Federal ARAR	Must determine each USEPA Hazardous Waste Number (waste code) applicable to the waste in order to determine the applicable treatment standards under 40 CFR 268 et seq Note: This determination may be made concurrently with the hazardous waste determination required in Sec. 262.11 of this chapter.	Applicable	40 C.F.R § 268.9(a)

Action	Potential Local, State, or Federal ARAR	Requirements	Classification	Citation
Determinations for management of hazardous waste	Federal ARAR	Must determine the underlying hazardous constituents [as defined in 40 CFR 268.2(i)] in the characteristic waste.	Applicable	40 C.F.R § 268.9(a)
Determinations for management of hazardous waste	Federal ARAR	Must determine if the hazardous waste meets the treatment standards in 40 CFR 268.40, 268.45, or 268.49 by testing in accordance with prescribed methods or use of generator knowledge of waste. Note: This determination can be made concurrently with the hazardous waste determination required in 40 CFR 262.11.	Applicable	40 C.F.R § 268.7(a)
Mitigation and Site Restoration	Federal ARAR	Must complete mitigation of wetlands and waters of the U.S. Wetland mitigation must be at a rate of one-to-one. Since wetland restoration is planned after remedial activities are complete, mitigation may not be required. The mitigation must be designed and constructed to avoid and minimize adverse effects, both temporary and permanent to water of the U.S. The mitigation plan for wetland and waters of the U.S will include a requirement for the restoration or enhancement, maintenance, and legal protection (e.g., conservation easements). Only native species shall be planted. The riparian buffer adjacent to the wetlands and waters of the U.S. shall be 25 feet, unless otherwise specified in coordination with the USACE.	Applicable and relevant	33 U.S.C § 1344
Mitigation and Site Restoration	Federal ARAR	Compensatory mitigation projects provided to offset losses of aquatic resources must comply with applicable provisions of 33 CFR 332.	Applicable and relevant	33 C.F.R 332
Mitigation and Site Restoration	State ARAR	Excavated areas are required to be stabilized with vegetative cover with a density of 70 percent of the natural background vegetative cover	Applicable and relevant	S.C. Code Section Ann. §§48-1-10 et seq., 1976, 33 USC § 1251 et. seq.

Action	Potential Local, State, or Federal ARAR	Requirements	Classification	Citation		
		Declaration of Land Use Controls				
Restrictive Covenant	State ARAR	If hazardous substances that exceed residential standards exist after the actions completed in accordance with Voluntary Cleanup Contract, a restrictive covenant will be filed and recorded. An annual report shall be filed with the SCDHEC by May 31 of each year detailing the current land uses and compliance with the restrictive covenants for as long as the restrictive covenant remains in place.	Applicable	S.C. Code Ann. §§ 44-56- 710 through 760		
Management of Wastewater from Remedial Activities						
Discharge of Contaminated Groundwater	State ARAR	If a part of groundwater treatment requires the discharge to surface water, a NPDES general permit is required. Must attain or maintain a specified water quality through water- quality-related effluent limits established under the NPDES general permit.	To be considered	S.C. Code Ann. Section §§ 48-1-10 et seq, Regulation 61-9.122.6		
In Situ Injections to Groundwater						
Corrective Action Wells Used for Treatment	State ARAR	If a groundwater treatment includes injection of water and/or water and remedial product, SCDHEC regulates that type of remedial activity through the underground injection control (UIC) program permits to operate facilities. To injection of water and/or water and remedial product a UIC Class V.A permit is needed.	To be considered	S.C. Code Ann. §§ 48-1-10 through 48-1-350		

Notes:

ARAR: applicable, relevant, and appropriate requirement
MGP: manufactured gas plant
NPDES: National Pollutant Discharge Elimination System
SC: South Carolina
SCDHEC: South Carolina Department of Health and Environmental Control
TBC: to be considered
USEPA: United States Environmental Protection Agency
Table 6-1 OU-1 Soil and Sediment Technology Types and Process Options Screening CSXT Bramlett Road Site VCC 16-5857-RP Greenville, SC

Technology and Process Option Effectiveness Implementability		Implementability	Cost	Retained?				
No Action	Low	High	Low	Yes ¹				
Land Use Controls	Moderate	High	Low	Yes ²				
Parcel 3 and Legacy Early College Elementary School								
Excavation ³	High	High	High	Yes				
Selective Excavation ⁴	Moderate	High	Moderate	Yes				
Containment and Capping	Moderate	High	Moderate	Yes				
In-Situ Stabilization	High	Low	Moderate	No				
Parcels 4 and 5								
Excavation	High	High	Moderate	Yes				

Notes:

1 - Retained in order to provide a baseline for comparison of other remedial alternatives.

2 - Retained only in combination with other technologies.

3 - Sediment with observed NAPL to be removed. Vaughn landfill excavation stragety could be NAPL focused or could be a complete removal of Vaughn landfill.

4 - Only includes wetlands and a small portion of the Vaughn landfill.

Table 7-1 OU-2 Surface Water and Groundwater Technology Types and Process Options Screening CSXT Bramlett Road Site VCC 16-5857-RP Greenville, SC

Technology and Process Option	Effectiveness	Implementability	Cost	Retained?
No Action	Low	High	Low	Yes ¹
Land Use Controls	Moderate	High	Low	Yes ²
Surface Water				
None ³				
Parcels 4 and 5				
MNA	Moderate	High	Low	Yes ²
Hydraulic Control	High	High	Moderate	Yes ²
In situ chemical oxidation	Low	Moderate	Moderate to High	No

Notes:

1 - Retained in order to provide a baseline for comparison of other remedial alternatives.

2 - Retained only in combination with other technologies.

3 - Impacts to surface water are expected to be addressed through monitored natural attenuation (MNA) after the successful remediation of source material in soil, sediment, and groundwater.

Table 9-1 OU-1 and OU-2 Combined Remedial Alternative Screening CSXT Bramlett Road Site VCC 16-5857-RP Greenville, SC

Criterion		Alternative 1	Alterative 2	Alternative 3	Alternative 4	Alternative 5
		No Action	MNA and LUCs	Selective Excavation, Barrier Wall, Landfill Capping, Hydraulic Control, MNA, and	Excavation, MNA, and LUCs	Excavation and Complete Removal of Vaughn Landfill, MNA, and LUCs
Overall Protection of Human Health and the Environment		1	2	4	6	6
Compliance with Applicable or Relevant and Appropriate Requirements (ARARs)		1	1	5	6	6
Long-term Effectiveness and Permanence		1	2	3	5	5
Reduction of Toxicity, Mobility, and Volume through Treatment		1	1	3	5	5
Short-term Effectiveness		1	3	4	4	4
Implementability		6	6	4	4	4
Tot	al Score	11	15	23	30	30
Cost Estimate ^{1, 2}		\$0.022 MM	\$1.35 MM	\$18.6 MM	\$33.3 MM	\$39.5 MM
Implementation Schedule (Years) ^{3, 4}		0	0	2 to 3	5 to 6	6 to 7
Expected Time To Achaieve Remedial Goals by Operable Unit	OU-1	> 30 years	> 30 years	> 30 years	5 to 6	6 to 7
Expected Time To Acheleve Refiledial Goals by Operable Onit	OU-2	> 30 years	> 30 years	> 30 years	> 30 years	> 30 years

Notes:

MNA - Monitored Natural Attenuation

LUCs - Land Use Controls

MM - Million Dollars

OU - Operable Unit

1. A cost range estimate was prepared in accordance with the EPA Feasibility Study Guidance with a -30% and +50% range and are shown in Tables 9-4 through 9-7.

2. For Post Construction Costs, a present value was calculated utilizing a 7% discount rate consistent with *A Guide To Developing and Documenting Cost Estimates During the Feasibility Study*, EPA July 2000.

3. While implementaion schedule is not part of the screening criteria, this has been provided for clarity.

4. The schedule assumes a working window of eight months of the calendar year based on weather.

Scoring:

1 - Unacceptable, does not meet the minimum requirements.

- 2 Alternative is on the Low end of the alternative criteria.
- 3 Alternative is Fair with respect to meeting the alternative criteria.
- 4 Alternative is Good with respect to meeting the alternative criteria.
- 5 Alternative is Very Good with respect to meeting the alternative criteria.
- 6 Alternative is Excellent with respect to meeting the alternative criteria.

Table 9-2 OU-1 and OU-2 Combined Remedial Comparative Evaluation CSXT Bramlett Road Site VCC 16-5857-RP Greenville, SC

	Alternative 1	Alterative 2	Alternative 3	Alternative 4	Alternative 5
Criterion	No Action	MNA and LUCs	Selective Excavation, Barrier Wall, Landfill Capping, Hydraulic Control, MNA, and LUCs	Excavation, MNA, and LUCs	Excavation and Complete Removal of Vaughn Landfill, MNA, and LUCs
Overall Protection of Human Health and the Environment	Alternative 1 does not provide protection of human health or the environment	 Alternative 2 provides fair protection of human health and the environment through the use of MNA and LUCs to minimize the potential for contact with NAPL NAPL remains in place 	 Alternative 3 provides several layers (selective excavation, capping, and LUC) of protections for human health and the environment Alternative 3 does leave NAPL-impacted sediments in place within the containment area on Vaughn landfill Alternative 3 does leave trace NAPL-impacted sediments in place outside of the containment area underneath Vaughn landfill, which is addressed by Alternative 4 and 5 	 Alternative 4 provides the complete removal of RI delineated NAPL-impacted sediments Alternative 4 provides additional protection through the LUCs and MNA of OU-2 	 Alternative 5 provides the complete removal of RI delineated NAPL-impacted sediments and the removal of Vaughn landfill Alternative 5 provides additional protection through the LUCs and MNA of OU-2 The removal of the additional inert C&D debris from Vaughn landfill does not result in additional protection of human health or the environment when compared to Alternative 4
Compliance with Applicable or Relevant and Appropriate Requirements (ARARs)	Alternative 1 does not comply with chemical-specific ARARs because no action would be taken to reduce contaminant concentrations	 Alternative 2 does not comply with chemical-specific ARARs because no action would be taken to remove NAPL MNA would reduce contaminant concentrations through natural degradation 	 Alternatives 3 through 5 would similarly meet the location- and action-specific ARARs Chemical-specific ARARs would take longer to meet, since NAPL is being left in place with Alternative 3 	 Alternatives 3 through 5 would similarly meet the location- and action-specific ARARs Chemical-specific ARARs for OU-1 would be met within the timeframe of remedial action implementation Chemical-specific ARARs for OU-2 would see reduced concentrations based on the remediation of OU-1 and continued reduction through MNA 	 Alternatives 3 through 5 would similarly meet the location- and action-specific ARARs Chemical-specific ARARs for OU-1 would be met within the timeframe of remedial action implementation Chemical-specific ARARs for OU-2 would see reduced concentrations based on the remediation of OU-1 and continued reduction through MNA
Long-term Effectiveness and Permanence	 Alternative 1 would have minimal long-term effectiveness since NAPL is not removed or contained Alternative 1 would not be able to measure the long-term effectiveness since monitoring is not proposed 	 Alternative 2 would have minimal long- term effectiveness since NAPL is not removed or contained Alternative 2 would be able to monitor the effectiveness of MNA as a remedial technology 	 The majority of NAPL is excavated in this remedial alternative A limited area of NAPL would be contained within the barrier wall and visually observed trace NAPL would be left under a portion of the Vaughn landfill to remain Installation of the barrier wall, cap, and hydraulic control systems would require routine O&M Vaughn landfill would provide access for MNA monitoring and access options to address OU-3 in the future 	 Excavation would permanently remove the NAPL in OU-1 on Parcels 3, 4, and 5, the LECE School property and from beneath the Vaughn landfill Select monitoring wells would need to be reinstalled to establish and continue long-term groundwater monitoring (for OU-2 and OU-3). The ability to install monitoring wells will be more difficult than for Alternative 3 because the primary area where monitoring wells currently exist will become wetlands 	 Excavation would permanently remove the NAPL in OU-1 on Parcels 3, 4, and 5, the LECE School property and from beneath the Vaughn landfill Select monitoring wells would need to be reinstalled to establish and continue long-term groundwater monitoring (for OU-2 and OU-3). The ability to install monitoring wells will be more difficult than for Alternatives 3 and 4 because the overall landfill will be removed and the area will be wetlands The removal of the additional inert C&D debris from Vaughn landfill does not affect the long-term effectiveness and permanence related to NAPL impacts when compared to Alternative 4
Reduction of Toxicity, Mobility, and Volume through Treatment	Alternative 1 would not reduce toxicity, mobility, or volume through treatment	Alternative 2 would not reduce toxicity, mobility, or volume through treatment	 The toxicity, mobility, and volume of waste would be reduced at the Site through selective excavation and groundwater extraction and treatment within the capped area The mobility would be reduced due to placement in an engineered waste containment cell at a permitted landfill and the reduction in mobility provided by the barrier wall and cap Reduction of the toxicity and volume of COCs and NAPL in the groundwater will occur through natural attenuation over the course of an extended period of time (likely greater than 30 years) A limited area of NAPL contained within the barrier wall and visually observed trace NAPL would be left under a portion of the Vaughn landfill, and thus Alternative 3 would not provide a reduction of toxicity, mobility, or volume for these impacts (Alternatives 4 and 5 address this NAPL) 	 The toxicity, mobility, and volume of waste would be reduced at the Site through excavation The mobility would be reduced due to placement in an engineered waste containment cell at a permitted landfill Reduction of the toxicity and volume of COCs and NAPL in the groundwater will occur through natural attenuation over the course of an extended period of time (likely greater than 30 years) 	 The toxicity, mobility, and volume of waste would be reduced at the Site through excavation The mobility would be reduced due to placement in an engineered waste containment cell at a permitted landfill Reduction of the toxicity and volume of COCs and NAPL in the groundwater will occur through natural attenuation over the course of an extended period of time (likely greater than 30 years) The removal of the additional inert C&D debris from Vaughn landfill does not reduce the toxicity, mobility, or volume through treatment of NAPL impacts when compared to Alternative 4

Notes on Page 2.

Table 9-2 OU-1 and OU-2 Combined Remedial Comparative Evaluation CSXT Bramlett Road Site VCC 16-5857-RP Greenville, SC

	Alternative 1	Alterative 2	Alternative 3	Alternative 4	Alternative 5
Criterion	No Action	MNA and LUCs	Selective Excavation, Barrier Wall, Landfill Capping, Hydraulic Control, MNA, and LUCs	Excavation, MNA, and LUCs	Excavation and Complete Removal of Vaughn Landfill, MNA, and LUCs
Short-term Effectiveness	 Alternative 1 would not be effective over a short-term period since the time until RAOs are achieved would be extended (heavily influencing score) Since there will be no remedial action there will be no risk to the community and workers during implementation 	 Alternative 2 would not be effective over a short-term period since the time until RAOs are achieved would be extended (heavily influencing score) The remedial action requires routine groundwater monitoring and the risk to the community and workers during implementation would be minimal relative to Alternatives 3 through 5 which include the excavation and hauling of significant volumes of material, trucking of soils, and flooding/construction risks 	 The time to achieve the RAOs would be an extended duration for both OU-1 and OU-2 Alternative 3 poses a higher risk to the community and workers during implementation due to the active remedial technologies (e.g., heavy equipment, trucking, and sheetpile installation) Since the timeframe of implementation is less for Alternative 3 than Alternatives 4 and 5, the risk of environmental impacts due to the remedial action would be lower 	 The time to achieve the RAOs for OU-1 would be based on the time of remedial action implementation The time to achieve the RAOs would be an extended duration for OU-2 Alternative 4 poses a higher risk to the community and workers during implementation than Alternative 3 due to the active remedial technologies (e.g., heavy equipment and trucking) and potential for flooding-related environmental impacts Since the timeframe of implementation is longer for Alternative 4 than Alternative 3, the risk of environmental impacts due to the remedial action would be higher 	 The time to achieve the RAOs for OU-1 would be based on the time of remedial action implementation The time to achieve the RAOs would be an extended duration for OU-2 and the removal of the additional inert C&D debris from Vaughn landfill does not affect the timeframe to achieve RAOs for OU-2 when compared to Alternative 4 Alternative 5 poses a higher risk to the community, workers, and the environment than Alternative 3 during implementation due to the active remedial technologies (e.g., heavy equipment and trucking) Since the timeframe of implementation is longer for Alternative 5 than Alternative 3, the risk of environmental impacts due to the remedial action would be higher The short-term effectiveness of Alternatives 4 and 5 are scored the same since both alternatives remove RI delineated NAPL from OU-1.
Implementability	Since there is no action taking place, Alternative 1 is readily implementable	The technical and administrative feasibility of Alternative 2 makes the approach readily implementable	 Excavation equipment and contractors are readily available and some specialized equipment for working in the wetlands would be required During a constructability review by three remedial contractors, the ability to conduct excavations to the targets depths while managing water (groundwater and surface water) was identified as a significant challenge Approval from USACE, SCDHEC, and local agencies is expected Off-Site disposal is readily available in Subtitle D landfills Installation of a containment barrier into saprolite and fractured bedrock will have some implementation challenges Installation of the TreeWell® system within the C&D debris may have minor construction implementation challenges 	 Excavation equipment and contractors are readily available and some specialized equipment for working in the wetlands would be required During a constructability review by three remedial contractors, the ability to conduct excavations to the targets depths while managing water (groundwater and surface water) was seen as a significant challenge Approval from USACE, SCDHEC, and local agencies is expected Off-Site disposal is readily available in Subtitle D landfills 	 Excavation equipment and contractors are readily available and some specialized equipment for working in the wetlands would be required During a constructability review by three remedial contractors, the ability to conduct excavations to the targets depths while managing water (groundwater and surface water) was seen as a significant challenge Approval from USACE, SCDHEC, and local agencies is expected Off-Site disposal is readily available in Subtitle D landfills

Notes:

MNA - Monitored Natural Attenuation LUCs - Land Use Controls O&M - Operations and Maintenance RI - Remedial Investigation RAOs - Remedial Action Objectives USACE - United States Army Corps of Engineers SCDHEC - South Carolina Department of Health and Environmental Control C&D - Construction and Demolition OU - Operable Unit COCs - constituents of concern NAPL - non-aqueous phase liquid ARAR - Applicable or Relevant and Appropriate Requirements

Table 9-3Historical USGS Data SummaryCSXT Bramlett Road SiteVCC 16-5857-RPGreenville, SC

Month	Average Discharge, cfs ¹	Average Precipitation, in ¹	Average Gauge Height, ft ¹
January	120.73	3.89	1.08
February	125.59	4.58	1.09
March	99.11	3.64	1.01
April	110.98	5.12	1.05
May	103.03	4.89	1.00
June	61.05	3.34	0.85
July	51.60	3.13	0.80
August	70.60	3.76	0.87
September	48.79	2.50	0.78
October	68.31	3.99	0.85
November	92.42	3.87	0.94
December	110.81	5.35	1.03

Notes:

1. Data gathered from the USGS gauge (02164000) along the Reedy River for the last 10 years.

2. May to December is the expected work schedule.

3. cfs - cubic feet per second

- 4. in inches
- 5. ft feet

6. The data presented in the table are shown graphically below.

Table 9-4 OU-1 and OU-2 Combined Remedial Alternative 2 Cost Estimate CSXT Bramlett Road Site VCC 16-5857-RP Greenville, SC

Alternative Description: MNA, and LUCs. - 30 years of MNA monitoring

•	lmp	lemen	tation	of	LUC	Ċs	

- Implementat	on of LUCs					
Item No.	Item Description	Estimated Unit Rate (USD)	Extended Amount (USD)			
I. EN	GINEERING & CQA COSTS					
001	Design/Modeling/Statistical Evaluation	LS	1	\$100,000	\$100,000	
002	Reporting/As-Builts/LUC Documentation/Surveys/Legal	LS	1	\$50,000	\$50,000	
	PRE-CONSTRUCTION/START-UP COSTS TOTAL					
II. PR	ESENT VALUE OF POST-CONSTRUCTION (OPERATION AND MAINTENANCE) COSTS					
003	MNA Sampling and Lab Analyses & Semi-annual Reports*	Year	30	\$68,000	\$900,000	
004	Five Year Regulatory Review [*]	LS	6	\$10,000	\$22,000	
005	Monthly Site O&M/LUC Visit [*]	Year	30	\$15,000	\$200,000	
	PRESENT VALUE OF POST-CONSTRUCTION (OPERATION AND MAIL	NTENAN	CE) COSTS TO	TAL [*]	\$1,200,000	
III. SU	JMMARY					
	Total Capital Costs (Engineering)				\$150,000	
Present Value of Annual O&M Costs - 30 Year *					\$1,200,000	
	Subtotal Costs				\$1,350,000	
	Cost Estimate Range (-30% to +50%)				\$950,000 - \$2,000,000	

Notes:

CY = cubic yards, SY = square yards, LF = linear feet, LS = Lump Sum, AC = acre., kWh = kilowatt hour

"Unit Rate" and "Extended Amount" column items are provided in United States dollar (USD) and rounded.

* Present value calculated utilizing a 7% discount rate consistent with A Guide To Developing and Documenting Cost Estimates During the Feasibility Study, EPA July 2000.

Table 9-5 OU-1 and OU-2 Combined Remedial Alternative 3 Cost Estimate CSXT Bramlett Road Site VCC 16-5857-RP

Greenville, SC

Alternative Description: Selective Excavation, Barrier Wall, Capping a portion of CSXT's Vaughn Landfill, Hydraulic Control, MNA, and LUCs Clear and grub LECE School excavation area and CSXT's Vaughn Landfill - Drive sheet pile to 17-ft depth, north end of Vaughn Landfill Construct a low permeability cap (geomembrane with drainage layer and 2 ft of soil) over north end of CSXT's Vaughn Landfill - Drive sheet pile around LECE School wetlands and turnaround/parking area on LECE School property to support excavation - Excavate LECE School wetlands and turnaround/parking area on LECE School property to a depth of 16 ft bls - Restore wetlands LECE School Property - Clear and grub Parcels 3, 4, and 5 - Install ReWa access - Select excavation of Parcels 3, 4, and 5 - Install TreeWell and two groundwater extraction wells with pumps on north end of CSXT's Vaughn Landfill and discharge to POTW. Operate Groundwater extraction for 10 year until trees are established 30 years of MNA monitoring								
Item No.	Item Description	Unit	Estimated Quantity	Estimated Unit Rate (USD)	Extended Amount (USD)			
I. EN	GINEERING & CQA COSTS							
001	Design, Specifications, and Bidding Support	LS	1	\$90,000	\$90,000			
002	Environmental Resource Permitting	LS	1	\$70,000	\$70,000			
003	CQA	Day	345	\$1,500	\$517,000			
004	Site Remediation Air and Vibration Monitoring During Construction	Months	14.6	\$23,000	\$336,000			
005	As-Built Drawings and Reporting	LS	1	\$40,000	\$40,000			
	PRE-CONSTRUCTIO	N/START-	UP COSTS TO	TAL	\$1,100,000			
II. CO	ONSTRUCTION COSTS							
G	eneral							
006	Mobilization/Demobilization	LS	1	\$50,000	\$50,000			
007	Contractor Construction Support (Project Management, Trailers, CQC)	Month	14.6	\$50,000	\$729,000			
008	Construction Permitting	LS	1	\$13,000	\$13,000			
009	Surveying	Each	3	\$5,000	\$15,000			
010	Installation of Silt Fence	LF	6,000	\$5.00	\$30,000			
011	Installation of Security Fencing and Construction Entrance/Exit	LF	2,000	\$33.00	\$66,000			
CSXT's Vaug	hn Landfill, Barrier Wall Installation, Surface Cap							
012	Clearing, Grubbing, and Stripping for Surface Sediment Removal (light)	AC	1.57	\$7,500	\$12,000			
013	Clearing, Grubbing, and Stripping for Surface Sediment Removal (heavy)	AC	4.72	\$15,000	\$71,000			
014	Sheet Pile Installation	SF	18,200	\$70.00	\$1,274,000			
015	Low Permeability Surface Can Installation	SOFT	68 700	\$0.70	\$49.000			
016	2-ft Soil Can	CY	5 089	\$30.00	\$153,000			
017	Can Restartion (Hydroseeding)	SOFT	136 786	\$0.33	\$46,000			
LECE School	Pronerty Wetland Excavation and Restoration	5411	150,700	\$0155	\$ 10,000			
018	Clearing Cruthing and Steinning for Surface Sediment and Sail Demoval (light)	10	0.26	\$7.500	\$2,000			
010	Clearing, Grubbing, and Stripping for Surface Sediment and Soil Removal (light)	AC	0.20	\$7,500	\$12,000			
019	Chearing, Graubing, and Supping for Surface Sequencel and Soft Removal (neavy)	AU CE	0.//	\$70.00	\$12,000			
020	Sneet Pile Installation around LECE Area, including Turnaround and Parking (Tolt bis)	ъг	25,000	\$70.00	\$1,750,000			
		IC	1	70.000	\$70.000			
021	Design	10	1	70,000	\$775.000			
022		LS	1	775,000	\$775,000			
023	Electrically and Lighting Systems		1	/5,000	\$75,000			
024	Kelocations	Each	0	\$85,000.00	\$510,000			
025	Monthly Rental	Month	7	\$59,800.00	\$408,000			
026		LS	1	\$120,000.00	\$120,000			
027	Electricity	Month	7	\$12,000.00	\$82,000			
028	Excavation of LECE Area, Including Turnaround and Parking (16ft bls)	CY	26,400	\$18.00	\$476,000			
029	Dewatering System (12 point w/ moves, fuel and operation) (50% Operational)	Week	15	\$9,500	\$140,000			
030	LGAC Treatment for Dewatering Fluids (MGP contact water management) (50% Operational) Flw.Ash Mixing and Offsite Disposal of Excavated Sediment and Soil (50% of codiment/soil requires	Week	15	\$10,000	\$147,000			
031	mixing)	CY	13,200	\$10.00	\$132,000			
032	Off-site Disposal of Excavated Sediment and Soil	TON	38,808	\$60.00	\$2,329,000			
033	Backfill and Regrading of LECE Area	CY	26,400	\$30.00	\$792,000			
034	Wetland Restoration (Planting 20 trees per ac and wetland plants)	AC	1.02	\$25,000	\$26,000			

Table 9-5 OU-1 and OU-2 Combined Remedial Alternative 3 Cost Estimate CSXT Bramlett Road Site VCC 16-5857-RP

Greenville, SC

Item No.	Item Description	Unit	Estimated Quantity	Estimated Unit Rate (USD)	Extended Amount (USD)		
035	Water Management/Pump Around	LS	1.00	\$750,000	\$750,000		
	Fugitive Air Emissions Treatment and Monitoring Systems						
036	Mob/Delivery with 20,000 lbs Virgin Carbon	LS	1	\$59,000	\$59,000		
037	Crane for Off-loading/Setup and then Removal	LS	1	\$6,000	\$6,000		
038	Monthly System Rental	Month	3.4	\$4,000	\$14,000		
039	16-inch Hose	LF	500	\$45	\$23,000		
040	Filter Elements	Each	100	\$150	\$15,000		
041	Demobilization/Carbon Disposal	LS	1	\$30,000	\$30,000		
042	Rusmar Odor Control Foam	Drum	30	\$750	\$23,000		
Select Excava	ation on Parcel 3 South, 3 North, 4 and 5	1					
043	Clearing, Grubbing, and Stripping for Surface Sediment Removal (light)	AC	0.57	\$7,500	\$5,000		
044	Clearing, Grubbing, and Stripping for Surface Sediment Removal (heavy)	AC	1.72	\$15,000	\$26,000		
045	Crushed Limerock Entrance/Exit/Drive on Landfill and Work Pad Area	SF	10,000	\$0.93	\$10,000		
046	ReWa Access	SF	16,000	\$0.93	\$15,000		
047	Installation of Construction Matts	LS	1	\$50,000	\$50,000		
048	Dewatering System (12 point w/ moves, fuel and operation) (30% Operational)	Week	10	\$9,500	\$95,000		
049	LGAC Treatment for Dewatering Fluids (MGP contact water management) (30% Operational)	Week	10	\$10,000	\$100,000		
050	Excavation Parcel 3 North	CY	5,700	\$18	\$103,000		
051	Excavation Parcel 3 South	CY	15,300	\$18	\$276,000		
052	Excavation Parcel 4	CY	2,800	\$18	\$51,000		
053	Excavation Parcel 5	CY	2.300	\$18	\$42.000		
054	Rusmar Odor Control Foam	Drum	30	\$750	\$23.000		
055	Fly-Ash Mixing of Excavated Sediment (50% of sediment requires mixing)	CY	13.050	\$10	\$131,000		
056	Off-site Disposal (T&D) of Excavated Sediments Parcels 3 South 3 North 4 and 5	TON	38 367	\$60	\$2,303,000		
057	Backfill and Regrading of Parcels 3 South. 3 North. 4 and 5	CY	30.000	\$30	\$900,000		
058	Restoration of Disturbed Areas (Vegetation) (Planting 20 trees per ac and wetland plants)	AC	3 29	\$25.000	\$83.000		
059	Check Dams	Each	2	\$2.500	\$5.000		
	CSXT's Vaughn Landfill			•). • •			
060	Excavate CSXT's Vaughn Landfill (Parcel 3 South)	CY	3.900	\$18	\$71.000		
061	Off-site Disposal (T&D) of Excavated Landfill Debris	Ton	5.460	\$60	\$328.000		
	Temporary Water By-pass for Parcels 4 and 5		-,	•••			
062	Temp Ditch Excavation	BCY	3.200	\$18.00	\$58.000		
063	Temp Ditch Backfill	BCY	3.200	\$30.00	\$96.000		
064	Vaughn Landfill Ditch Block/Minor Stormwater Work	LS	1	\$5.000	\$5.000		
Hydraulic Co	ntrol System Materials and Installation	I		,			
065	Pumps	LS	2	\$12,500	\$25.000		
066	Recovery Well	LS	1	\$6,200	\$6.200		
067	GAC Canister	LS	1	\$12,500	\$12,500		
068	Install Trees for Hydraulic Control	AC	1.6	\$30,000	\$48,000		
	CON:	STRUCTI	ON COSTS TO	TAL	\$16 200 000		
III. I	PRESENT VALUE OF POST-CONSTRUCTION (OPERATION AND MAINTENANCE) COSTS						
069	Sampling and Lab Analyses & Annual Reports*	Year	30	\$68,000	\$900,000		
070	Five Year Regulatory Review [*]	LS	6	\$10,000	\$22,000		
071	Electricity	kWh	10	\$500.00	\$4,000		
072	ERP Renewal*	YR	10	\$1,250	\$10,000		
073	Discharge Fee to a POTW [*]	YR	10	\$7,800	\$59,000		
074	Pump/GAC Repairs/Replacement*	YR	10	\$12,500	\$94,000		
075	Monthly Site O&M/LUC Visit [*]	Year	30	\$15,000	\$200,000		
	PRESENT VALUE OF POST-CONSTRUCTION (OPERATION AND MAIN	TENANC	E) COSTS TO	TAL *	\$1,300,000		

Table 9-5 OU-1 and OU-2 Combined Remedial Alternative 3 Cost Estimate CSXT Bramlett Road Site VCC 16-5857-RP

Greenville, SC

Item No.	Item Description	Unit	Estimated Quantity	Estimated Unit Rate (USD)	Extended Amount (USD)		
IV. SUMMARY							
Total Capital Costs (Engineering & CQA and Construction)							
Present Value of Annual O&M Costs - 30 Year [*]							
Subtotal Costs							
Cost Estimate Range (-30% to +50%)							

Notes:

CY = cubic yards, SY = square yards, LF = linear feet, LS = Lump Sum, AC = acre., kWh = kilowatt hour, ERP = Environmental Resource Permit, LUC = Land Use Control

"Unit Rate" and "Extended Amount" column items are provided in United States dollar (USD) and rounded.

* Present value calculated utilizing a 7% discount rate consistent with A Guide To Developing and Documenting Cost Estimates During the Feasibility Study, EPA July 2000.

Table 9-6 OU-1 and OU-2 Combined Remedial Alternative 4 Cost Estimate CSXT Bramlett Road Site VCC 16-5857-RP

Greenville, SC

Alternative I	Alternative Description: Excavation, MNA, and LUCs.						
- Clear and gr - Install ReW	a access						
- Excavate LECE School wetlands (excluding turnaround/parking area on LECE School property) to a depth of 16 ft bls							
- Excavate a portion of CSXT's Vaughn Landfill and NAPL beneath that portion of the landfill							
- Restore Wet	lands LECE School Property, Parcels 3, 4, and 5 and the excavated portion of CSXT's Vaughn Landfill						
- 50 years of r				V			
Item	Item Description	Unit	Estimated	Estimated Unit Rate	Extended Amount		
No.			Quantity	(USD)	(USD)		
I. EN	GINEERING & CQA COSTS	1		1			
001	Design, Specifications, and Bidding Support	LS	1	\$90,000	\$90,000		
002	Environmental Resource Permitting	LS	1	\$70,000	\$70,000		
003	CQA	Day	677	\$1,500	\$1,016,000		
004	Site Remediation Air and Vibration Monitoring During Construction	Months	28.6	\$23,000	\$659,000		
005	As-Built Drawings and Reporting	LS	1	\$40,000	\$40,000		
	PRE-CONSTRUCTIO	N/START-	UP COSTS TO	OTAL	\$1,900,000		
II. C	ONSTRUCTION COSTS						
G	eneral	1		1			
006	Mobilization/Demobilization	LS	1	\$50,000	\$50,000		
007	Contractor Construction Support (Project Management, Trailers, CQC)	Month	28.6	\$50,000	\$1,432,000		
008	Construction Permitting	LS	1	\$13,000	\$13,000		
009	Surveying	Each	3	\$5,000	\$15,000		
010	Installation of Silt Fence	LF	6,000	\$5.00	\$30,000		
011	Installation of Security Fencing and Construction Entrance/Exit	LF	2,000	\$33.00	\$66,000		
CSXT's Vau	ghn Landfill						
	CSXT's Vaughn Landfill						
012	Clearing, Grubbing, and Stripping for Surface Sediment Removal (light)	AC	1.57	\$7,500	\$12,000		
013	Clearing, Grubbing, and Stripping for Surface Sediment Removal (heavy)	AC	4.72	\$15,000	\$71,000		
014	Excavation of CSXT's Vaughn Landfill (10 ft)	CY	50,700	\$18.00	\$913,000		
015	Off-site Disposal (T&D) of Excavated Landfill Debris	TON	70,980	\$60.00	\$4,259,000		
	MGP Related Impacts						
016	Sheet Pile Installation	SF	35,000	\$70.00	\$2,450,000		
017	Excavation of NAPL Impacted Soil beneath CSXT's Vaughn Landfill (10 ft)	CY	50,700	\$18.00	\$913,000		
018	Dewatering System (12 point w/ moves, fuel and operation) (50% Operational)	Week	32	\$9,500	\$308,000		
019	LGAC Treatment for Dewatering Fluids (MGP contact water management) (50% Operational)	Week	32	\$10,000	\$324,000		
020	Water Management/Pump Around	LS	1.00	\$1,500,000	\$1,500,000		
021	Backfill to Wetland Grades (3 ft)	CY	15,198	\$30.00	\$456,000		
022	Off-site Transportation and Disposal of NAPL Impacted Soil	TON	70,980	\$60.00	\$4,259,000		
023	Wetland Restoration (Planting 20 trees per ac and wetland plants)	AC	3.14	\$25,000	\$79,000		
024	Updating FEMA Flood Maps	LS	1.00	\$70,000	\$70,000		
LECE Schoo	l Property Wetland Excavation and Restoration						
025	Clearing, Grubbing, and Stripping for Surface Sediment Removal (light)	AC	0.26	\$7,500	\$2,000		
026	Clearing, Grubbing, and Stripping for Surface Sediment Removal (heavy)	AC	0.77	\$15,000	\$12,000		
	Sprung Structure for Excavation on LECE Property						
027	Design	LS	1	\$70,000	\$70,000		
028	Mobilization	LS	1	\$775,000	\$775,000		
029	Electrically and Lighting Systems	LS	1	\$75,000	\$75,000		
029	Relocations	Each	6	\$85,000	\$510,000		
030	Monthly Rental	Month	7	\$59,800	\$408,000		
030	Demobilization	LS	1	\$120,000	\$120,000		
031	Electricity	Month	7	\$12,000	\$82,000		
031	Sheet Pile Installation around LECE Area, Including Turnaround and Parking (16ft bls)	SF	25,000	\$70.00	\$1,750,000		
032	Excavation of LECE Area, Excluding Turnaround and Parking (16ft bls)	CY	26,400	\$18	\$476,000		
033	Dewatering system (12 point w/ moves, fuel and operation) (50% Operational)	Week	15	\$9,500	\$140,000		
034	LGAC Treatment for Dewatering Fluids (MGP contact water management) (50% Operational)	Week	15	\$10,000	\$147,000		

Table 9-6 OU-1 and OU-2 Combined Remedial Alternative 4 Cost Estimate CSXT Bramlett Road Site VCC 16-5857-RP

Greenville, SC

Item No.	Item Description	Unit	Estimated Quantity	Estimated Unit Rate (USD)	Extended Amount (USD)			
035	Fly-Ash Mixing and Off-site Disposal of Excavated Sediment (50% of sediment requires mixing)	TON	13,200	\$10	\$132,000			
036	Off-site Disposal of Excavated Sediment	TON	38,808	\$60	\$2,329,000			
037	Backfill and Regrading of LECE Area	CY	26,400	\$30	\$792,000			
038	Wetland Restoration (Planting 20 trees per ac and wetland plants)	AC	1.02	\$25,000	\$26,000			
039	Water Management/Pump Around	LS	1.00	\$750,000	\$750,000			
Fugitive Air Emissions Treatment and Monitoring Systems								
040	Mob/Delivery with 20,000 lbs Virgin Carbon	LS	1	\$59,000	\$59,000			
041	Crane for Off-loading/Setup and then Removal	LS	1	\$6,000	\$6,000			
042	Monthly System Rental	Month	3.4	\$4,000	\$14,000			
043	16-inch Hose	LF	500	\$45	\$23,000			
044	Filter Elements	Each	100	\$150	\$15,000			
045	Demobilization/Carbon Disposal	LS	1	\$30,000	\$30,000			
046	Rusmar Odor Control Foam	Drum	30	\$750	\$23,000			
Select Excava	ation on Parcel 3 South, 3 North, 4 and 5							
047	Clearing, Grubbing, and Stripping for Surface Sediment Removal (light)	AC	0.57	\$7,500	\$5,000			
048	Clearing, Grubbing, and Stripping for Surface Sediment Removal (heavy)	AC	1.72	\$15,000	\$26,000			
049	Crushed Limerock Entrance/Exit/Drive on Landfill and Work Pad Area	SF	10,000	\$0.93	\$10,000			
050	ReWa Access	SF	16,000	\$0.93	\$15,000			
051	Installation of construction matts	LS	1	\$50,000	\$50,000			
052	Dewatering system (12 point w/ moves, fuel and operation) (30% Operational)	Week	9	\$9,500	\$83,000			
053	LGAC Treatment for Dewatering Fluids (MGP contact water management) (30% Operational)	Week	9	\$10,000	\$87,000			
054	Excavation Parcel 3 North	CY	5,700	\$18	\$103,000			
055	Excavation Parcel 3 South	CY	15,300	\$18	\$276,000			
056	Excavation Parcel 4	CY	2,800	\$18	\$51,000			
057	Excavation Parcel 5	CY	2,300	\$18	\$42,000			
058	Rusmar Odor Control Foam	Drum	30	\$750	\$23,000			
059	Fly-Ash Mixing of Excavated Sediment	CY	13,050	\$10	\$131,000			
060	Off-site Disposal of Excavated Sediments, Parcels 3 South, 3 North, 4 and 5	TON	38,367	\$60	\$2,303,000			
061	Backfill and Regrading of Parcels 3 South, 3 North, 4 and 5	CY	26,100	\$30	\$783,000			
062	Restoration of Disturbed Areas (Vegetation) (Planting 20 trees per ac and wetland plants)	AC	3.29	\$25,000	\$83,000			
063	Check Dams	Each	2	\$2,500	\$5,000			
	Temporary Water By-pass for Parcels 4 and 5	1		•				
064	Temp Ditch Excavation	BCY	3,200	\$18	\$58,000			
065	Temp Ditch Backfill	BCY	3,200	\$30	\$96,000			
066	Vaughn Landfill Ditch Block/Minor Stormwater Work	LS	1	\$5,000	\$5,000			
	TAL	\$30,300,000						
III. I	PRESENT VALUE OF POST-CONSTRUCTION (OPERATION AND MAINTENANCE) COSTS							
067	MNA Sampling and Lab Analyses & Semi-annual Reports*	Year	30	\$68,000	\$900,000			
068	Five Year Regulatory Review*	LS	6	\$10,000	\$22,000			
069	Monthly Site O&M/LUC Visit [*]	Year	30	\$15,000	\$200,000			
	TAL [*]	\$1,100,000						
IV. SU	MMARY							
	Total Capital Costs (Engineering & CQA and Construction)				\$32,200,000			
	Present Value of Annual O&M Costs - 30 Year*				\$1,100,000			
	\$33,300,000							
	Cost Estimate Range (-30% to +50%)				\$23,300,000 - \$50,000,000			

Notes:

CY = cubic yards, SY = square yards, LF = linear feet, LS = Lump Sum, AC = acre., kWh = kilowatt hour, ERP = Environmental Resource Permit

"Unit Rate" and "Extended Amount" column items are provided in United States dollar (USD).

* Present value calculated utilizing a 7% discount rate consistent with A Guide To Developing and Documenting Cost Estimates During the Feasibility Study, EPA July 2000.

Table 9-7 OU-1 and OU-2 Combined Remedial Alternative 5 Cost Estimate CSXT Bramlett Road Site

VCC 16-5857-RP Greenville, SC

Alternative Description: Excavation and Complete Removal of Vaughn Landfill, MNA, and LUCs Clear and grub LECE School excavation area, CSXT's Vaughn Landfill and Parcels 3, 4, and 5 Install ReWa access Excavate LECE School wetlands (excluding turnaround/parking area on LECE School property) to a depth of 16 ft bls Excavation of Parcels 3, 4, and 5 Excavate the entire CSXT's Vaughn Landfill and NAPL beneath a portion of the landfill Restore Wetlands LECE School Property, Parcels 3, 4, and 5 and the CSXT's Vaughn Landfill 30 years of MNA monitoring Estimated Unit Item Estimated Extended Amount Item Description Unit Rate No. Quantity (USD) (USD) I. ENGINEERING & CQA COSTS \$90.000 LS \$90.000 001 Design, Specifications, and Bidding Support 1 \$70,000 002 Environmental Resource Permitting LS 1 \$70,000 003 Day 832 \$1,500 \$1,249,000 CQA 004 35.2 \$23,000 Site Remediation Air and Vibration Monitoring During Construction Month \$810.000 \$40,000 \$40,000 005 As-Built Drawings and Reporting LS 1 PRE-CONSTRUCTION/START-UP COSTS TOTAL \$2,300,000 **II. CONSTRUCTION COSTS** General \$50,000 \$50,000 006 Mobilization/Demobilization LS 1 007 Contractor Construction Support (Project Management, Trailers, CQC) Month 35.2 \$50,000 \$1,760,000 008 Construction Permitting LS 1 \$13,000 \$13,000 3 \$5,000 \$15,000 009 Surveying Each 010 Installation of Silt Fence LF 6,000 \$5.00 \$30,000 011 Installation of Security Fencing and Construction Entrance/Exit LF 2,000 \$33.00 \$66,000 CSXT's Vaughn Landfill CSXT's Vaughn Landfill AC 1.57 \$7.500 \$12,000 012 Clearing, Grubbing, and Stripping for Surface Sediment Removal (light) 013 Clearing, Grubbing, and Stripping for Surface Sediment Removal (heavy) 4.72 \$15,000 \$71,000 AC CY \$18.00 \$1,827,000 014 Excavation of CSXT's Vaughn Landfill (10 ft) 101,500 \$8,526,000 Off-site Disposal (T&D) of Excavated Landfill Debris 015 TON 142,100 \$60.00 MGP Related Impacts --Sheet Pile Installation SF 35,000 \$70.00 \$2,450,000 016 CY 50,700 \$18.00 \$913.000 017 Excavation of NAPL Impacted Soil beneath CSXT's Vaughn Landfill (10 ft) 018 Dewatering System (12 point w/ moves, fuel and operation) (50% Operational) Week 46 \$9,500 \$442,000 019 LGAC Treatment for Dewatering Fluids (MGP contact water management) (50% Operational) Week 46 \$10,000 \$465,000 Water Management/Pump Around LS \$1,500,000 \$1,500,000 020 1.00 \$30.00 \$456,000 021 Backfill to Wetland Grades (3 ft) CY 15,198 TON 022 Off-site Transportation and Disposal of NAPL Impacted Soil 70,980 \$60.00 \$4,259,000 023 Wetland Restoration (Planting 20 trees per ac and wetland plants) AC 6.3 \$25,000 \$158.000 LS \$70,000 \$70,000 024 Updating FEMA Flood Maps 1.00 LECE School Property Wetland Excavation and Restoration 0.26 \$2,000 025 Clearing, Grubbing, and Stripping for Surface Sediment Removal (light) AC \$7,500 Clearing, Grubbing, and Stripping for Surface Sediment Removal (heavy) AC 0.77 \$15,000 \$12,000 026 Sprung Structure for Excavation on LECE Property ---027 LS 1 \$70,000 \$70,000 Design 028 Mobilization LS 1 \$775,000 \$775,000 LS \$75,000 \$75,000 029 Electrically and Lighting Systems 1 029 Relocations Each 6 \$85,000 \$510.000 7 \$59,800 Month \$408.000 030 Monthly Rental Demobilization \$120,000 030 LS 1 \$120,000 7 \$12,000 031 Electricity Month \$82,000 031 Sheet Pile Installation around LECE Area, Including Turnaround and Parking (16ft bls) SF 25,000 \$70.00 \$1,750,000 032 Excavation of LECE Area, Excluding Turnaround and Parking (16ft bls) CY 26,400 \$18 \$476,000 033 Dewatering system (12 point w/ moves, fuel and operation) (50% Operational) Week 15 \$9,500 \$140,000 \$10.000 \$147.000 LGAC Treatment for Dewatering Fluids (MGP contact water management) (50% Operational) Week 15 034

Table 9-7 OU-1 and OU-2 Combined Remedial Alternative 5 Cost Estimate CSXT Bramlett Road Site VCC 16-5857-RP

Greenville, SC

Item No.	Item Description	Unit	Estimated Quantity	Estimated Unit Rate (USD)	Extended Amount (USD)			
035	Fly-Ash Mixing and Off-site Disposal of Excavated Sediment (50% of sediment requires mixing)	TON	13,200	\$10	\$132,000			
036	Off-site Disposal of Excavated Sediment	TON	38,808	\$60	\$2,329,000			
037	Backfill and Regrading of LECE Area	CY	26,400	\$30	\$792,000			
038	Wetland Restoration (Planting 20 trees per ac and wetland plants)	AC	1.02	\$25,000	\$26,000			
039	Water Management/Pump Around	LS	1.00	\$750,000	\$750,000			
Fugitive Air Emissions Treatment and Monitoring Systems								
040	Mob/Delivery with 20,000 lbs Virgin Carbon	LS	1	\$59,000	\$59,000			
041	Crane for Off-loading/Setup and then Removal	LS	1	\$6,000	\$6,000			
042	Monthly System Rental	Month	3.4	\$4,000	\$14,000			
043	16-inch Hose	LF	500	\$45	\$23,000			
044	Filter Elements	Each	100	\$150	\$15,000			
045	Demobilization/Carbon Disposal	LS	1	\$30,000	\$30,000			
046	Rusmar Odor Control Foam	Drum	30	\$750	\$23,000			
Select Excava	ation on Parcel 3 South, 3 North, 4 and 5							
047	Clearing, Grubbing, and Stripping for Surface Sediment Removal (light)	AC	0.57	\$7,500	\$5,000			
048	Clearing, Grubbing, and Stripping for Surface Sediment Removal (heavy)	AC	1.72	\$15,000	\$26,000			
049	Crushed Limerock Entrance/Exit/Drive on Landfill and Work Pad Area	SF	10,000	\$0.93	\$10,000			
050	ReWa Access	SF	16,000	\$0.93	\$15,000			
051	Installation of construction matts	LS	1	\$50,000	\$50,000			
052	Dewatering system (12 point w/ moves, fuel and operation) (30% Operational)	Week	9	\$9,500	\$83,000			
053	LGAC Treatment for Dewatering Fluids (MGP contact water management) (30% Operational)	Week	9	\$10,000	\$87,000			
054	Excavation Parcel 3 North	CY	5,700	\$18	\$103,000			
055	Excavation Parcel 3 South	CY	15,300	\$18	\$276,000			
056	Excavation Parcel 4	CY	2,800	\$18	\$51,000			
057	Excavation Parcel 5	CY	2,300	\$18	\$42,000			
058	Rusmar Odor Control Foam	Drum	30	\$750	\$23,000			
059	Fly-Ash Mixing of Excavated Sediment	CY	13,050	\$10	\$131,000			
060	Off-site Disposal of Excavated Sediments, Parcels 3 South, 3 North, 4 and 5	TON	38,367	\$60	\$2,303,000			
061	Backfill and Regrading of Parcels 3 South, 3 North, 4 and 5	CY	26,100	\$30	\$783,000			
062	Restoration of Disturbed Areas (Vegetation) (Planting 20 trees per ac and wetland plants)	AC	3.29	\$25,000	\$83,000			
063	Check Dams	Each	2	\$2,500	\$5,000			
	Temporary Water By-pass for Parcels 4 and 5							
064	Temp Ditch Excavation	BCY	3,200	\$18	\$58,000			
065	Temp Ditch Backfill	BCY	3,200	\$30	\$96,000			
066	Vaughn Landfill Ditch Block/Minor Stormwater Work	LS	1	\$5,000	\$5,000			
	CON	STRUCTI	ON COSTS TO	TAL	\$36,100,000			
III. F	PRESENT VALUE OF POST-CONSTRUCTION (OPERATION AND MAINTENANCE) COSTS				•			
067	MNA Sampling and Lab Analyses & Semi-annual Reports*	Year	30	\$68,000	\$900,000			
068	Five Year Regulatory Review*	LS	6	\$10,000	\$22,000			
069	Monthly Site O&M/LUC Visit*	Year	30	\$15,000	\$200,000			
	PRESENT VALUE OF POST-CONSTRUCTION (OPERATION AND MAIN	NTENANC	E) COSTS TO	TAL *	\$1,100,000			
IV. SU	MMARY							
	Total Capital Costs (Engineering & CQA and Construction)				\$38,400,000			
	Present Value of Annual O&M Costs - 30 Year*				\$1,100,000			
		\$39,500,000						
	Cost Estimate Range (-30% to +50%)				\$27,700,000 - \$59,300,000			

Notes:

CY = cubic yards, SY = square yards, LF = linear feet, LS = Lump Sum, AC = acre., kWh = kilowatt hour, ERP = Environmental Resource Permit

"Unit Rate" and "Extended Amount" column items are provided in United States dollar (USD).

* Present value calculated utilizing a 7% discount rate consistent with A Guide To Developing and Documenting Cost Estimates During the Feasibility Study, EPA July 2000.

FIGURES

VAUGHN LANDFILL		0	250	
EXCAVATED AREA (2001-2002)			Feet	
PARCEL BOUNDARY		DRAWN BY: MAH	DATE: 6/9/2023	
••=••=•		REVISED BY: MLM	DATE: 6/9/2023	
FORMER MGP OPERATIONAL STRUCTURES	Geosyntec	CHECKED BY: MLM	DATE: 6/9/2023	
BUILDING	consultants	APPROVED BY: APB	DATE: 6/9/2023	
		PROJECT MANAGER: APB	DATE: 6/9/2023	ι

FIGURE 2-3 1964 HISTORICAL AERIAL LAYOUT CSXT BRAMLETT ROAD SITE VCC 16-5857-RP EAST BRAMLETT ROAD GREENVILLE, SOUTH CAROLINA

Path: (Titusville-01\DATA) \\Titusville-01\Data\0GIS\FR7559_BramletteMGP\MXDs\202302\Historic_Aerial.mxd 09 June 2023. Last Edited by: csaville

		\' ЈТН)	
	```	-955	
		950	
		- 945	
		940	
		935	
		930	
		925	
		-920	8)
		-915	AVD 8
		910	EET (N
		-905	N IN F
		-900	VATIO
		-895	ELE
		-890	
		885	
		880	
		875	
BY SYNTERRA LED BY SYNTER ALIFIERS SEE A THE COMPOU AN THE ADJUST S THAT EITHER AN THE COMPA g/L), NORTH AN NAPL)	ON MARCH 9, 2021. RRA FROM MARCH 10-31, 2021. NALYTICAL TABLES IN THE RIR-A. ND WAS DETECTED AT A TED METHOD DETECTION LIMIT. COMPOUND WAS DETECTED AT A RATIVE STANDARD. MERICAN VERTICAL DATUM (NAVD 88),	A	and the second sec
_) 2 (µg/L) ▼	NAPL OBSERVED DEPTH OF VISUALLY OBSERVED NAPL WATER TABLE ELEVATION WATER LEVEL IN WELL LITHOLOGY	LE	CE SCHOOL
GOLITH	FILL/DEBRIS LEAN CLAY SAND SAPROLITE		
ANSITION NE DROCK	PARTIALLY WEATHERED ROCK (PWR) BEDROCK	The second	B
SCALE 150 CALE 15	FIGURE 3-1 CROSS-SECTION A-A' CSXT BRAMLETT ROAD SITE	1	
REVISED BY	EAST BRAMLETT ROAD GREENVILLE, SOUTH CAROLIN	A	







ССКЕ 10 САКЕ 10 САКЕ 15 САКЕ 15 СА			
		 (NORT	<b>)'</b> HEAST)
950         950           945         940           935         930           925         920           915         910           910         915           900         915           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900			955
945         940           935         930           925         920           910         915           900         915           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         885           890         885           890         885           890         885           890         885           890         885           890         885           890         885           890         885           890         885           890			- 950
940       935       930       925       920       910       921       922       920       910       901       902       903       904       905       906       907       908       909       909       900       901       902       903       904       905       906       907       908       909       900       901       902       903       904       905       900       901       902       903       905       900       901       902       903       904       905       900       901       902       903       904       905       906       907       908       909       909       900       901       902       903       904       905 </th <th></th> <th></th> <th>-945</th>			-945
SOLLE 10 SOLLE			940
930 925 920 915 920 916 917 910 900 900 900 900 900 900 900 900 900			-935
925         920           910         910           910         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900         900           900			-930
SCALE 15 SCALE			-925
SCALE 15 SCALE 15 SCALE 15 RUBED BY			
SCALE 150 CALE 15 CALE 15 RVISED BY RVISED BY RVIS			
SCALE 15 THE SECTION D-D' CALE 15 THE SECTION			-915 (AV)
SCALE 150 CALE 15 CALE 15 CALE 15 TENED BY			
SCALE 150 CALE 15 CALE 15 CALE 15 CALE 15 EVISED BY			-905 = N OI
895       W         890       885         880       880         875       880         876       865         860       855         860       865         860       855         860       855         860       855         860       855         860       855         860       855         860       855         860       855         860       855         850       845         845       840         835       830         SCALE       150         CALE       150         FIGURE 3-4       835         830       835         830       835         830       835         830       835         830       835         830       836         845       840         836       836         837       830         SCALE       150         FIGURE 3-4       840         830       836         830       836         830			-900 V E A
SCALE 15 CALE 15 REVISED BY REVISED BY BOD BOD BOD BOD BOD BOD BOD BOD			-895 ^Ш
SCALE 150 CALE 15 CALE 15 C			-890
SCALE 150 CALE 15 REVISED BY REVISED BY REVI			-885
BIO     875       870     865       860     865       860     855       860     855       850     850       845     840       835     830       SCALE     15       CALE     15       RVISED BY     FIGURE 3-4 CROSS-SECTION D-D' CSXT BRAMLETT ROAD SITE VCC 16-5857-RP EAST BRAMLETT ROAD GREENVILLE, SOUTH CAROLINA			-880
Image: scale figure 3-4     Scale figure 3-4       Scale figure 3-4     CROSS-SECTION D-D'       Scale figure 3-4			875
Image: second			870
SCALE     10     60       CALE     15       TEVISED BY     FIGURE 3-4       CROSS-SECTION D-D'       CSXT BRAMLETT ROAD SITE       VCC 16-5857-RP       EAST BRAMLETT ROAD SITE       VCC 16-5857-RP		FORMER MGP PLANT	- 865
SCALE 15 REVISED BY REVISED			860
SCALE 15 REVISED BY REVISED		- School	-855
Image: state stat			- 850
SCALE 150 FIGURE 3-4 CALE 15 REVISED BY FIGURE 3-4 CROSS-SECTION D-D' CSXT BRAMLETT ROAD SITE VCC 16-5857-RP EAST BRAMLETT ROAD GREENVILLE, SOUTH CAROLINA	:1.0		845
SCALE 150 FIGURE 3-4 CALE 15 REVISED BY FIGURE 3-4 CROSS-SECTION D-D' CSXT BRAMLETT ROAD SITE VCC 16-5857-RP EAST BRAMLETT ROAD GREENVILLE, SOUTH CAROLINA			840
SCALE       150       FIGURE 3-4         CALE       15       CROSS-SECTION D-D'         CALE       15       VCC 16-5857-RP         REVISED BY       EAST BRAMLETT ROAD         GREENVILLE, SOUTH CAROLINA			-835
SCALE 150 FIGURE 3-4 CALE 15 CALE 15 REVISED BY FIGURE 3-4 CROSS-SECTION D-D' CSXT BRAMLETT ROAD SITE VCC 16-5857-RP EAST BRAMLETT ROAD GREENVILLE, SOUTH CAROLINA			- 830
CALE CROSS-SECTION D-D' CSXT BRAMLETT ROAD SITE VCC 16-5857-RP EAST BRAMLETT ROAD GREENVILLE, SOUTH CAROLINA	SCALE 150	FIGURE 3-4	
VCC 16-5857-RP EAST BRAMLETT ROAD GREENVILLE, SOUTH CAROLINA	CALE 15	CROSS-SECTION D-D' CSXT BRAMLETT ROAD SITE	E
GREENVILLE, SOUTH CAROLINA	REVISED BY	VCC 16-5857-RP EAST BRAMLETT ROAD	
		GREENVILLE, SOUTH GAROLI	NA







#### NOTES:





Path: (Titusville-01\DATA) \\Titusville-01\Data\0GIS\FR7559_BramletteMGP\MXDs\202210\mw_shallow_GW_Analytical_202211.mxd 09 June 2023. Last Edited by: csavill



LEGEND E	WELL SCREENED IN TRANSITION ZONE BENZENE AND NAPHTHAI ENE	<ol> <li>BOLD VALUES INDICATE ANALYTE WA ABOVE THE MDL.</li> <li>YELLOW SHADED BOLD TEXT INDICA OF THE SOUTH CAROLINA DEPARTME ENVIRONMENTAL CONTROL (SCDHEC DRINKING WATER REGULATIONS SPE 61-68.</li> <li>MONITORING WELL LOCATION COORI OBTAINED FROM TABLE 3-1, IN SYNTE SEPTEMBER 2021 SEMIANNUAL MONI 7. SHAPEFILES OF SITE FEATURES PRO 8. VAUGHN LANDFILL BOUNDARY FROM REMEDIAL INVESTIGATION WORK PL/ 13 APRIL 2018. THESE LAYERS ARE GI APPROXTIMATE.</li> </ol>	S DETECTED TES AN EXCEEDANCE ENT OF HEALTH AND STATE PRIMARY CIFIED IN REGULATION DINATES WERE ERRA'S ITORING REPORT. IVIDED BY SYNTERRA. ERM GROUNDWATER AN ADDENDUM, EOREFERENCED AND			F	DARCEL 5	ROST	
	<ul> <li>GROUNDWATER PLUME EXCEEDING SCDHEC MCL</li> </ul>	9. PROPERTY BOUNDARIES SOURCED F COUNTY.	FROM GREENVILLE	AND BALL	Analyte		Well Location ID:	MW-9R	
	SITE BOUNDARY	10. SWAMP RABBIT TRAIL CENTERLINE GREENVILLE.	FROM CITY OF	C. W. C. C.		(R.61-58)	Well Screen Interval (ft bls):	21-26	
		11. DRAWING HAS BEEN SET WITH A PR	RAWING HAS BEEN SET WITH A PROJECTION OF DUTH CAROLINA STATE PLANE COORDINATE (STEM FIPS 3900 (NAD83 INTERNATIONAL FEET).	A day and			Sample Date Collection:	09/29/22	
	= RAILROAD	SYSTEM FIPS 3900 (NAD83 INTERNA		A Real of the second se	Benzene	5	μg/l	1.0 U	
	VAUGHN LANDFILL	12. AERIAL SOURCE: NÈARMAP, HERE; ( 20 JANUARY 2023.	CAPTURED		Naphthalene	25	μg/l	1.0 U	
i	PARCEL BOUNDARY		0	250		-		100 40 10	
	FORMER MGP OPERATIONAL	<b>DUKE</b>		Feet					
	STRUCTURES	<b>ENERGY</b>	DRAWN BY: FLF	DATE: 6/9/2023	"			-13	
	BUILDING		REVISED BY: MLM	DATE: 6/9/2023			AWILETT RUAD SITE		
	HYDROLOGY	Geosvntec [▶]	CHECKED BY: APB	DATE: 6/9/2023		EAST E	BRAMLETT ROAD		
	WETLANDS	accultanta	APPROVED BY: APB	DATE: 6/9/2023	G		E. SOUTH CAROLI	NA	
		consultants	PROJECT MANAGER: APB	DATE: 6/9/2023			_,		

Path: (Titusville-01\DATA) \\Titusville-01\Data\0GIS\FR7559_Bramlette/MGP\MXDs\202210\mw_transition_GW_analytical_202211.mxd 09 June 2023. Last Edited by: csaville



LEGEND            •         •         WELL SCREENED IN BEDROCK         BENZENE AND NAPHTHALENE	<ol> <li>BOLD VALUES INDICATE ANALYTE WA ABOVE THE MDL.</li> <li>YELLOW SHADED BOLD TEXT INDICA OF THE SOUTH CAROLINA DEPARTMI ENVIRONMENTAL CONTROL (SCDHEC DRINKING WATER REGULATIONS SPE 61-68.</li> <li>MONITORING WELL LOCATION COOR OBTAINED FROM TABLE 3-1, IN SYNTI SEPTEMBER 2021 SEMIANNUAL MON</li> <li>SHAPEFILES OF SITE FEATURES PRC</li> <li>VAUGHN LANDFILL BOUNDARY FRO REMEDIAL INVESTIGATION WORK PL, 13 APRIL 2018. THESE LAYERS ARE G APPROXTIMATE.</li> </ol>	AS DETECTED TES AN EXCEEDANCE ENT OF HEALTH AND D) STATE PRIMARY ECIFIED IN REGULATION DINATES WERE ERRA'S ITORING REPORT. DVIDED BY SYNTERRA. M ERM GROUNDWATER AN ADDENDUM, EOREFERENCED AND				ARCEL 5	
GROUNDWATER PLUME EXCEEDING SCDHEC MCL SITE BOUNDARY	<ol> <li>PROPERTY BOUNDARIES SOURCED COUNTY.</li> <li>SWAMP RABBIT TRAIL CENTERLINE GREENVILLE.</li> <li>DRAWING HAS BEEN SET WITH A BE</li> </ol>		A. MAR	Analyte	SCDHEC MCL (R.61-58)	Well Location ID: Well Screen Interval (ft bis):	MW-9R 21-26
	SOUTH CAROLINA STATE PLANE CO			Benzene	5		1.0 U
VAUGHN LANDFILL	14. AERIAL SOURCE: NEARMAP, HERE; ( 20 JANUARY 2023.	CAPTURED	NP-1-	Naphthalene	25	μg/l	1.0 U
PARCEL BOUNDARY		0	250			IGURE 3-11	
FORMER MGP OPERATIONAL STRUCTURES	ENERGY.	DRAWN BY: FLF	I Feet	- E	BEDROCK	ZONE COC RESULT	ſS
BUILDING		REVISED BY: MLM	DATE: 6/9/2023		CSXT BRA	AMLETT ROAD SITE	
HYDROLOGY	Geosvntec [▶]	CHECKED BY: APB	DATE: 6/9/2023		EAST B	RAMLETT ROAD	
WETLANDS	consultants	APPROVED BY: APB PROJECT MANAGER: APB	DATE: 6/9/2023 DATE: 6/9/2023	G	REENVILL	E, SOUTH CAROLIN	A

Path: (Titusville-01\DATA) \\Titusville-01\Data\0GIS\FR7559_BramletteMGP\MXDs\202210\mw_bedrock_GW_Analytical_202211.mxd 09 June 2023. Last Edited by: csaville



			PARCEL 5
OWENS ST			with the state
DUKE ENERGY.	0 DRAWN BY: CRS	250 Feet DATE: 9/26/2023	FIGURE 9-1 COMBINED REMEDIAL ALTERNATIVE 3 - LECE REMEDIAL ELEMENTS CSYT BRAMLETT POAD SITE
Geosyntec [▶]	CHECKED BY: MM	DATE: 9/26/2023 DATE: 9/26/2023 DATE: 9/26/2023	VCC 16-5857-RP EAST BRAMLETT ROAD



Path: (Titusville-01\DATA) \\Titusville-01\Data\0GIS\FR7559_BramletteMGP\MXDs\202309\CombRemAlt3_202309_345.mxd 26 September 2023. Last Edited by: csaville



Path: (Titusville-01\DATA) \\Titusville-01\Data\0GIS\FR7559_BramletteMGP\MXDs\202309\CombRemAlt3_202309_CAP.mxd 26 September 2023. Last Edited by: csaville

















EXCAVATED AR

TRIBUTARIES



WETLANDS REEDY RIVER A

EA (2001-2002) DARY	<b>DUKE</b>	0	250 Feet	
		DRAWN BY: CRS	DATE: 9/27/2023	
		REVISED BY: AB	DATE: 9/27/2023	
	Geosyntec	CHECKED BY: MM	DATE: 9/27/2023	
ND	accorditanta	APPROVED BY: JL	DATE: 9/27/2023	
Promistick/CDLAVDa/202200/CombDom	CONSULTATILS	PROJECT MANAGER: AB	DATE: 9/27/2023	

**FIGURE 9-4 COMBINED REMEDIAL ALTERNATIVE 3 -POST-REMEDIAL ACTION CSXT BRAMLETT ROAD SITE** VCC 16-5857-RP EAST BRAMLETT ROAD **GREENVILLE, SOUTH CAROLINA** 



Path: (Titusville-01\DATA) \\Titusville-01\DAta\0GIS\FR7559_BramletteMGP\MXDs\202309\CombRemAlt4_202309before.mxd 28 September 2023. Last Edited by: csaville



Path: (Titusville-01\DATA) \\Titusville-01\Data\0GIS\FR7559_BramletteMGP\MXDs\202309\CombRemAlt4_202309after.mxd 27 September 2023. Last Edited by: csaville



Path: (Titusville-01\DATA) \\Titusville-01\Data\0GIS\FR7559_BramletteMGP\MXDs\202309\CombRemAlt5_202309before.mxd 28 September 2023. Last Edited by: csaville

8 September 2023. Last Edited by: csaville


# **APPENDIX** A

# SynTerra's Risk Estimation for Parcels 1 and 2 Soil



**Science & Engineering Consultants** 

148 River St., Suite 220, Greenville, SC 29601 | 864.421.9999

# TECHNICAL MEMORANDUM

Date:	August 4, 2021	File:	00.2731.00
To:	Mr. Richard Powell		
Cc: From:	Mr. Jim Langenbach P.E., Mr. David Riotte P.E., Mr. Andre Mr. Todd Plating P.G. Dr. Matt Huddleston Ph.D	ew Brey	P.G.,
Subject:	Bramlette Former MGP Parcel 2 Soil Removal – Risk Estim Removal Action	ation ar	nd Basis for

On behalf of Duke Energy, SynTerra prepared a Remedial Investigation (RI) Report pertaining to the location of the Former Bramlette Manufactured Gas Plant (MGP, Site) at 400 East Bramlette Road. The Site is in Greenville, Greenville County, South Carolina and is comprised of five parcels and a portion of the Legacy Elementary School property that total approximately 35 acres in area. The RI report was submitted to the South Carolina Department of Health and Environmental Control (SCDHEC) on June 26, 2020. SCDHEC approved the RI Report on September 1, 2020.

This technical memorandum presents the regulatory framework, risk estimation approach, and confirmation sampling effort to demonstrate that removal of impacted soil from a limited area in Parcel 2 can reduce potential risk to less than residential exposure thresholds.

RISK ESTIMATION FOR PARCEL 1 AND PARCEL 2

The 2020 RI Report included a human health risk assessment to evaluate potential risks associated with constituents of interest that might remain in environmental media. The Virginia Unified Risk Assessment Model (VURAM) can be used to assist in the development of voluntary remediation program risk assessments.

# REGULATORY BASIS

For evaluating potential risk to human health, screening level and baseline assessments were conducted in accordance with the following United Environmental Protection Agency (USEPA) guidance:

- Risk Assessment Guidance for Superfund, Volume 1: Human Health Evaluation Manual, Part A (1989)
- Guidelines for Cancer Risk Assessment (1996, 2005)
- Calculating Upper Confidence Limits for Exposure Point Concentrations at Hazardous Waste Sites (2002a)
- Regional Screening Levels Tables (November 2019 or current version)
- Region 4 Human Health Risk Assessment Supplemental Guidance (2018)

# RESULTS

No risks were identified for a construction worker exposed to soil at Parcel 1 or Parcel 2 which are currently zoned for industrial land use. As a conservative measure and to understand the potential risk of residential land use, a screening level comparison of surface soil data to USEPA Soil Screening Levels (SSLs) for residential soil was completed. Comparison to residential SSLs indicated five constituents at one location (SA-SB-46) contained concentrations greater than screening levels. Soil data screened in the 2020 RI report to estimate Parcel 1 and Parcel 2 risk are summarized in **Table 1**.

The five surface soil chemicals of potential concern (COPCs) evaluated in the 2020 baseline risk assessment included:

- Benzo(a)anthracene
- Benzo(a)pyrene
- Benzo(b)fluoranthene
- Dibenz(a,h)anthracene
- Indeno(1,2,3-cd)pyrene

The five COPCs were selected based on the screening level assessment indicating concentrations of each constituent exceeded human health screening criteria. Exposure point concentrations (EPCs) were calculated for each COPC using ProUCL 5.1 and used in the risk estimation calculation in VURAM. ProUCL output and EPCs are provided in **Attachment 1**. Potential cancer risk for a residential exposure scenario greater than the Lifetime Cancer Risk (ELCR) was identified.

Carcinogenic and non-carcinogenic risk results are listed for each exposure scenario below.

Exposure scenario	Cancer risk	Non-Cancer risk	Non-Cancer risk child
Construction worker cumulative site risk to surface soil	2.9x10 ⁻⁸	8.3x10 ⁻³	NA
Construction worker cumulative site risk to sub-surface soil	1.0x10 ⁻⁷	2.9x10 ⁻²	NA
Residential cumulative site risk to surface soil	8.7x10 ⁻⁶	4.9x10 ⁻³	4.26x10 ⁻²

# VURAM output and default exposure factors are in Attachment 2a.

Because the potential risk given a residential exposure scenario is only incrementally greater than the residential risk cancer threshold, a limited soil removal proximate to the SA-SB-46 location was evaluated. The risk driver for residential exposure to surface soil is benzo(a)pyrene, representing 75 percent of the contribution to soil carcinogenic risk. The other four COPCs were not carried forward as significant contributors to risk because their individual carcinogenic risk contribution is less than 1x10⁻⁶ and their non-carcinogenic hazard quotient is less than 0.1 (USEPA, 2018). Therefore, the benzo(a)pyrene concentration is considered in the planning and confirmatory risk modeling for the limited soil removal.

PROPOSED LIMITED SOIL REMOVAL ACTION EVALUATION Because the estimated risk at the Site is likely the result of an isolated occurrence of benzo(a)pyrene within Parcel 2, an effort to evaluate if a limited soil removal would successfully reduce risk to acceptable levels for residential use was completed. The following evaluation demonstrates that removal and replacement of soil in the vicinity of SA-SB-46 with clean fill would reduce risk to less than residential cancer risk thresholds (1x10⁻⁶).

Shallow soil was evaluated for the purposes of estimating potential risk through residential exposure. The USEPA states that residential activities such as gardening may disturb soils to a depth of up to two feet, potentially exposing receptors to contaminants in subsurface soil via direct contact pathways such as ingestion and dermal absorption (USEPA, 2002). In the conservative gardening scenario, twenty-four (24) inches of clean soil cover is protective of human health. A minimum of a 24-inch clean fill barrier is necessary to prevent plant roots, root vegetables, and clean soil that is mixed via rototilling from encountering contaminated soil at depth (USEPA, 2003).

The USEPA recently completed a remedial cleanup of polycyclic aromatic hydrocarbon (PAH) impacted soils in Eastwick, Pennsylvania which included the removal of the top two feet of soil and replacement with clean fill (USEPA, 2016). That approach is similar to the approach described herein and considered protective of human health.

# DELINEATION SAMPLING METHODS AND RESULTS

To determine the horizontal extent of a limited soil removal, a sampling grid was established at the SA-SB-46 location (**Figure 1**). Borings were advanced using direct push technology (DPT) from land surface to approximately 5 feet below land surface (bls). The soil cores were visually inspected and logged for lithology and presence/absence of non-aqueous phase liquid (NAPL) from MGP operations. Borings were abandoned in accordance with SCDHEC well installation standards, R. 61-71. Boring logs are included in **Attachment 3**.

Nine boring locations closest to SA-SB-46 (40 by 40-foot square and center boring) were initially sampled and analyzed. Subsequent analysis of soil samples collected from the outer sampling grid boring locations was completed until surface soils indicated constituent concentrations less than residential RSLs. Soil samples were collected from 0.5 foot to 1 foot bls and 5.5 feet to 6 feet bls and submitted to Pace Analytical for analysis. Field screening and sample collection were completed in accordance with procedures described in the Quality Assurance Project Plan (QAPP) (SynTerra, 2018). Additional shallow soil samples were collected to achieve lower method detection limits (MDLs) for benzo(a)pyrene and dibenz(a,h)anthracence.

One delineation sample (RI-SB-15) contained elevated PAH concentrations similar to SA-SB-46. Benzo(a)pyrene data are shown on **Figure 1**. Delineation analytical results are summarized in **Table 2** and laboratory analytical reports are included in **Attachment 4**.

# POST SOIL REMOVAL RISK ESTIMATION

Risk was calculated using VURAM. Conservative default model exposure values were used for the construction worker and residential exposure scenarios.

"VURAM Guidance document does not establish binding rules but provides a recommended risk assessment process that incorporates risk assessment methodology described in RAGS Part A through E and EPA RSL Guidance. The report outputs from VURAM provide the information required in RAGS Part D tables." (VURAM, 2020).

Analytical results that correspond to soil remaining in place after a removal action were used to calculate updated EPCs for benzo(a)pyrene. Analytical results from locations where soil would be removed were replaced with MDLs to represent a clean-fill scenario. The updated EPCs were modeled to evaluate residential risk at Parcel 1 and Parcel 2 under a post-soil removal scenario.

Results indicate a total non-cancer hazard index less than 1.0 and a cancer risk of 9.0x10⁻⁷, which is less than the cancer risk threshold of 1x10⁻⁶.

VURAM output and default exposure factors are presented in Attachment 2b.

# RECOMMENDATIONS

The following recommendations are based on an evaluation of potential risk for a residential land use scenario and confirmation sampling:

- Remove and replace soil within the 40 x 40-foot area around SA-SB-46 and the RI-SB-15 location as shown in **Figure 1**.
- Consistent with USEPA guidance and similar soil removal efforts, remove soil to a depth of two feet and replace with clean fill.

# ATTACHMENTS

Figure 1	Proposed Limited Soil Removal
Table 1	Summary of Soil Analytical Result 2019
Table 2	Summary of Soil Analytical Results for Proposed Limited Soil
	Removal Delineation
Attachment 1	Surface Soil 2019 ProUCL Output
Attachment 2a	Residential and Construction Output and Default Exposure Factors
Attachment 2b	Residential VURAM BaP Post-Soil Removal Output and Default
	Exposure Factors
Attachment 3	Boring Logs
Attachment 4	Laboratory Analytical Reports

REFERENCES

- SynTerra, 2018. SynTerra Corporation. Quality Assurance Project Plan (QAPP): Former Bramlette MGP Site. 2018.
- USEPA, 1989. United States Environmental Protection Agency, Risk Assessment Guidance for Superfund Volume I Human Health Evaluation Manual (Part A). December 1989.
- USEPA 1996, United States Environmental Protection Agency, Proposed Guidelines for Carcinogen Risk Assessment. Fed. Reg. 61(79), 17960-18011.
- USEPA 2002, United States Environmental Protection Agency, Supplemental Guidance for Developing Soil Screening Levels for Superfund Site. December 2002. Office of Solid Waste and Emergency Response, Washington DC OSWER 9355.4-24.
- USEPA 2002a, United States Environmental Protection Agency, Calculating Upper Confidence Limits for Exposure Point Concentrations at Hazardous Waste Sites. December 2002. https://www.epa.gov/sites/default/files/2016-03/documents/upper-conf-limits.pdf
- USEPA 2003, United States Environmental Protection Agency, Superfund Lead-Contaminated Residential Sites Handbook. August 2003. Office of Emergency and Remedial Response, Washington DC OSWER 9285.7-50.
- USEPA 2005, United States Environmental Protection Agency, Guidelines for Carcinogen Risk Assessment. March 2005. https://www.epa.gov/sites/ default/files/2013-09/documents/cancer_guidelines_final_3-25-05.pdf
- USEPA 2016, United States Environmental Protection Agency, Lower Darby Creek Area Superfund Site. EPA to Remove Contaminated Soils in Eastwick Yards. August 2016. https://semspub.epa.gov/work/03/2235229.pdf
- USEPA 2018, United States Environmental Protection Agency, Region 4 Human Health Risk Assessment Supplemental Guidance. March 2018. https://www.epa.gov/ sites/default/files/2018-03/documents/hhra_regional_supplemental_guidance _report-march-2018_update.pdf
- VURAM 2020, Virginia Department of Environmental Quality. Virginia Unified Risk Assessment Model (VURAM) User Guide. June 2020. https://www.deq.virginia. gov/home/showpublisheddocument/6949/637514940761700000

Bramlette Former MGP Greenville, SC

# FIGURE

#### NOTES:

1. SOIL BORING LOCATIONS ARE BASED ON GPSCOORDINATES AND ARE APPROXIMATE.

2. mg/kg - MILLIGRAMS PER KILOGRAM 3. FORMER DRAINAGE DITCHES AND EXCAVATION AREAS FROM ERM GROUNDWATER REMEDIAL INVESTIGATION WORK PLAN ADDENDUM, APRIL 13, 2018. THESE LAYERS ARE GEOREFERENCED AND AREAPPROXIMATE.

PROPERTY BOUNDARIES SOURCED FROM GREENVILLE COUNTY 6. AERIAL PHOTOGRAPHY OBTAINED FROM GOOGLE EARTH PRO ON MAY 3, 2019. AERIAL WAS COLLECTED ON MARCH 12, 2018.

7. DRAWING HAS BEEN SET WITH A PROJECTION OF SOUTH CAROLINA STATE PLANE COORDINATE SYSTEM FIPS 3900 (NAD83 INTERNATIONAL FEET).



O SOIL BORING - BaP DETECTED SOIL BORING - BaP MAX CONCENTRATIONS



FIGURE 1 PROPOSED LIMITED SOIL REMOVAL FORMER BRAMLETTE ROAD MGP SITE REMEDIAL INVESTIGATION REPORT EAST BRAMLETTE ROAD **GREENVILLE, SOUTH CAROLINA** 

20

DATE: 05/21/2019

DATE: 03/04/2021

DATE: 03/04/2021 DATE: 03/04/2021 Bramlette Former MGP Greenville, SC

# TABLE**S**

# TABLE 1 SUMMARY OF SOIL ANALYTICAL RESULTS 2019 FORMER BRAMLETTE MGP SITE DUKE ENERGY CAROLINAS, LLC, GREENVILLE, SC

		Analyt	tical Parameter	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Dibenz(a,h)anthracene	Indeno(1,2,3-cd)pyrene	Naphthalene
			Reporting Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		USEPA RSL	Industrial Soil	21	2.1	21	210	2.1	21	17
USEPA RSL Residential Sc			Residential Soil	1.1	0.11	1.1	11	0.11	1.1	3.8
Sample I D	Start Depth (feet bls)	End Depth (feet bls)	Sample Collection Date				Analytical Results			
SA-SB-01	0.5	1	11/15/2019	0.0362	0.0258	0.0536	0.0164	0.0083 j	0.0247	<0.0053
SA-SB-02	0.5	1	11/12/2019	0.0072 j	0.0077 j	0.0099 j	0.0043 j	0.0014 j	0.0051 j	0.0032 j
SA-SB-03	0.5	1	11/15/2019	0.0341	0.0585	0.079	0.0235	0.0156	0.0516	< 0.0051
SA-SB-04	0.5	1	11/13/2019	0.204	0.183	0.283	0.0948	0.0392	0.129	<0.0046
SA-SB-05	0.5	1	11/12/2019	0.0358	0.0399	0.0644	0.0241	0.0119	0.0403	< 0.0043
SA-SB-06	0.5	1	11/12/2019	0.0141	0.0111 j	0.0231	0.0082 j	0.0033 j	0.0099 j	<0.111
SA-SB-07	0.5	1	11/13/2019	0.112	0.0851	0.161	0.0601	0.0234	0.0699	<0.0058
SA-SB-08	0.5	1	11/13/2019	0.104	0.0915	0.17	0.0562	0.0275	0.0839	< 0.0047
SA-SB-09	0.5	1	11/13/2019	0.618	0.673	0.856	0.369	0.161	0.464	<0.0048 R0
SA-SB-10	0.5	1	11/12/2019	0.0138	0.0096 j	0.0219	0.0059 j	0.0033 j	0.0087 j	< 0.149
SA-SB-11	0.5	1	11/12/2019	0.0045 j	0.0041 j	0.0077 j	0.0028 j	<0.0128 R1	0.0032 j	0.0103 j
SA-SB-12	0.5	1	11/14/2019	0.212	0.158	0.227	0.0864	0.0293	0.0899	<0.0046
SA-SB-13	0.5	1	11/13/2019	0.0439	0.0391	0.0716	0.0223	0.01 j	0.0305	< 0.0049
SA-SB-14	0.5	1	11/13/2019	0.0823	0.118	0.145	0.0509	0.0299	0.106	< 0.0053
SA-SB-15	0.5	1	11/12/2019	0.0625	0.173	0.159	0.0537	0.0696	0.272	< 0.0045
SA-SB-16	0.5	1	11/12/2019	0.0865	0.0915	0.13	0.0485	0.0215	0.0635	<0.0056
SA-SB-17	0.5	1	11/12/2019	0.0014 j	0.00089 j	0.0019 j	0.00068 j	<0.0148	< 0.0148	0.0042 j
SA-SB-18	0.5	1	11/14/2019	0.109	0.0708	0.134	0.0416	0.0175	0.0467	< 0.0051
SA-SB-19	0.5	1	11/14/2019	0.0125 M1 R1	0.0107 j M1 R1	0.021 M1 R1	0.0065 j M1 R1	0.0032 j M1 R1	0.009 j M1 R1	0.0402 j
SA-SB-20	0.5	1	11/13/2019	0.035	0.0333	0.0639	0.0181	0.01 j	0.0298	<0.0057
SA-SB-21	0.5	1	11/13/2019	0.372	0.331	0.429	0.187	0.0503	0.198	< 0.0042
SA-SB-22	0.5	1	11/13/2019	0.0576	0.0635	0.112	0.038	0.0198	0.0637	< 0.0054
SA-SB-23	0.5	1	11/12/2019	0.0312	0.0435	0.0585	0.0225	0.0091 j	0.0325	0.0106 j
SA-SB-24	0.5	1	11/12/2019	<0.0125	< 0.0125	< 0.0125	< 0.0125	< 0.0125	<0.0125	< 0.004
SA-SB-25	0.5	1	11/14/2019	0.0762	0.0688	0.111	0.0358	0.0182	0.0558	<0.0046
SA-SB-26	0.5	1	11/14/2019	0.0155	0.032	0.0393	0.0135	0.0082 j	0.0236	0.0096 j B
SA-SB-27	0.5	1	11/13/2019	0.0098 S1	0.0091 S1	0.0143 S1	0.0061 S1	0.0023 S1	0.0067 S1	0.0096 S1
SA-SB-28	0.5	1	11/13/2019	0.116	0.102	0.155	0.0599	0.0217	0.0696	<0.0043 R0
SA-SB-29	0.5	1	11/13/2019	0.0997	0.083	0.151	0.0529	0.0219	0.0681	< 0.0044
SA-SB-30	0.5	1	11/13/2019	0.0364	0.0428	0.0567	0.0233	0.0087 j	0.0287	0.0032 j
SA-SB-31	0.5	1	11/12/2019	<0.0116	< 0.0116	<0.0116	<0.0116	<0.0116	<0.0116	<0.107
SA-SB-32	0.5	1	11/14/2019	0.00083 j	0.00072 j	0.0011 j	< 0.0113	<0.0113	<0.0113	< 0.0042
SA-SB-33	0.5	1	11/14/2019	0.0396 S1	0.0342 S1	0.054 S1	0.0177 S1	0.0077 S1	0.0236 S1	< 0.005
SA-SB-34	0.5	1	11/14/2019	0.053	0.0423	0.0841	0.0256	0.012	0.0359	< 0.0055
SA-SB-35	0.5	1	11/13/2019	0.114	0.0646	0.157	0.0491	0.0231	0.0621	<0.0051 R0
SA-SB-36	0.5	1	11/13/2019	0.0027 i	0.003 i	0.0043 i	0.0017 i	< 0.0115	0.0022 i	0.00093 i
SA-SB-37	0.5	1	11/13/2019	0.0099 i	0.0104 i	0.0141	0.0049 i	0.0021 i	0.0065 i	0.0012 i
SA-SB-38	0.5	1	11/12/2019	0.706	0.675	0.928	0,335	0.151	0.408	<0.0048
SA-SB-39	0.5	1	11/14/2019	0.0027 j	0.0018 j	0.0023 j	0.0012 j	< 0.0115	<0.0115	<0.0046

# TABLE 1 SUMMARY OF SOIL ANALYTICAL RESULTS 2019 FORMER BRAMLETTE MGP SITE DUKE ENERGY CAROLINAS, LLC, GREENVILLE, SC

		Analyt	tical Parameter	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Dibenz(a,h)anthracene	Indeno(1,2,3-cd)pyrene	Naphthalene			
			Reporting Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg			
		USEPA RSL	Industrial Soil	21	2.1	21	210	2.1	21	17			
USEPA RSL Residential Sc			Residential Soil	1.1	0.11	1.1	11	0.11	1.1	3.8			
Sample I D	Start Depth (feet bls)	End Depth (feet bls)	Sample Collection Date				Analytical Results						
SA-SB-40	0.5	1	11/14/2019	0.376	0.354	0.442	0.184	0.0638	0.182	<0.0063			
SA-SB-41	0.5	1	11/14/2019	0.0023 j	0.0023 j	0.0025 j	0.003 j	0.0038 j	0.0033 j	<0.0047			
SA-SB-42	0.5	1	11/14/2019	0.0557	0.0524	0.0736	0.0292	0.0104 j	0.0371	0.0017 j B			
SA-SB-43	0.5	1	11/13/2019	0.0012 j	0.0012 j	0.0018 j	0.00063 j	< 0.012	<0.012	<0.0045			
SA-SB-44	0.5	1	11/14/2019	<0.0127	<0.0127	<0.0127	<0.0127	<0.0127	<0.0127	<0.0047			
SA-SB-45	0.5	1	11/14/2019	0.0211	0.0243	0.0288	0.014	0.0044 j	0.0141	0.0092 j			
SA-SB-46	0.5	1	11/14/2019	6.47 S1	5.89 S1	7.7 S1	2.94 S1	1.08 S1	2.72 S1	0.0749 S1			
SA-SB-47	0.5	1	11/14/2019	0.041	0.0442	0.0559	0.0202	0.0083 j	0.0278	<0.0089			
SA-SB-01	5.5	6	11/15/2019	<0.0123	<0.0123	<0.0123	<0.0123	< 0.0123	<0.0123	<0.0063			
SA-SB-02	5.5	6	11/12/2019	0.0085 j	0.0066 j	0.0182	0.0099 j	0.0015 j	0.0047 j	<0.0068			
SA-SB-03	5.5	6	11/15/2019	0.0215	0.0146	0.0279	0.0113 j	0.004 j	0.0114 j	<0.006			
SA-SB-04	5.5	6	11/13/2019	NA	NA	NA	NA	NA	NA	< 0.0044			
SA-SB-05	5.5	6	11/12/2019	0.0542	0.043	0.0771	0.0323	0.0124	0.0377	<0.0045			
SA-SB-06	5.5	6	11/12/2019	0.0459	0.0289	0.0567	0.02	0.0077 j	0.0221	<0.0049			
SA-SB-07	5.5	6	11/13/2019	0.589	0.469	0.893	0.282	0.121	0.349	<0.0045			
SA-SB-08	5.5	6	11/13/2019	0.418	0.311	0.538	0.191	0.0703	0.2	<0.0048			
SA-SB-09	5.5	6	11/13/2019	<0.0118	<0.0118	<0.0118	<0.0118	<0.0118	<0.0118	0.829			
SA-SB-10	5.5	6	11/12/2019	0.0754	0.072	0.133	0.0471	0.0212	0.0572	<0.004			
SA-SB-11	5.5	6	11/12/2019	0.0146	0.0109 j	0.0187	0.008 j	0.0027 j	0.0077 j	<0.0044			
SA-SB-12	5.5	6	11/14/2019	0.0312	0.0226	0.0424	0.0146	0.0054 j	0.0151	0.0661 j			
SA-SB-13	5.5	6	11/13/2019	0.368	0.309	0.451	0.188	0.0691	0.184	< 0.0047			
SA-SB-14	5.5	6	11/13/2019	0.214	0.193	0.154	0.0754	0.0263 j	0.0711	27.3 M1			
SA-SB-15	5.5	6	11/12/2019	0.185	0.144	0.189	0.064	0.0246	0.0743	< 0.0047			
SA-SB-16	5.5	6	11/12/2019	0.0177	0.0184	0.0243	0.0103 j	0.0038 j	0.0117 j	<0.0038			
SA-SB-17	5.5	6	11/12/2019	0.0038 j	0.0043 j	0.008 j	0.0075 j	< 0.0112	0.0027 j	0.0032 j			
SA-SB-18	5.5	6	11/14/2019	0.268	0.227	0.322	0.13	0.0494	0.154	< 0.0048			
SA-SB-19	5.5	6	11/14/2019	0.142 S1	0.125 S1	0.185 S1	0.0775 S1	0.0286 S1	0.087 S1	<0.0049			
SA-SB-20	5.5	6	11/13/2019	0.0038 j	0.0039 j	0.0051 j	0.0022 j	<0.0115	0.0021 j	0.0019 j			
SA-SB-21	5.5	6	11/13/2019	0.0402	0.034	0.0498	0.0218	0.0071 j	0.0226	<0.0033			
SA-SB-22	5.5	6	11/13/2019	0.0943	0.0864	0.0969	0.0341	0.0128	0.047	0.0062 j			
SA-SB-23	5.5	6	11/12/2019	<0.0118	<0.0118	<0.0118	<0.0118	<0.0118	<0.0118	<0.0052			
SA-SB-24	5.5	6	11/12/2019	<0.0122	<0.0122	< 0.0122	< 0.0122	< 0.0122	< 0.0122	<0.0044			
SA-SB-25	5.5	6	11/14/2019	0.136	0.13	0.184	0.0583	0.0311	0.0973	0.0023 j B			
SA-SB-26	5.5	6	11/14/2019	0.153	0.118	0.199	0.0694	0.0263	0.0791	< 0.0043			
SA-SB-27	5.5	6	11/13/2019	0.109 M1	0.104 M1	0.143 M1	0.0737	0.0212 S1	0.0653 S1	<0.0045 M1			
SA-SB-28	5.5	6	11/13/2019	0.0512	0.0421	0.058	0.024	0.0078 j	0.0237	0.0047 j			
SA-SB-29	5.5	6	11/13/2019	0.0689	0.0809	0.1	0.0456	0.0153	0.0495	0.0073 j			
SA-SB-30	5.5	6	11/13/2019	0.004 j	0.0042 j	0.0051 j	0.0022 j	< 0.0125	0.0024 j	0.0013 j B			
SA-SB-31	5.5	6	11/12/2019	<0.0126	<0.0126	<0.0126	<0.0126	<0.0126	< 0.0126	<0.0048			

## TABLE 1 SUMMARY OF SOIL ANALYTICAL RESULTS 2019 FORMER BRAMLETTE MGP SITE DUKE ENERGY CAROLINAS, LLC, GREENVILLE, SC

		Analyt	tical Parameter	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Dibenz(a,h)anthracene	Indeno(1,2,3-cd)pyrene	Naphthalene			
			Reporting Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg			
		USEPA RSL	Industrial Soil	21	2.1	21	210	2.1	21	17			
USEPA RSL Residential Soi				1.1	0.11	1.1	11	0.11	1.1	3.8			
Sample I D	Start Depth (feet bls)	End Depth (feet bls)	Sample Collection Date		Analytical Results								
SA-SB-32	5.5	6	11/14/2019	0.0376	0.0361	0.0467	0.017	0.0066 j	0.0196	0.0051 j B			
SA-SB-33	5.5	6	11/14/2019	0.143 M1	0.108 M1	0.192 M1	0.0615	0.0271	0.0845	0.116 M1			
SA-SB-34	5.5	6	11/14/2019	0.157	0.127	0.212	0.0779	0.0297	0.0828	<0.0045			
SA-SB-35	5.5	6	11/13/2019	0.0015 j	0.0014 j	0.0023 j	0.00073 j	< 0.0122	<0.0122	<0.004			
SA-SB-36	5.5	6	11/13/2019	0.0031 j	0.0028 j	0.0023 j	0.0043 j	0.0053 j	0.0033 j	< 0.0045			
SA-SB-37	5.5	6	11/13/2019	< 0.0124	< 0.0124	< 0.0124	<0.0124	< 0.0124	< 0.0124	<0.0049 R0			
SA-SB-38	5.5	6	11/12/2019	0.0011 j	0.0011 j	0.0011 j	0.0014 j	0.002 j	0.0017 j	<0.0053			
SA-SB-39	5.5	6	11/14/2019	<0.0121	<0.0121	<0.0121	<0.0121	<0.0121	<0.0121	0.0058 j B			
SA-SB-40	5.5	6	11/14/2019	0.0068 j	0.0068 j	0.0077 j	0.003 j	<0.0113	0.004 j	0.0034 j B			
SA-SB-41	5.5	6	11/14/2019	0.0068 j	0.0052 j	0.0087 j	0.0032 j	<0.0116	0.0038 j	0.0082 j B			
SA-SB-42	5.5	6	11/14/2019	<0.0112	<0.0112	<0.0112	<0.0112	< 0.0112	<0.0112	0.0061 j B			
SA-SB-43	5.5	6	11/13/2019	0.157	0.0586	0.0921	0.0331	0.0089 j	0.021	< 0.0047			
SA-SB-44	5.5	6	11/14/2019	0.0857	0.0826	0.102	0.0347	0.0126	0.0445	6.19			
SA-SB-45	5.5	6	11/14/2019	<0.0115	<0.0115	<0.0115	<0.0115	< 0.0115	< 0.0115	< 0.112			
SA-SB-46	5.5	6	11/14/2019	27.9 M1 R1	21.5 M1 R1	27.2 M1 R1	12.1 M1 R1	2.17 M1 R1	11 M1 R1	0.0057 j M1 R1			
SA-SB-47	5.5	6	11/14/2019	0.0023 j	0.0026 j	0.0046 j	0.0015 j	<0.0123	0.0025 j	0.0028 j			

Notes:

- Bold highlighted concentrations indicate that the compound was detected at a concentration greater than the USEPA Regional Screening Level Industrial limit.

- Bold highlighted concentrations indicate that the compound was detected at a concentration greater than the USEPA Regional Screening Level Residential limit.

< - Concentration not detected at or greater than the adjusted reporting limit

B - Target analyte detected in method blank at or above the reporting limit. Target analyte concentration in sample is less than 10X the concentration in the method blank. Analyte concentration in sample could be due to blank contamination bls - below land surface

j - Estimated concentration greater than the adjusted method detection limit and less than the adjusted reporting limit.

M1 - Matrix spike recovery was high: the associated Laboratory Control Spike (LCS) was acceptable.

mg/kg - milligrams per kilogram

NA - Not analyzed

R0 - The data are unusable. The sample results are rejected due to serious deficiencies in meeting quality control criteria. The analyte may or may not be present in the sample.

R1- Relative percent difference value was outside control limits.

RSL - Regional Screening Level

S1 - Data review findings indicate result may be biased; however, data is usable.

USEPA - United States Environmental Protection Agency

RSL - Regional Screening Level

Prepared by: KCS Checked by: JPC

#### TABLE 2 SUMMARY OF SOIL ANALYTICAL RESULTS FOR PROPOSED LIMITED SOIL REMOVAL DELINEATION FORMER BRAMLETTE MGP SITE DUKE ENERGY CAROLINAS, LLC, GREENVILLE, SC

		Analy	/tical Parameter	1-Methylnaphthalene	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	e Benzo(a)pyrene	Benzo(b)fluoranther	ne Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene
			Reporting Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		EPA RS	L Industrial Soil	73	3,000	45,000	NE	230,000	21	2.1	21	NE	210	2,100
		EPA RSL	Residential Soil	18	240	3,600	NE	18,000	1.1	0.11	1.1	NE	11	110
Sample I D	Start Depth	End Depth	Sample Collection Date						Analytical Resul	ts				
SA-SB-46	0.5	1	11/14/2019	1.02 S1	1.25 S1	1.28 S1	1.45 S1	3.25 S1	6.47 S1	5.89 S1	7.7 S1	3 S1	2.94 S1	6.23 S1
RI-SB-13	0.5	1	3/15/2021	< 0.381	< 0.381	< 0.381	< 0.381	< 0.381	< 0.381	< 0.012 a.	< 0.381	< 0.381	< 0.381	< 0.381
RI-SB-14	0.5	1	3/15/2021	< 0.368	< 0.368	< 0.368	< 0.368	< 0.368	< 0.368	0.11 a.	< 0.368	< 0.368	< 0.368	< 0.368
RI-SB-15	0.5	1	3/15/2021	0.458	0.52	0.214 j	0.169 j	0.376	0.801	4.5 a.	0.944	0.436	0.398	0.822
RI-SB-16	0.5	1	3/15/2021	< 0.389	< 0.389	< 0.389	< 0.389	< 0.389	< 0.389	< 0.011 a.	< 0.389	< 0.389	< 0.389	< 0.389
RI-SB-17	0.5	1	3/15/2021	< 0.414	< 0.414	< 0.414	< 0.414	< 0.414	< 0.414	< 0.012 a.	< 0.414	< 0.414	< 0.414	< 0.414
RI-SB-18	0.5	1	3/15/2021	< 0.411	< 0.411	< 0.411	< 0.411	< 0.411	< 0.411	< 0.012 a.	< 0.411	< 0.411	< 0.411	< 0.411
RI-SB-19	0.5	1	3/15/2021	< 0.429	< 0.429	< 0.429	< 0.429	< 0.429	< 0.429	0.21 a.	< 0.429	< 0.429	< 0.429	< 0.429
RI-SB-20	0.5	1	3/15/2021	< 0.383	< 0.383	< 0.383	< 0.383	< 0.383	< 0.383	< 0.011 a.	< 0.383	< 0.383	< 0.383	< 0.383
RI-SB-21	0.5	1	6/30/2021	NS	NS	NS	NS	NS	NS	< 0.012	NS	NS	NS	NS
RI-SB-22	0.5	1	6/30/2021	NS	NS	NS	NS	NS	NS	0.086	NS	NS	NS	NS
RI-SB-23	0.5	1	3/15/2021	< 0.385	< 0.385	< 0.385	< 0.385	< 0.385	< 0.385	0.59 a.	< 0.385	< 0.385 ,v1	< 0.385	< 0.385
RI-SB-24	0.5	1	3/15/2021	< 0.388	< 0.388	< 0.388	< 0.388	< 0.388	< 0.388	< 0.011 a.	< 0.388	< 0.388 ,v1	< 0.388	< 0.388
RI-SB-25	0.5	1	6/30/2021	NS	NS	NS	NS	NS	NS	0.044	NS	NS	NS	NS
RI-SB-26	0.5	1	6/30/2021	NS	NS	NS	NS	NS	NS	< 0.014	NS	NS	NS	NS
RI-SB-27	0.5	1	6/30/2021	NS	NS	NS	NS	NS	NS	0.05	NS	NS	NS	NS
RI-SB-28	0.5	1	6/30/2021	NS	NS	NS	NS	NS	NS	0.13	NS	NS	NS	NS
RI-SB-29	0.5	1	6/30/2021	NS	NS	NS	NS	NS	NS	0.042	NS	NS	NS	NS
RI-SB-30	0.5	1	6/30/2021	NS	NS	NS	NS	NS	NS	< 0.013	NS	NS	NS	NS
RI-SB-31	0.5	1	3/17/2021	< 0.382 ,H3,R0	< 0.382 ,H3,R0	< 0.382 ,H3,R0	< 0.382 ,H3,R0	< 0.382 ,H3,R0	< 0.382 ,H3,R0	0.21 a.	< 0.382 ,H3,R0	< 0.382 ,H3,R0	< 0.382 ,H3,R0	< 0.382 ,H3,R0
RI-SB-32	0.5	1	3/17/2021	< 0.391 ,H3,R0	< 0.391 ,H3,R0	< 0.391 ,H3,R0	< 0.391 ,H3,R0	< 0.391 ,H3,R0	< 0.391 ,H3,R0	0.025 a.	< 0.391 ,H3,R0	< 0.391 ,H3,R0	< 0.391 ,H3,R0	< 0.391 ,H3,R0
RI-SB-33	0.5	1	6/30/2021	NS	NS	NS	NS	NS	NS	0.05	NS	NS	NS	NS
RI-SB-34	0.5	1	6/30/2021	NS	NS	NS	NS	NS	NS	< 0.015	NS	NS	NS	NS
RI-SB-35	0.5	1	6/30/2021	NS	NS	NS	NS	NS	NS	< 0.013	NS	NS	NS	NS
RI-SB-36	0.5	1	6/30/2021	NS	NS	NS	NS	NS	NS	0.018	NS	NS	NS	NS
SA-SB-46	5.5	6	11/14/2019	1.17 M1 R1	1.45 M1 R1	1.15 M1	4.38 M1 R1	21.1 M1 R1	27.9 M1 R1	21.5 M1 R1	27.2 M1 R1	12.3 M1 R1	12.1 M1 R1	24 M1 R1
RI-SB-13	5.5	6	3/15/2021	< 0.557	< 0.557	< 0.557	< 0.557	< 0.557	0.291 j	0.254 j	0.33 j	< 0.557	< 0.557	0.271 j
RI-SB-14	5.5	6	3/15/2021	< 0.493	< 0.493	< 0.493	< 0.493	< 0.493	0.269 j	0.231 j	0.333 j	< 0.493	< 0.493	0.255 j
RI-SB-15	5.5	6	3/15/2021	< 0.517	< 0.517	0.269 j	0.185 j	0.716	1.64	1.44	2.02	0.975	0.791	1.53
RI-SB-16	5.5	6	3/15/2021	1.49	0.695	7.71 E	< 0.516	17.3	23.8	15.9	21.3	9.63	8.16	23
RI-SB-17	5.5	6	3/15/2021	< 0.423	< 0.423	< 0.423	< 0.423	< 0.423	< 0.423	< 0.423	< 0.423	< 0.423	< 0.423	< 0.423
RI-SB-18	5.5	6	3/15/2021	< 0.429	< 0.429	< 0.429	< 0.429	< 0.429	< 0.429	< 0.429	< 0.429	< 0.429	< 0.429	< 0.429
RI-SB-19	5.5	6	3/15/2021	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42
RI-SB-20	5.5	6	3/15/2021	< 0.408	< 0.408	< 0.408	< 0.408	< 0.408	< 0.408	< 0.408	< 0.408	< 0.408	< 0.408	< 0.408
RI-SB-23	5.5	6	3/15/2021	< 0.416	< 0.416	< 0.416	< 0.416	< 0.416	< 0.416	< 0.416	< 0.416	< 0.416 ,v1	< 0.416	< 0.416
RI-SB-24	5.5	6	3/15/2021	< 0.492	< 0.492	< 0.492	0.194 j	< 0.492	0.172 j	0.184 j	0.306 j	0.224 j,v1	< 0.492	0.199 j
RI-SB-31	5.5	6	3/17/2021	< 0.445 ,H3,R0	< 0.445 ,H3,R0	< 0.445 ,H3,R0	< 0.445 ,H3,R0	< 0.445 ,H3,R0	< 0.445 ,H3,R0	0.132 H3,R0	< 0.445 ,H3,R0	< 0.445 ,H3,R0	< 0.445 ,H3,R0	< 0.445 ,H3,R0
RI-SB-32	5.5	6	3/17/2021	0.304 j,H3,R0	0.319 j,H3,R0	0.219 j,H3,R0	< 0.402 ,H3,R0	< 0.402 ,H3,R0	0.525 H3,R0	0.0117 j,H3,R0	0.999 H3,R0	0.782 H3,R0	0.4 j,H3,R0	0.413 H3,R0

Notes: - Bold highlighted concentrations indicate that the compound was detected at a concentration greater than the USEPA Regional Screening Level Industrial limit.

- Bold highlighted concentrations indicate that the compound was detected at a concentration greater than the USEPA Regional Screening Level Residential limit.

a. - Analytical result from 6/30/2021 sampling event.

Concentration not detected at or greater than the adjusted reporting limit.

-- - No value or indicator

C8 - Result may be biased high due to carryover from previously analyzed sample.

E - Analyte concentration exceeded the calibration range. The reported result is estimated.

H3 - Sample was received or analysis requested beyond the recognized method holding time.

j - Estimated concentration greater than the adjusted method detection limit and less than the adjusted reporting limit.

M1 - Matrix spike recovery was high: the associated Laboratory Control Spike (LCS) was acceptable.

mg/kg - milligrams per kilogram

NE - No screening level established at this time. A site-specific risk-based screening level may be established as part of the risk assessment process outlined in Section 5.0 of the RIWP-A.

NS - not sampled

R0 - The data are unusable. The sample results are rejected due to serious deficiencies in meeting quality control criteria. The analyte may or may not be present in the sample.

R1 - Relative percent difference (RPD) value was outside control limits.

RS - The RPD value in one of the constituent analytes was outside the control limits.

RSL - Regional Screening Level

S1 - Data review findings indicate result may be biased; however, data is usable.

USEPA - United States Environmental Protection Agency

v1 - The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.

#### TABLE 2 SUMMARY OF SOIL ANALYTICAL RESULTS FOR PROPOSED LIMITED SOIL REMOVAL DELINEATION FORMER BRAMLETTE MGP SITE DUKE ENERGY CAROLINAS, LLC, GREENVILLE, SC

		Analytical Parameter	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene	Ethylbenzene	m,p-Xylenes	Toluene	Xylene (Total)	Xylene, o-	Benzene
		Reporting Uni	t mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		EPA RSL Industrial Soi	2.1	30,000	30,000	21	17	NE	23,000	25	2,400	47,000	2,500	2,800	5.1
		EPA RSL Residential Soi	0.11	2,400	2,400	1.1	3.8	NE	1,800	5.8	560	4,900	580	650	1.2
Sample I D	Start Depth	End Depth Sample Collection Date						Analytica	al Results						
SA-SB-46	0.5	1 11/14/2019	1.08 S1	- 11 S1	1.86	2.72 S1	0.0749 S1	9.41 S1	9.67 S1	< 0.0062	NA	< 0.0062	< 0.0123	< 0.0062	< 0.0062
RI-SB-13	0.5	1 3/15/2021	< 0.012 a.	< 0.381	< 0.381	< 0.381	< 0.0063	< 0.381	< 0.381	< 0.0063	< 0.0125	< 0.0063	< 0.0125	< 0.0063	< 0.0063
RI-SB-14	0.5	1 3/15/2021	0.027 a.	< 0.368	< 0.368	< 0.368	0.0297	< 0.368	< 0.368	< 0.0070	0.0205	0.0128	0.0325	0.012	< 0.0070
RI-SB-15	0.5	1 3/15/2021	0.64 a.	1.37	0.289 j	0.37 ј	0.372	1.47	1.4	0.0234	0.0498	0.0646	0.0704	0.0206	0.0418
RI-SB-16	0.5	1 3/15/2021	< 0.011 a.	< 0.389	< 0.389	< 0.389	0.0078	< 0.389	< 0.389	< 0.0062	0.0105 j	0.0097	0.0105 j	< 0.0062	< 0.0062
RI-SB-17	0.5	1 3/15/2021	< 0.012 a.	< 0.414	< 0.414	< 0.414	0.0080 j,C8	< 0.414	< 0.414	< 0.0087	0.0114 j	0.0127	0.0114 j	< 0.0087	< 0.0087
RI-SB-18	0.5	1 3/15/2021	< 0.012 a.	< 0.411	< 0.411	< 0.411	< 0.0074	< 0.411	< 0.411	< 0.0074	< 0.0148	< 0.0074	< 0.0148	< 0.0074	< 0.0074
RI-SB-19	0.5	1 3/15/2021	0.032 a.	< 0.429	< 0.429	< 0.429	0.0064 j	< 0.429	< 0.429	< 0.0073	< 0.0146	0.0057 j	< 0.0146	< 0.0073	< 0.0073
RI-SB-20	0.5	1 3/15/2021	< 0.011 a.	< 0.383	< 0.383	< 0.383	< 0.0066	< 0.383	< 0.383	< 0.0066	< 0.0131	0.0141	< 0.0131	< 0.0066	< 0.0066
RI-SB-21	0.5	1 6/30/2021	< 0.012	- NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
RI-SB-22	0.5	1 6/30/2021	0.015	- NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
RI-SB-23	0.5	1 3/15/2021	0.08 a.	< 0.385	< 0.385	< 0.385	< 0.0071	< 0.385	< 0.385	< 0.0071	< 0.0141	< 0.0071	< 0.0141	< 0.0071	< 0.0071
RI-SB-24	0.5	1 3/15/2021	< 0.011 a.	< 0.388	< 0.388	< 0.388	0.0077	< 0.388	< 0.388	< 0.0071	< 0.0141	0.0046 j	< 0.0141	< 0.0071	< 0.0071
RI-SB-25	0.5	1 6/30/2021	< 0.015	- NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
RI-SB-26	0.5	1 6/30/2021	< 0.014	- NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
RI-SB-27	0.5	1 6/30/2021	< 0.012	- NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
RI-SB-28	0.5	1 6/30/2021	0.026	- NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
RI-SB-29	0.5	1 6/30/2021	< 0.012	- NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
RI-SB-30	0.5	1 6/30/2021	< 0.013	- NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
RI-SB-31	0.5	1 3/17/2021	0.034 a.	< 0.382 ,H3,R0	< 0.382 ,H3,R0	< 0.382 ,H3,R0	0.0149 H3,R0	0.177 j,H3,R0	< 0.382 ,H3,R0	< 0.0057 ,H3,R0	< 0.0114 ,H3,R0	0.0086 H3,R0	< 0.0114	< 0.0057 ,H3,R0	< 0.0057 ,H3,R0
RI-SB-32	0.5	1 3/17/2021	< 0.012 a.	< 0.391 ,H3,R0	< 0.391 ,H3,R0	< 0.391 ,H3,R0	0.0083 H3,R0	< 0.391 ,H3,R0	< 0.391 ,H3,R0	< 0.0058,H3,R0	0.0068 j,H3,R0	0.0046 j,H3,R0	0.0101 j	0.0033 j,H3,R0	< 0.0058 ,H3,R0
RI-SB-33	0.5	1 6/30/2021	< 0.012	- NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
RI-SB-34	0.5	1 6/30/2021	< 0.015	- NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
RI-SB-35	0.5	1 6/30/2021	< 0.013	- NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
RI-SB-36	0.5	1 6/30/2021	< 0.011	- NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
SA-SB-46	5.5	6 11/14/2019	2.17 M1 R1	- 63.3 M1 R1	8.84 M1	11 M1 R1	0.0057 j M1 R1	77.7 M1 R1	50.3 M1 R1	< 0.0061 R1	NA	< 0.0061 R1	< 0.0122 RS	< 0.0061 R1	< 0.0061 R1
RI-SB-13	5.5	6 3/15/2021	< 0.557	0.574	< 0.557	< 0.557	0.315	0.219 j	0.556 j	0.0406	0.0906	0.0325	0.153	0.0623	< 0.0193
RI-SB-14	5.5	6 3/15/2021	< 0.493	0.598	< 0.493	< 0.493	0.203	0.406 j	0.505	0.0328	0.0437	0.02	0.0741	0.0304	< 0.0128
RI-SB-15	5.5	6 3/15/2021	< 0.517	- 3.92	0.329 j	0.8	0.06	2.73	3.54	< 0.01	0.0157 j	0.0051 j	0.0157 j	< 0.01	< 0.01
RI-SB-16	5.5	6 3/15/2021	2.92	- 58.5	10.2 E	9.2	1.41	55.4	48.1	0.0108	0.0695	0.0172	0.131	0.0611	< 0.0107
RI-SB-17	5.5	6 3/15/2021	< 0.423	< 0.423	< 0.423	< 0.423	< 0.0064	< 0.423	< 0.423	< 0.0064	< 0.0129	0.0050 j	< 0.0129	< 0.0064	< 0.0064
RI-SB-18	5.5	6 3/15/2021	< 0.429	< 0.429	< 0.429	< 0.429	< 0.0091	< 0.429	< 0.429	< 0.0091	< 0.0183	< 0.0091	< 0.0183	< 0.0091	< 0.0091
RI-SB-19	5.5	6 3/15/2021	< 0.42	< 0.42	< 0.42	< 0.42	< 0.0169	< 0.42	< 0.42	0.0092 j	0.0659	< 0.0169	0.0899	0.024	< 0.0169
RI-SB-20	5.5	6 3/15/2021	< 0.408	< 0.408	< 0.408	< 0.408	< 0.0063	< 0.408	< 0.408	< 0.0063	< 0.0126	0.0050 j	< 0.0126	< 0.0063	< 0.0063
RI-SB-23	5.5	6 3/15/2021	< 0.416	< 0.416	< 0.416	< 0.416	0.021	< 0.416	< 0.416	0.0054 j	< 0.0176	0.0081 j	< 0.0176	< 0.0088	< 0.0088
RI-SB-24	5.5	6 3/15/2021	< 0.492	0.267 j	< 0.492	0.209 j	1.32	< 0.492	0.261 j	0.019	0.0942	0.0241	0.174	0.0801	0.0057 j
RI-SB-31	5.5	6 3/17/2021	< 0.445 ,H3,R0	< 0.445 ,H3,R0	< 0.445 ,H3,R0	< 0.445 ,H3,R0	0.959 H3,R0	< 0.445 ,H3,R0	< 0.445 ,H3,R0	0.103 H3,R0	0.396 H3,R0	0.214 H3,R0	0.632	0.237 H3,R0	0.0311 H3,R0
RI-SB-32	5.5	6 3/17/2021	< 0.402 ,H3,R0	0.225 j,H3,R0	0.169 j,H3,R0	0.717 H3,R0	0.0183 H3,R0	0.398 j,H3,R0	0.294 j,H3,R0	0.0057 j,H3,R0	0.0109 j,H3,R0	0.0051 j,H3,R0	0.0224	0.0115 H3,R0	< 0.0058 ,H3,R0

Notes: - Bold highlighted concentrations indicate that the compound was detected at a concentration greater than the USEPA Regional Screening Level Industrial limit.

- Bold highlighted concentrations indicate that the compound was detected at a concentration greater than the USEPA Regional Screening Level Residential limit.

a. - Analytical result from 6/30/2021 sampling event.

Concentration not detected at or greater than the adjusted reporting limit.

-- - No value or indicator

C8 - Result may be biased high due to carryover from previously analyzed sample.

E - Analyte concentration exceeded the calibration range. The reported result is estimated.

H3 - Sample was received or analysis requested beyond the recognized method holding time.

j - Estimated concentration greater than the adjusted method detection limit and less than the adjusted reporting limit.

M1 - Matrix spike recovery was high: the associated Laboratory Control Spike (LCS) was acceptable.

mg/kg - milligrams per kilogram

NE - No screening level established at this time. A site-specific risk-based screening level may be established as part of the risk assessment process outlined in Section 5.0 of the RIWP-A.

NS - not sampled

R0 - The data are unusable. The sample results are rejected due to serious deficiencies in meeting quality control criteria. The analyte may or may not be present in the sample.

R1 - Relative percent difference (RPD) value was outside control limits.

RS - The RPD value in one of the constituent analytes was outside the control limits.

RSL - Regional Screening Level

S1 - Data review findings indicate result may be biased; however, data is usable.

USEPA - United States Environmental Protection Agency

v1 - The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.

#### TABLE 2 SUMMARY OF SOIL ANALYTICAL RESULTS FOR PROPOSED LIMITED SOIL REMOVAL DELINEATION FORMER BRAMLETTE MGP SITE DUKE ENERGY CAROLINAS, LLC, GREENVILLE, SC

		Analy	ytical Parameter	p-Isopropyltoluene	e Styrene	1,2,4-Trimethylbenzene	1,4-Dichlorobenzene	2-Butanone (MEK)	Acetone	Chlorobenzene	Dibenzofuran	Isopropylbenzene (Cumene)	n-Propylbenzene	1,3,5-Trimethylbenzene
			Reporting Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		EPA RS	L Industrial Soil	NE	35,000	1,800	11	190,000	670,000	1,300	1,000	9,900	24,000	1500
		EPA RSL	Residential Soil	NE	6,000	300	2.6	27,000	61,000	280	73	1,900	3,800	270
Sample I D	Start Depth	End Depth	Sample Collection Date						Analytical Resul	ts				
SA-SB-46	0.5	1	11/14/2019	< 0.0062	< 0.0062	< 0.0062	< 0.0062	< 0.123	< 0.123	< 0.0062	< 3.83	< 0.0062	< 0.0062	< 0.0062
RI-SB-13	0.5	1	3/15/2021	< 0.0063	< 0.0063	< 0.0063	< 0.0063	< 0.125	< 0.125	< 0.0063	< 0.381	< 0.0063	< 0.0063	< 0.0063
RI-SB-14	0.5	1	3/15/2021	< 0.0070	< 0.0070	0.011	< 0.0070	< 0.139	< 0.139	< 0.0070	< 0.368	< 0.0070	< 0.0070	< 0.0070
RI-SB-15	0.5	1	3/15/2021	0.0096	0.0038 j	0.0192	< 0.0063	< 0.125	< 0.125	0.007	0.26 j	0.0057 j	< 0.0063	0.0068
RI-SB-16	0.5	1	3/15/2021	< 0.0062	< 0.0062	0.0034 j	< 0.0062	< 0.124	< 0.124	< 0.0062	< 0.389	< 0.0062	< 0.0062	< 0.0062
RI-SB-17	0.5	1	3/15/2021	< 0.0087	< 0.0087	< 0.0087	< 0.0087	< 0.174	< 0.174	< 0.0087	< 0.414	< 0.0087	< 0.0087	< 0.0087
RI-SB-18	0.5	1	3/15/2021	< 0.0074	< 0.0074	< 0.0074	< 0.0074	< 0.148	< 0.148	< 0.0074	< 0.411	< 0.0074	< 0.0074	< 0.0074
RI-SB-19	0.5	1	3/15/2021	< 0.0073	< 0.0073	< 0.0073	< 0.0073	0.0476 j	0.0973 j	< 0.0073	< 0.429	< 0.0073	< 0.0073	< 0.0073
RI-SB-20	0.5	1	3/15/2021	< 0.0066	< 0.0066	< 0.0066	< 0.0066	< 0.131	< 0.131	< 0.0066	< 0.383	< 0.0066	< 0.0066	< 0.0066
RI-SB-21	0.5	1	6/30/2021	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
RI-SB-22	0.5	1	6/30/2021	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
RI-SB-23	0.5	1	3/15/2021	< 0.0071	< 0.0071	< 0.0071	< 0.0071	< 0.141	< 0.141	< 0.0071	< 0.385	< 0.0071	< 0.0071	< 0.0071
RI-SB-24	0.5	1	3/15/2021	< 0.0071	< 0.0071	< 0.0071	< 0.0071	< 0.141	< 0.141	< 0.0071	< 0.388	< 0.0071	< 0.0071	< 0.0071
RI-SB-25	0.5	1	6/30/2021	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
RI-SB-26	0.5	1	6/30/2021	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
RI-SB-27	0.5	1	6/30/2021	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
RI-SB-28	0.5	1	6/30/2021	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
RI-SB-29	0.5	1	6/30/2021	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
RI-SB-30	0.5	1	6/30/2021	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
RI-SB-31	0.5	1	3/17/2021	0.0071 H3,R0	0.192 H3,R0	< 0.0057 ,H3,R0	< 0.0057 ,H3,R0	< 0.114 ,H3,R0	0.0612 j,H3,R0	< 0.0057 ,H3,R0	< 0.382 ,H3,R0	< 0.0057 ,H3,R0	< 0.0057 ,H3,R0	< 0.0057 ,H3,R0
RI-SB-32	0.5	1	3/17/2021	0.0252 H3,R0	< 0.0058 ,H3,R0	0.0118 H3,R0	< 0.0058 ,H3,R0	< 0.116 ,H3,R0	< 0.116 ,H3,R0	< 0.0058, H3, R0	< 0.391 ,H3,R0	< 0.0058 ,H3,R0	< 0.0058 ,H3,R0	< 0.0058 ,H3,R0
RI-SB-33	0.5	1	6/30/2021	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
RI-SB-34	0.5	1	6/30/2021	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
RI-SB-35	0.5	1	6/30/2021	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
RI-SB-36	0.5	1	6/30/2021	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
SA-SB-46	5.5	6	11/14/2019	0.0023 j M1 R1	< 0.0061 M1 R1	< 0.0061 R1	< 0.0061	< 0.122	0.0768 j M1	< 0.0061 R1	< 2.25	< 0.0061 R1	< 0.0061 R1	< 0.0061 R1
RI-SB-13	5.5	6	3/15/2021	0.0541	< 0.0193	0.0667	< 0.0193	0.0975 j	0.139 j	0.0119 j	< 0.557	0.0952	< 0.0193	0.0249
RI-SB-14	5.5	6	3/15/2021	0.0704	< 0.0128	0.0334	0.0065 j	0.0810 j	0.164 j	0.0208	< 0.493	0.0978	< 0.0128	< 0.0128
RI-SB-15	5.5	6	3/15/2021	0.0343	< 0.01	0.013	< 0.01	< 0.199	< 0.199	0.0068 j	< 0.517	0.0206	< 0.01	< 0.01
RI-SB-16	5.5	6	3/15/2021	0.0569	0.0058 j	0.107	0.0122	0.0746 j	0.0835 j	0.0402	4.16	0.173	< 0.0107	0.043
RI-SB-17	5.5	6	3/15/2021	< 0.0064	< 0.0064	< 0.0064	< 0.0064	< 0.129	< 0.129	< 0.0064	< 0.423	< 0.0064	< 0.0064	< 0.0064
RI-SB-18	5.5	6	3/15/2021	< 0.0091	< 0.0091	< 0.0091	< 0.0091	< 0.183	< 0.183	< 0.0091	< 0.429	< 0.0091	< 0.0091	< 0.0091
RI-SB-19	5.5	6	3/15/2021	< 0.0169	< 0.0169	< 0.0169	< 0.0169	< 0.337	< 0.337	< 0.0169	< 0.42	< 0.0169	< 0.0169	< 0.0169
RI-SB-20	5.5	6	3/15/2021	< 0.0063	< 0.0063	< 0.0063	< 0.0063	< 0.126	< 0.126	< 0.0063	< 0.408	< 0.0063	< 0.0063	< 0.0063
RI-SB-23	5.5	6	3/15/2021	< 0.0088	< 0.0088	< 0.0088	< 0.0088	< 0.176	< 0.176	< 0.0088	< 0.416	< 0.0088	< 0.0088	< 0.0088
RI-SB-24	5.5	6	3/15/2021	< 0.0111	< 0.0111	0.0693	< 0.0111	0.117 j	0.273	0.0172	< 0.492	0.254	0.0161	0.0299
RI-SB-31	5.5	6	3/17/2021	0.0981 H3,R0	< 0.0094 ,H3,R0	0.207 H3,R0	0.0060 j,H3,R0	0.0640 j,H3,R0	0.185 j,H3,R0	0.0300 H3,R0	< 0.445 ,H3,R0	0.193 H3,R0	0.0315 H3,R0	0.0827 H3,R0
RI-SB-32	5.5	6	3/17/2021	0.0321 H3,R0	< 0.0058 ,H3,R0	0.0224 H3,R0	< 0.0058 ,H3,R0	< 0.116 ,H3,R0	0.0625 j,H3,R0	< 0.0058 ,H3,R0	< 0.402 ,H3,R0	< 0.0058 ,H3,R0	0.178 H3,R0	< 0.0058 ,H3,R0
													Prep	ared by: KCS Checked by: JPC

Notes: - Bold highlighted concentrations indicate that the compound was detected at a concentration greater than the USEPA Regional Screening Level Industrial limit.

- Bold highlighted concentrations indicate that the compound was detected at a concentration greater than the USEPA Regional Screening Level Residential limit.

a. - Analytical result from 6/30/2021 sampling event.

< - Concentration not detected at or greater than the adjusted reporting limit.

-- - No value or indicator

C8 - Result may be biased high due to carryover from previously analyzed sample.

E - Analyte concentration exceeded the calibration range. The reported result is estimated.

H3 - Sample was received or analysis requested beyond the recognized method holding time.

j - Estimated concentration greater than the adjusted method detection limit and less than the adjusted reporting limit.

M1 - Matrix spike recovery was high: the associated Laboratory Control Spike (LCS) was acceptable.

mg/kg - milligrams per kilogram

NE - No screening level established at this time. A site-specific risk-based screening level may be established as part of the risk assessment process outlined in Section 5.0 of the RIWP-A.

NS - not sampled

R0 - The data are unusable. The sample results are rejected due to serious deficiencies in meeting quality control criteria. The analyte may or may not be present in the sample.

R1 - Relative percent difference (RPD) value was outside control limits.

RS - The RPD value in one of the constituent analytes was outside the control limits.

RSL - Regional Screening Level

S1 - Data review findings indicate result may be biased; however, data is usable.

USEPA - United States Environmental Protection Agency

v1 - The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.

Page 3 of 3

Bramlette Former MGP Greenville, SC

# Attachment 1

# SURFACE SOIL 2019 PROUCL OUTPUT

#### UCL Statistics for Data Sets with Non-Detects

User Selected Options	
Date/Time of Computation	ProUCL 5.15/27/2020 10:56:33 AM
From File	Soil_Data_risk_assessment_d.xls
Full Precision	OFF
Confidence Coefficient	95%
Number of Bootstrap Operations	2000

#### 1,2,4-Trichlorobenzene

General	Statistics
---------	------------

Total Number of Observations	44	Number of Distinct Observations	29
		Number of Missing Observations	3
Number of Detects	1	Number of Non-Detects	43
Number of Distinct Detects	1	Number of Distinct Non-Detects	28

Warning: Only one distinct data value was detected! ProUCL (or any other software) should not be used on such a data set! It is suggested to use alternative site specific values determined by the Project Team to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable 1,2,4-Trichlorobenzene was not processed!

1,2,4-Trimethylbenzene

#### **General Statistics**

Total Number of Observations	44	Number of Distinct Observations	28
		Number of Missing Observations	3
Number of Detects	0	Number of Non-Detects	44
Number of Distinct Detects	0	Number of Distinct Non-Detects	28

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable 1,2,4-Trimethylbenzene was not processed!

#### 1,3,5-Trimethylbenzene

#### **General Statistics**

Total Number of Observations	44	Number of Distinct Observations	28
		Number of Missing Observations	3
Number of Detects	0	Number of Non-Detects	44
Number of Distinct Detects	0	Number of Distinct Non-Detects	28

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable 1,3,5-Trimethylbenzene was not processed!

#### 1-Methylnaphthalene

#### **General Statistics**

Total Number of Observations	47	Number of Distinct Observations	42
Number of Detects	38	Number of Non-Detects	9
Number of Distinct Detects	35	Number of Distinct Non-Detects	8
Minimum Detect	1.1	Minimum Non-Detect	11
Maximum Detect	1020	Maximum Non-Detect	12.7
Variance Detects	26584	Percent Non-Detects	19.15%

Mean Detects	51.97	SD Detects	163
Median Detects	20	CV Detects	3.138
Skewness Detects	5.96	Kurtosis Detects	36.25
Mean of Logged Detects	2.783	SD of Logged Detects	1.434

#### Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.274	Shapiro Wilk GOF Test		
5% Shapiro Wilk Critical Value	0.938	Detected Data Not Normal at 5% Significance Level		
Lilliefors Test Statistic	0.4	Lilliefors GOF Test		
5% Lilliefors Critical Value	0.142	Detected Data Not Normal at 5% Significance Level		
Detected Data Not Normal at 5% Significance Level				

## Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	42.8
KM SD	145.9
95% KM (t) UCL	79
95% KM (z) UCL	78.27
90% KM Chebyshev UCL	107.5
97.5% KM Chebyshev UCL	177.5

#### Gamma GOF Tests on Detected Observations Only

2.069
0.809
0.191
0.151

#### Detected Data Not Gamma Distributed at 5% Significance Level

## Gamma Statistics on Detected Data Only

k hat (MLE)	0.538
Theta hat (MLE)	96.61
nu hat (MLE)	40.88

KM Standard Error of Mean	21.57
95% KM (BCA) UCL	86.12
95% KM (Percentile Bootstrap) UCL	83.94
95% KM Bootstrap t UCL	231.1
95% KM Chebyshev UCL	136.8
99% KM Chebyshev UCL	257.4

## Anderson-Darling GOF Test

Detected Data Not Gamma Distributed at 5% Significance Level
Kolmogorov-Smirnov GOF
Detected Data Not Gamma Distributed at 5% Significance Level

k star (bias corrected MLE)	0.513
Theta star (bias corrected MLE)	101.3
nu star (bias corrected)	38.99

Mean (detects)

#### 51.97

#### Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

#### For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	42.02
Maximum	1020	Median	13.2
SD	147.7	CV	3.515
k hat (MLE)	0.292	k star (bias corrected MLE)	0.288
Theta hat (MLE)	143.8	Theta star (bias corrected MLE)	146
nu hat (MLE)	27.47	nu star (bias corrected)	27.05
Adjusted Level of Significance (β)	0.0449		
Approximate Chi Square Value (27.05, $\alpha$ )	16.19	Adjusted Chi Square Value (27.05, $\beta$ )	15.92
95% Gamma Approximate UCL (use when n>=50)	70.2	95% Gamma Adjusted UCL (use when n<50)	71.38
Estimates of Gamma Parameters using KM Estimates			
Mean (KM)	42.8	SD (KM)	145.9
Variance (KM)	21284	SE of Mean (KM)	21.57
k hat (KM)	0.0861	k star (KM)	0.0948
nu hat (KM)	8.09	nu star (KM)	8.907
theta hat (KM)	497.3	theta star (KM)	451.7
80% gamma percentile (KM)	27.39	90% gamma percentile (KM)	111.3
95% gamma percentile (KM)	249	99% gamma percentile (KM)	698.3
Gamma Kaplan-Meier (KM) Statistics			
Approximate Chi Square Value (8.91, α)	3.271	Adjusted Chi Square Value (8.91, $\beta$ )	3.163
95% Gamma Approximate KM-UCL (use when n>=50)	116.5	95% Gamma Adjusted KM-UCL (use when n<50)	120.5

95% Gamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50)

#### Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.952
5% Shapiro Wilk Critical Value	0.938
Lilliefors Test Statistic	0.112
5% Lilliefors Critical Value	0.142
Detected Data appear Lognormal at 5% Significance Level	

Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Level Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Level

#### Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	42.72	Mean in Log Scale	2.495
SD in Original Scale	147.5	SD in Log Scale	1.421
95% t UCL (assumes normality of ROS data)	78.83	95% Percentile Bootstrap UCL	83.78
95% BCA Bootstrap UCL	125.3	95% Bootstrap t UCL	227.7
95% H-UCL (Log ROS)	60.05		

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	2.466	KM Geo Mean	11.77
KM SD (logged)	1.47	95% Critical H Value (KM-Log)	2.884
KM Standard Error of Mean (logged)	0.227	95% H-UCL (KM -Log)	64.83
KM SD (logged)	1.47	95% Critical H Value (KM-Log)	2.884
KM Standard Error of Mean (logged)	0.227		

#### **DL/2 Statistics**

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	43.14	Mean in Log Scale	2.589
SD in Original Scale	147.4	SD in Log Scale	1.348
95% t UCL (Assumes normality)	79.23	95% H-Stat UCL	56.81

DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

#### Suggested UCL to Use KM H-UCL

64.83

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

#### 2-Butanone (MEK)

#### **General Statistics**

Total Number of Observations	44	Number of Distinct Observations	40
		Number of Missing Observations	3
Number of Detects	1	Number of Non-Detects	43
Number of Distinct Detects	1	Number of Distinct Non-Detects	39

Warning: Only one distinct data value was detected! ProUCL (or any other software) should not be used on such a data set! It is suggested to use alternative site specific values determined by the Project Team to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable 2-Butanone (MEK) was not processed!

2-Hexanone

#### **General Statistics**

Total Number of Observations	44	Number of Distinct Observations	44
		Number of Missing Observations	3
Number of Detects	6	Number of Non-Detects	38
Number of Distinct Detects	6	Number of Distinct Non-Detects	38
Minimum Detect	4.6	Minimum Non-Detect	39.2

Maximum Detect	82.1	Maximum Non-Detect	1530
Variance Detects	1065	Percent Non-Detects	86.36%
Mean Detects	45.67	SD Detects	32.64
Median Detects	52.55	CV Detects	0.715
Skewness Detects	-0.305	Kurtosis Detects	-2.201
Mean of Logged Detects	3.414	SD of Logged Detects	1.172

#### Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.893	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.788	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.246	Lilliefors GOF Test
5% Lilliefors Critical Value	0.325	Detected Data appear Normal at 5% Significance Level

1.37

Detected Data appear Normal at 5% Significance Level

#### Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	22.49	KM Standard Error of Mean	8.745
KM SD	20.47	95% KM (BCA) UCL	42.83
95% KM (t) UCL	37.19	95% KM (Percentile Bootstrap) UCL	42.02
95% KM (z) UCL	36.87	95% KM Bootstrap t UCL	55.47
90% KM Chebyshev UCL	48.72	95% KM Chebyshev UCL	60.6
97.5% KM Chebyshev UCL	77.1	99% KM Chebyshev UCL	109.5

#### Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.481
5% A-D Critical Value	0.71
K-S Test Statistic	0.278
5% K-S Critical Value	0.338

#### Detected data appear Gamma Distributed at 5% Significance Level

Kivi Standard Error of Mean	0.743
95% KM (BCA) UCL	42.83
95% KM (Percentile Bootstrap) UCL	42.02
95% KM Bootstrap t UCL	55.47
95% KM Chebyshev UCL	60.6
99% KM Chebyshev UCL	109.5

#### Gamma Statistics on Detected Data Only

k hat (MLE)	
-------------	--

k star (bias corrected MLE)

Theta hat (MLE)	33.34	Theta star (bias corrected MLE)	57.37
nu hat (MLE)	16.44	nu star (bias corrected)	9.553
Mean (detects)	45.67		

#### Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

Approximate Chi Square Value (100.29, α)

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	4.6	Mean	20.72
Maximum	82.1	Median	16.44
SD	15	CV	0.724
k hat (MLE)	3.986	k star (bias corrected MLE)	3.73
Theta hat (MLE)	5.198	Theta star (bias corrected MLE)	5.556
nu hat (MLE)	350.8	nu star (bias corrected)	328.2
Adjusted Level of Significance (β)	0.0445		
Approximate Chi Square Value (328.21, α)	287.2	Adjusted Chi Square Value (328.21, $\beta$ )	285.9
95% Gamma Approximate UCL (use when n>=50)	23.68	95% Gamma Adjusted UCL (use when n<50)	23.78
Estimates of Gamma Parameters using KM Estimates			
Mean (KM)	22.49	SD (KM)	20.47
Variance (KM)	419	SE of Mean (KM)	8.745
k hat (KM)	1.207	k star (KM)	1.14
nu hat (KM)	106.2	nu star (KM)	100.3
theta hat (KM)	18.63	theta star (KM)	19.73
80% gamma percentile (KM)	35.78	90% gamma percentile (KM)	50.13
95% gamma percentile (KM)	64.34	99% gamma percentile (KM)	97.03
Gamma Kaplan-Meier (KM) Statistics			

78.18

Adjusted Chi Square Value (100.29,  $\beta$ )

77.52

95% Gamma Adjusted KM-UCL (use when n<50)

29.09

#### Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.846
5% Shapiro Wilk Critical Value	0.788
Lilliefors Test Statistic	0.251
5% Lilliefors Critical Value	0.325

#### Detected Data appear Lognormal at 5% Significance Level

# Shapiro Wilk GOF TestDetected Data appear Lognormal at 5% Significance LevelLilliefors GOF TestDetected Data appear Lognormal at 5% Significance Level

#### Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	16.65	Mean in Log Scale	2.616
SD in Original Scale	16.13	SD in Log Scale	0.514
95% t UCL (assumes normality of ROS data)	20.74	95% Percentile Bootstrap UCL	20.63
95% BCA Bootstrap UCL	22.4	95% Bootstrap t UCL	23.05
95% H-UCL (Log ROS)	18.14		

28.84

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	2.679	KM Geo Mean	14.57
KM SD (logged)	0.955	95% Critical H Value (KM-Log)	2.318
KM Standard Error of Mean (logged)	0.508	95% H-UCL (KM -Log)	32.23
KM SD (logged)	0.955	95% Critical H Value (KM-Log)	2.318
KM Standard Error of Mean (logged)	0.508		

#### **DL/2 Statistics**

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	116.6	Mean in Log Scale	3.698
SD in Original Scale	226.8	SD in Log Scale	1.208
95% t UCL (Assumes normality)	174.1	95% H-Stat UCL	135.3

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

#### Detected Data appear Normal Distributed at 5% Significance Level

#### Suggested UCL to Use

95% KM (t) UCL

37.19

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

#### 2-Methylnaphthalene

#### **General Statistics**

Total Number of Observations	47	Number of Distinct Observations
Number of Detects	39	Number of Non-Detects
Number of Distinct Detects	37	Number of Distinct Non-Detects
Minimum Detect	0.77	Minimum Non-Detect
Maximum Detect	1250	Maximum Non-Detect
Variance Detects	38989	Percent Non-Detects
Mean Detects	65.81	SD Detects
Median Detects	26	CV Detects
Skewness Detects	5.972	Kurtosis Detects
Mean of Logged Detects	3.03	SD of Logged Detects

#### Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.287
5% Shapiro Wilk Critical Value	0.939
Lilliefors Test Statistic	0.378
5% Lilliefors Critical Value	0.14
Detected Data Not Normal at 5% Significance Level	

Shapiro Wilk GOF Test	
Detected Data Not Normal at 5% Significance Level	

43 8 7 11 12.7 17.02% 197.5 3 36.62 1.489

#### Lilliefors GOF Test

Detected Data Not Normal at 5% Significance Level

#### Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	55.35	KM Standard Error of Mean	26.46
KM SD	179	95% KM (BCA) UCL	107.8
95% KM (t) UCL	99.76	95% KM (Percentile Bootstrap) UCL	107
95% KM (z) UCL	98.87	95% KM Bootstrap t UCL	267.6
90% KM Chebyshev UCL	134.7	95% KM Chebyshev UCL	170.7
97.5% KM Chebyshev UCL	220.6	99% KM Chebyshev UCL	318.6

#### Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	1.792
5% A-D Critical Value	0.809
K-S Test Statistic	0.167
5% K-S Critical Value	0.149

### Detected Data Not Gamma Distributed at 5% Significance Level

Anderson-Darling GOF Test
Detected Data Not Gamma Distributed at 5% Significance Level
Kolmogorov-Smirnov GOF
Detected Data Not Gamma Distributed at 5% Significance Level

54.61 19.2 3.318

0.298

#### Gamma Statistics on Detected Data Only

k hat (MLE)	0.542	k star (bias corrected MLE)	0.518
Theta hat (MLE)	121.3	Theta star (bias corrected MLE)	127.1
nu hat (MLE)	42.31	nu star (bias corrected)	40.39
Mean (detects)	65.81		

#### Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs			
GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)			
For such situations, GROS method may yield incorrect values of UCLs and BTVs			
This is especially true when the sample size is small.			
For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates			
Minimum	0.01	Mean	
Maximum	1250	Median	
SD	181.2	CV	
k hat (MLE)	0.303	k star (bias corrected MLE)	

Theta hat (MLE)	180.1	Theta star (bias corrected MLE)	183.2
nu hat (MLE)	28.51	nu star (bias corrected)	28.02
Adjusted Level of Significance (β)	0.0449		
Approximate Chi Square Value (28.02, α)	16.95	Adjusted Chi Square Value (28.02, $\beta$ )	16.67
95% Gamma Approximate UCL (use when n>=50)	90.31	95% Gamma Adjusted UCL (use when n<50)	91.79
Estimates of Gamma Parameters using KM Estimates			
Mean (KM)	55.35	SD (KM)	179
Variance (KM)	32058	SE of Mean (KM)	26.46
k hat (KM)	0.0955	k star (KM)	0.104
nu hat (KM)	8.982	nu star (KM)	9.742

theta hat (KM)	579.2
80% gamma percentile (KM)	40.4
95% gamma percentile (KM)	320.5

#### Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (9.74, $\alpha$ )	3.781
95% Gamma Approximate KM-UCL (use when n>=50)	142.6
95% Gamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50)	

#### Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.96
5% Shapiro Wilk Critical Value	0.939
Lilliefors Test Statistic	0.13
5% Lilliefors Critical Value	0.14
Detected Data appear Lognormal at 5% Significance Level	

#### Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	55.3
SD in Original Scale	181
95% t UCL (assumes normality of ROS data)	99.61

Adjusted Chi Square Value (9.74, $\beta$ )	3.664
95% Gamma Adjusted KM-UCL (use when n<50)	147.2

534

149.4

863.5

## Shapiro Wilk GOF Test

theta star (KM)

90% gamma percentile (KM)

99% gamma percentile (KM)

Detected Data appear Lognormal at 5% Significance Level Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Level

Mean in Log Scale	2.749
SD in Log Scale	1.494
95% Percentile Bootstrap UCL	106.4

95% BCA Bootstrap UCL	135.6	95% Bootstrap t UCL	258	
95% H-UCL (Log ROS)	90.72			
Statistics using KM estimates on Logged Data and Assuming Lo	gnormal Distribu	Ition		
KM Mean (logged)	2.714	KM Geo Mean	15.1	
KM SD (logged)	1.548	95% Critical H Value (KM-Log)	2.983	
KM Standard Error of Mean (logged)	0.238	95% H-UCL (KM -Log)	98.74	
KM SD (logged)	1.548	95% Critical H Value (KM-Log)	2.983	
KM Standard Error of Mean (logged)	0.238			
DL/2 Statistics				
DL/2 Normal		DL/2 Log-Transformed		
Mean in Original Scale	55.61	Mean in Log Scale	2.816	
SD in Original Scale	180.9	SD in Log Scale	1.436	
95% t UCL (Assumes normality)	99.9	95% H-Stat UCL	85.44	
DL/2 is not a recommended method, provided for comparisons a	nd historical rea	sons		
Nonparametric Distribution Free UCL Statistics				
Detected Data appear Lognormal Distributed at 5% Significance	Level			
Suggested UCL to Use				
KM H-UCL	98.74			
Note: Suggestions regarding the selection of a 95% UCL are pro	vided to help the	e user to select the most appropriate 95% UCL.		
ecommendations are based upon data size, data distribution, and skewness.				

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

4-Bromophenylphenyl ether

**General Statistics** 

Total Number of Observations	47	Number of Distinct Observations	35
Number of Detects	1	Number of Non-Detects	46
Number of Distinct Detects	1	Number of Distinct Non-Detects	34

Warning: Only one distinct data value was detected! ProUCL (or any other software) should not be used on such a data set! It is suggested to use alternative site specific values determined by the Project Team to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable 4-Bromophenylphenyl ether was not processed!

#### Acenaphthene

#### **General Statistics**

Total Number of Observations	47	Number of Distinct Observations	44
Number of Detects	29	Number of Non-Detects	18
Number of Distinct Detects	28	Number of Distinct Non-Detects	16
Minimum Detect	0.61	Minimum Non-Detect	11
Maximum Detect	1280	Maximum Non-Detect	14.8
Variance Detects	55989	Percent Non-Detects	38.3%
Mean Detects	50.04	SD Detects	236.6
Median Detects	3.8	CV Detects	4.728
Skewness Detects	5.38	Kurtosis Detects	28.96
Mean of Logged Detects	1.513	SD of Logged Detects	1.535

#### Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.208
5% Shapiro Wilk Critical Value	0.926
Lilliefors Test Statistic	0.518
5% Lilliefors Critical Value	0.161
Detected Data Not Normal at 5% Significance Level	

Shapiro Wilk GOF Test
Detected Data Not Normal at 5% Significance Level
Lilliefors GOF Test
Detected Data Not Normal at 5% Significance Level

#### Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	32.49	KM Standard Error of Mean	27.32
KM SD	184	95% KM (BCA) UCL	87.38
95% KM (t) UCL	78.34	95% KM (Percentile Bootstrap) UCL	86.59
95% KM (z) UCL	77.42	95% KM Bootstrap t UCL	1090
90% KM Chebyshev UCL	114.4	95% KM Chebyshev UCL	151.6
97.5% KM Chebyshev UCL	203.1	99% KM Chebyshev UCL	304.3

#### Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	5.458
5% A-D Critical Value	0.861
K-S Test Statistic	0.395
5% K-S Critical Value	0.177

#### Detected Data Not Gamma Distributed at 5% Significance Level

Anderson-Darling GOF Test
Detected Data Not Gamma Distributed at 5% Significance Level
Kolmogorov-Smirnov GOF

Detected Data Not Gamma Distributed at 5% Significance Level

30.88 0.96

6.031

0.179

#### Gamma Statistics on Detected Data Only

k hat (MLE)	0.289	k star (bias corrected MLE)	0.282
Theta hat (MLE)	173.1	Theta star (bias corrected MLE)	177.4
nu hat (MLE)	16.77	nu star (bias corrected)	16.37
Mean (detects)	50.04		

#### Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs				
GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)				
For such situations, GROS method may yield incorrect values of UCLs and BTVs				
This is especially true when the sample size is small.				
For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates				
Minimum	0.01	Mean		
Maximum	1280	Median		
SD 186.2 CV				
k hat (MLE)	0.176	k star (bias corrected MLE)		

Theta hat (MLE)	175.3	Theta star (bias corrected MLE)	172.4
nu hat (MLE)	16.56	nu star (bias corrected)	16.83
Adjusted Level of Significance (β)	0.0449		
Approximate Chi Square Value (16.83, $\alpha$ )	8.554	Adjusted Chi Square Value (16.83, $\beta$ )	8.367
95% Gamma Approximate UCL (use when n>=50)	60.77	95% Gamma Adjusted UCL (use when n<50)	62.14
Estimates of Gamma Parameters using KM Estimates			
Mean (KM)	32.49	SD (KM)	184
Variance (KM)	33856	SE of Mean (KM)	27.32
k hat (KM)	0.0312	k star (KM)	0.0434

k hat (KM)	0.0312
nu hat (KM)	2.931
theta hat (KM)	1042
80% gamma percentile (KM)	2.547
95% gamma percentile (KM)	162.7

#### Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (4.08, α)	0.752
95% Gamma Approximate KM-UCL (use when n>=50)	176.1
95% Gamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50)	

#### Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.863
5% Shapiro Wilk Critical Value	0.926
Lilliefors Test Statistic	0.144
5% Lilliefors Critical Value	0.161

Detected Data appear Approximate Lognormal at 5% Significance Level

#### Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	32.11
SD in Original Scale	186
95% t UCL (assumes normality of ROS data)	77.67

Adjusted Chi Square Value (4.08, β)	0.71
95% Gamma Adjusted KM-UCL (use when n<50)	186.5

4.077

749.1

40.38

746

# Shapiro Wilk GOF Test

nu star (KM)

theta star (KM)

90% gamma percentile (KM)

99% gamma percentile (KM)

Detected Data Not Lognormal at 5% Significance Level Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Level

Mean in Log Scale	1.37
SD in Log Scale	1.222
95% Percentile Bootstrap UCL	86.16

95% BCA Bootstrap UCL	113.8	95% Bootstrap t UCL	1425
95% H-UCL (Log ROS)	13.21		

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	1.337	KM Geo Mean	3.807
KM SD (logged)	1.342	95% Critical H Value (KM-Log)	2.723
KM Standard Error of Mean (logged)	0.23	95% H-UCL (KM -Log)	16.05
KM SD (logged)	1.342	95% Critical H Value (KM-Log)	2.723
KM Standard Error of Mean (logged)	0.23		

#### **DL/2 Statistics**

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	33.19	Mean in Log Scale	1.621
SD in Original Scale	185.9	SD in Log Scale	1.206
95% t UCL (Assumes normality)	78.7	95% H-Stat UCL	16.51

DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Lognormal Distributed at 5% Significance Level

#### Suggested UCL to Use

95% KM (Chebyshev) UCL

151.6

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Acenaphthylene

**General Statistics** 

Total Number of Observations	47	Number of Distinct Observations	46
Number of Detects	38	Number of Non-Detects	9
Number of Distinct Detects	38	Number of Distinct Non-Detects	8
Minimum Detect	0.54	Minimum Non-Detect	11.3
Maximum Detect	1450	Maximum Non-Detect	14.8
Variance Detects	57138	Percent Non-Detects	19.15%
Mean Detects	67.31	SD Detects	239
Median Detects	8.7	CV Detects	3.552
Skewness Detects	5.555	Kurtosis Detects	32.39
Mean of Logged Detects	2.25	SD of Logged Detects	1.792

#### Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.297	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.938	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.407	Lilliefors GOF Test
5% Lilliefors Critical Value	0.142	Detected Data Not Normal at 5% Significance Level

#### Detected Data Not Normal at 5% Significance Level

#### Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	55.28	KM Standard Error of Mean	31.57
KM SD	213.5	95% KM (BCA) UCL	116.9
95% KM (t) UCL	108.3	95% KM (Percentile Bootstrap) UCL	114.1
95% KM (z) UCL	107.2	95% KM Bootstrap t UCL	326.4
90% KM Chebyshev UCL	150	95% KM Chebyshev UCL	192.9
97.5% KM Chebyshev UCL	252.4	99% KM Chebyshev UCL	369.4

#### Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	3.348
5% A-D Critical Value	0.847
K-S Test Statistic	0.286
5% K-S Critical Value	0.155

#### Anderson-Darling GOF Test

Detected Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Level
# Detected Data Not Gamma Distributed at 5% Significance Level

#### Gamma Statistics on Detected Data Only

k hat (MLE)	0.344	k star (bias corrected MLE)	0.335
Theta hat (MLE)	195.5	Theta star (bias corrected MLE)	201.2
nu hat (MLE)	26.16	nu star (bias corrected)	25.43
Mean (detects)	67.31		

#### Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

# For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	54.42
Maximum	1450	Median	6.5
SD	216	CV	3.97
k hat (MLE)	0.235	k star (bias corrected MLE)	0.234
Theta hat (MLE)	232	Theta star (bias corrected MLE)	232.8
nu hat (MLE)	22.05	nu star (bias corrected)	21.98
Adjusted Level of Significance (β)	0.0449		
Approximate Chi Square Value (21.98, $\alpha$ )	12.32	Adjusted Chi Square Value (21.98, $\beta$ )	12.09
95% Gamma Approximate UCL (use when n>=50)	97.07	95% Gamma Adjusted UCL (use when n<50)	98.91

#### Estimates of Gamma Parameters using KM Estimates

Mean (KM)	55.28	SD (KM)	213.5
Variance (KM)	45594	SE of Mean (KM)	31.57
k hat (KM)	0.067	k star (KM)	0.0769
nu hat (KM)	6.3	nu star (KM)	7.231
theta hat (KM)	824.8	theta star (KM)	718.6
80% gamma percentile (KM)	24.33	90% gamma percentile (KM)	127.8

Gamma Kaplan-Meier (KM) Statistics	
Approximate Chi Square Value (7.23, $\alpha$ )	2.298
95% Gamma Approximate KM-UCL (use when n>=50)	173.9
95% Gamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50)	
Lognormal GOF Test on Detected Observations Only	
Shapiro Wilk Test Statistic	0.961
5% Shapiro Wilk Critical Value	0.938
Lilliefors Test Statistic	0.113
5% Lilliefors Critical Value	0.142

Detected Data appear Lognormal at 5% Significance Level

# Lognormal ROS Statistics Using Imputed Non-Detects

95% gamma percentile (KM)

Mean in Original Scale	55.1
SD in Original Scale	215.9
95% t UCL (assumes normality of ROS data)	108
95% BCA Bootstrap UCL	151.7
95% H-UCL (Log ROS)	66.9

Adjusted Chi Square Value (7.23, $\beta$ )	2.211
95% Gamma Adjusted KM-UCL (use when n<50)	180.8

# Shapiro Wilk GOF Test

99% gamma percentile (KM)

Detected Data appear Lognormal at 5% Significance Level Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Level

Mean in Log Scale	2.056
SD in Log Scale	1.662
95% Percentile Bootstrap UCL	115.9
95% Bootstrap t UCL	325.5

# Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	2.032	KM Geo Mean	7.629
KM SD (logged)	1.706	95% Critical H Value (KM-Log)	3.19
KM Standard Error of Mean (logged)	0.263	95% H-UCL (KM -Log)	72.87
KM SD (logged)	1.706	95% Critical H Value (KM-Log)	3.19
KM Standard Error of Mean (logged)	0.263		

320.7

#### **DL/2** Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	55.6	Mean in Log Scale	2.168

SD in Original Scale	215.8	SD in Log Scale	1.617
95% t UCL (Assumes normality)	108.4	95% H-Stat UCL	67.15

DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

#### Suggested UCL to Use

95% KM (Chebyshev) UCL

192.9

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

#### Acetone

#### **General Statistics**

Total Number of Observations	44	Number of Distinct Observations	40
		Number of Missing Observations	3
Number of Detects	11	Number of Non-Detects	33
Number of Distinct Detects	10	Number of Distinct Non-Detects	32
Minimum Detect	11.3	Minimum Non-Detect	78.4
Maximum Detect	168	Maximum Non-Detect	3070
Variance Detects	2084	Percent Non-Detects	75%
Mean Detects	86.28	SD Detects	45.66
Median Detects	81.2	CV Detects	0.529
Skewness Detects	0.00347	Kurtosis Detects	-0.196
Mean of Logged Detects	4.254	SD of Logged Detects	0.782

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.975	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.85	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.12	Lilliefors GOF Test
5% Lilliefors Critical Value	0.251	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

#### Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	62.9
KM SD	35.97
95% KM (t) UCL	80.37
95% KM (z) UCL	80
90% KM Chebyshev UCL	94.08
97.5% KM Chebyshev UCL	127.8

#### Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.456
5% A-D Critical Value	0.736
K-S Test Statistic	0.181
5% K-S Critical Value	0.258

Detected data appear Gamma Distributed at 5% Significance Level

KM Standard Error of Mean	10.39
95% KM (BCA) UCL	79.3
95% KM (Percentile Bootstrap) UCL	80.73
95% KM Bootstrap t UCL	81.14
95% KM Chebyshev UCL	108.2
99% KM Chebyshev UCL	166.3

#### Anderson-Darling GOF Test

Detected data appear Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Level

# Gamma Statistics on Detected Data Only

k hat (MLE)	2.61	k star (bias corrected MLE)
Theta hat (MLE)	33.06	Theta star (bias corrected MLE)
nu hat (MLE)	57.42	nu star (bias corrected)
Mean (detects)	86.28	

# 1.959 44.05 43.09

# Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20) For such situations, GROS method may yield incorrect values of UCLs and BTVs

# This is especially true when the sample size is small.

# For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	11.3
Maximum	168
SD	27.08
k hat (MLE)	6.342
Theta hat (MLE)	9.457
nu hat (MLE)	558.1
Adjusted Level of Significance (β)	0.0445
Approximate Chi Square Value (521.34, α)	469.4
95% Gamma Approximate UCL (use when n>=50)	66.61

# Estimates of Gamma Parameters using KM Estimates

Mean (KM)	62.9
Variance (KM)	1294
k hat (KM)	3.058
nu hat (KM)	269.1
theta hat (KM)	20.57
80% gamma percentile (KM)	90.22
95% gamma percentile (KM)	133.8

# Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (252.10, α)	
95% Gamma Approximate KM-UCL (use when n>=50)	

# Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.852
5% Shapiro Wilk Critical Value	0.85
Lilliefors Test Statistic	0.233
5% Lilliefors Critical Value	0.251

Detected Data appear Lognormal at 5% Significance Level

Mean	59.97
Median	51.43
CV	0.452
k star (bias corrected MLE)	5.924
Theta star (bias corrected MLE)	10.12
nu star (bias corrected)	521.3

Adjusted Chi Square Value (521.34, $\beta$ )	467.7
95% Gamma Adjusted UCL (use when n<50)	66.84

SD (KM)	35.97
SE of Mean (KM)	10.39
k star (KM)	2.865
nu star (KM)	252.1
theta star (KM)	21.96
90% gamma percentile (KM)	112.7
99% gamma percentile (KM)	179.5

Adjusted Chi Square Value (252.10, $\beta$ )	215.2
95% Gamma Adjusted KM-UCL (use when n<50)	73.68

# Shapiro Wilk GOF Test

216.3 73.3

> Detected Data appear Lognormal at 5% Significance Level Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Level

#### Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	53.62	Mean in Log Scale	3.877
SD in Original Scale	29.32	SD in Log Scale	0.444
95% t UCL (assumes normality of ROS data)	61.05	95% Percentile Bootstrap UCL	61.45
95% BCA Bootstrap UCL	62.82	95% Bootstrap t UCL	64.22
95% H-UCL (Log ROS)	60.42		

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	3.913	KM Geo Mean	50.03
KM SD (logged)	0.762	95% Critical H Value (KM-Log)	2.124
KM Standard Error of Mean (logged)	0.27	95% H-UCL (KM -Log)	85.59
KM SD (logged)	0.762	95% Critical H Value (KM-Log)	2.124
KM Standard Error of Mean (logged)	0.27		

#### **DL/2 Statistics**

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	237	Mean in Log Scale	4.455
SD in Original Scale	452.6	SD in Log Scale	1.182
95% t UCL (Assumes normality)	351.7	95% H-Stat UCL	275.4

DL/2 is not a recommended method, provided for comparisons and historical reasons

# Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

# Suggested UCL to Use

95% KM (t) UCL

80.37

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

#### Anthracene

# **General Statistics**

Total Number of Observations	47	Number of Distinct Observations	45
Number of Detects	41	Number of Non-Detects	6
Number of Distinct Detects	41	Number of Distinct Non-Detects	6
Minimum Detect	0.52	Minimum Non-Detect	11.3
Maximum Detect	3250	Maximum Non-Detect	14.8
Variance Detects	254718	Percent Non-Detects	12.77%
Mean Detects	122.3	SD Detects	504.7
Median Detects	22.9	CV Detects	4.126
Skewness Detects	6.249	Kurtosis Detects	39.61
Mean of Logged Detects	3.016	SD of Logged Detects	1.695

# Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.234	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.941	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.409	Lilliefors GOF Test
5% Lilliefors Critical Value	0.137	Detected Data Not Normal at 5% Significance Level

# Detected Data Not Normal at 5% Significance Level

# Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	107.3	KM Standard Error of Mean	69
KM SD	467.3	95% KM (BCA) UCL	250.9
95% KM (t) UCL	223.1	95% KM (Percentile Bootstrap) UCL	241.9
95% KM (z) UCL	220.8	95% KM Bootstrap t UCL	949.3
90% KM Chebyshev UCL	314.3	95% KM Chebyshev UCL	408.1
97.5% KM Chebyshev UCL	538.2	99% KM Chebyshev UCL	793.9

#### Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	3.412
5% A-D Critical Value	0.842
K-S Test Statistic	0.248
5% K-S Critical Value	0.148

Anderson-Darling GOF Test
Detected Data Not Gamma Distributed at 5% Significance Level
Kolmogorov-Smirnov GOF
Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

#### Gamma Statistics on Detected Data Only

k hat (MLE)	0.372	k star (bias corrected MLE)	0.361
Theta hat (MLE)	328.9	Theta star (bias corrected MLE)	338.9
nu hat (MLE)	30.49	nu star (bias corrected)	29.59
Mean (detects)	122.3		

#### Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	106.7
Maximum	3250	Median	19.1
SD	472.4	CV	4.428
k hat (MLE)	0.267	k star (bias corrected MLE)	0.265
Theta hat (MLE)	399	Theta star (bias corrected MLE)	403.3
nu hat (MLE)	25.14	nu star (bias corrected)	24.87
Adjusted Level of Significance (β)	0.0449		
Approximate Chi Square Value (24.87, $\alpha$ )	14.51	Adjusted Chi Square Value (24.87, $\beta$ )	14.26
95% Gamma Approximate UCL (use when n>=50)	182.9	95% Gamma Adjusted UCL (use when n<50)	186.1

#### Estimates of Gamma Parameters using KM Estimates

Mean (KM)

107.3 SD (KM)

467.3

Variance (KM)	218323	SE of Mean (KM)	69
k hat (KM)	0.0527	k star (KM)	0.0636
nu hat (KM)	4.957	nu star (KM)	5.974
theta hat (KM)	2035	theta star (KM)	1688
80% gamma percentile (KM)	30.29	90% gamma percentile (KM)	213.3
95% gamma percentile (KM)	608.3	99% gamma percentile (KM)	2111

# Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (5.97, α)	1.627
95% Gamma Approximate KM-UCL (use when n>=50)	394.1
95% Gamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50)	

# Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.981
5% Shapiro Wilk Critical Value	0.941
Lilliefors Test Statistic	0.0832
5% Lilliefors Critical Value	0.137

Detected Data appear Lognormal at 5% Significance Level

# Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	107.2
SD in Original Scale	472.3
95% t UCL (assumes normality of ROS data)	222.8
95% BCA Bootstrap UCL	327.5
95% H-UCL (Log ROS)	148.3

Shapiro Wilk GOF Test
Detected Data appear Lognormal at 5% Significance Level
Lilliefors GOF Test

1.556

411.9

Detected Data appear Lognormal at 5% Significance Level

Adjusted Chi Square Value (5.97, β)

95% Gamma Adjusted KM-UCL (use when n<50)

Mean in Log Scale	2.797
SD in Log Scale	1.684
95% Percentile Bootstrap UCL	243.1
95% Bootstrap t UCL	933.7

# Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	2.785	KM Geo Mean	16.2
KM SD (logged)	1.709	95% Critical H Value (KM-Log)	3.194
KM Standard Error of Mean (logged)	0.259	95% H-UCL (KM -Log)	156
KM SD (logged)	1.709	95% Critical H Value (KM-Log)	3.194

KM Standard Error of Mean (logged)

#### 0.259

#### **DL/2 Statistics**

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	107.5	Mean in Log Scale	2.864
SD in Original Scale	472.3	SD in Log Scale	1.631
95% t UCL (Assumes normality)	223.1	95% H-Stat UCL	139.6

DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

# Suggested UCL to Use

95% KM (Chebyshev) UCL

408.1

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

#### Benzene

#### **General Statistics**

Total Number of Observations	44	Number of Distinct Observations	28
		Number of Missing Observations	3
Number of Detects	0	Number of Non-Detects	44
Number of Distinct Detects	0	Number of Distinct Non-Detects	28

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

# The data set for variable Benzene was not processed!

# Benzo(a)anthracene

# **General Statistics**

Total Number of Observations	47	Number of Distinct Observations	45
Number of Detects	44	Number of Non-Detects	3
Number of Distinct Detects	43	Number of Distinct Non-Detects	3
Minimum Detect	0.83	Minimum Non-Detect	11.6
Maximum Detect	6470	Maximum Non-Detect	12.7
Variance Detects	946557	Percent Non-Detects	6.383%
Mean Detects	239.5	SD Detects	972.9
Median Detects	40.3	CV Detects	4.062
Skewness Detects	6.395	Kurtosis Detects	41.76
Mean of Logged Detects	3.615	SD of Logged Detects	1.822

# Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.241	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.944	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.403	Lilliefors GOF Test
5% Lilliefors Critical Value	0.132	Detected Data Not Normal at 5% Significance Level

# Detected Data Not Normal at 5% Significance Level

# Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	224.5	KM Standard Error of Mean	137.6
KM SD	932.4	95% KM (BCA) UCL	511.5
95% KM (t) UCL	455.5	95% KM (Percentile Bootstrap) UCL	493.6
95% KM (z) UCL	450.8	95% KM Bootstrap t UCL	1650
90% KM Chebyshev UCL	637.2	95% KM Chebyshev UCL	824.2

Gamma GOF Tests on Detected Observations Only		
A-D Test Statistic	3.212	Anderson-Darling GOF Test
5% A-D Critical Value	0.847	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.268	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.144	Detected Data Not Gamma Distributed at 5% Significance Level
Detected Data Not Gamma Distributed at 5% Significance Level		

1084

#### Gamma Statistics on Detected Data Only

97.5% KM Chebyshev UCL

k hat (MLE)	0.359	k star (bias corrected MLE)	0.35
Theta hat (MLE)	666.6	Theta star (bias corrected MLE)	684.5
nu hat (MLE)	31.62	nu star (bias corrected)	30.8
Mean (detects)	239.5		

99% KM Chebyshev UCL

1593

# Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	224.2
Maximum	6470	Median	36.4
SD	942.5	CV	4.203
k hat (MLE)	0.297	k star (bias corrected MLE)	0.293
Theta hat (MLE)	754.1	Theta star (bias corrected MLE)	766.5
nu hat (MLE)	27.95	nu star (bias corrected)	27.5
Adjusted Level of Significance (β)	0.0449		
Approximate Chi Square Value (27.50, $\alpha$ )	16.54	Adjusted Chi Square Value (27.50, $\beta$ )	16.27
95% Gamma Approximate UCL (use when n>=50)	372.8	95% Gamma Adjusted UCL (use when n<50)	379

# Estimates of Gamma Parameters using KM Estimates

Mean (KM)	224.5
Variance (KM)	869301
k hat (KM)	0.058
nu hat (KM)	5.451
theta hat (KM)	3872
80% gamma percentile (KM)	76.36
95% gamma percentile (KM)	1288

# Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (6.44, α)	1.867
95% Gamma Approximate KM-UCL (use when n>=50)	
95% Gamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50)	

# Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.974
5% Shapiro Wilk Critical Value	0.944
Lilliefors Test Statistic	0.121
5% Lilliefors Critical Value	0.132
Detected Data and a manual at 5% Olimits and a local	

Detected Data appear Lognormal at 5% Significance Level

# Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	224.5
SD in Original Scale	942.5
95% t UCL (assumes normality of ROS data)	455.3
95% BCA Bootstrap UCL	651.1
95% H-UCL (Log ROS)	445.1

SD (KM)	932.4
SE of Mean (KM)	137.6
k star (KM)	0.0685
nu star (KM)	6.436
theta star (KM)	3279
90% gamma percentile (KM)	476
99% gamma percentile (KM)	4273

Adjusted Chi Square Value (6.44, $\beta$ )	1.79
95% Gamma Adjusted KM-UCL (use when n<50)	807.2

Shapiro Wilk GOF Test
Detected Data appear Lognormal at 5% Significance Level
Lilliefors GOF Test
Detected Data appear Lognormal at 5% Significance Level

Mean in Log Scale	3.472
SD in Log Scale	1.847
95% Percentile Bootstrap UCL	491.2
95% Bootstrap t UCL	1665

# Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	3.458	KM Geo Mean	31.76
KM SD (logged)	1.856	95% Critical H Value (KM-Log)	3.393

KM Standard Error of Mean (logged)	0.276	95% H-UCL (KM -Log)	450.2
KM SD (logged)	1.856	95% Critical H Value (KM-Log)	3.393
KM Standard Error of Mean (logged)	0.276		
DL/2 Statistics			
DL/2 Normal		DL/2 Log-Transformed	
DL/2 Normal Mean in Original Scale	224.6	DL/2 Log-Transformed Mean in Log Scale	3.5
DL/2 Normal Mean in Original Scale SD in Original Scale	224.6 942.4	<b>DL/2 Log-Transformed</b> Mean in Log Scale SD in Log Scale	3.5 1.817
DL/2 Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality)	224.6 942.4 455.4	DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL	3.5 1.817 422.6

DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

# Suggested UCL to Use

95% KM (	Chebyshev)	UCL
----------	------------	-----

824.2

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

#### Benzo(a)pyrene

#### **General Statistics**

Total Number of Observations	47	Number of Distinct Observations	46
Number of Detects	44	Number of Non-Detects	3
Number of Distinct Detects	43	Number of Distinct Non-Detects	3
Minimum Detect	0.72	Minimum Non-Detect	11.6
Maximum Detect	5890	Maximum Non-Detect	12.7
Variance Detects	786259	Percent Non-Detects	6.383%

Mean Detects	224.1	SD Detects	886.7
Median Detects	43.15	CV Detects	3.957
Skewness Detects	6.354	Kurtosis Detects	41.36
Mean of Logged Detects	3.582	SD of Logged Detects	1.849

# Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.247	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.944	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.405	Lilliefors GOF Test
5% Lilliefors Critical Value	0.132	Detected Data Not Normal at 5% Significance Level
Detected Data Not Normal at 5% Significance Level		

# Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	210.2
KM SD	849.8
95% KM (t) UCL	420.7
95% KM (z) UCL	416.4
90% KM Chebyshev UCL	586.3
97.5% KM Chebyshev UCL	993.2

# Gamma GOF Tests on Detected Observations Only

3.073
0.846
0.236
0.144

# Detected Data Not Gamma Distributed at 5% Significance Level

95% KM (BCA) UCL	453.8
95% KM (Percentile Bootstrap) UCL	456.4
95% KM Bootstrap t UCL	1395
95% KM Chebyshev UCL	756.7
99% KM Chebyshev UCL	1458

125.4

# Anderson-Darling GOF Test

KM Standard Error of Mean

Detected Data Not Gamma Distributed at 5% Significance Level
Kolmogorov-Smirnov GOF
Detected Data Not Gamma Distributed at 5% Significance Level

# Gamma Statistics on Detected Data Only

k hat (MLE)	0.365
Theta hat (MLE)	614.2
nu hat (MLE)	32.11

k star (bias corrected MLE)	0.355
Theta star (bias corrected MLE)	631
nu star (bias corrected)	31.25

Mean (detects)

#### 224.1

#### Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

## For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	209.8
Maximum	5890	Median	42.3
SD	859.1	CV	4.095
k hat (MLE)	0.301	k star (bias corrected MLE)	0.296
Theta hat (MLE)	696.4	Theta star (bias corrected MLE)	708.2
nu hat (MLE)	28.32	nu star (bias corrected)	27.85
Adjusted Level of Significance (β)	0.0449		
Approximate Chi Square Value (27.85, $\alpha$ )	16.81	Adjusted Chi Square Value (27.85, $\beta$ )	16.54
95% Gamma Approximate UCL (use when n>=50)	347.6	95% Gamma Adjusted UCL (use when n<50)	353.3
Estimates of Gamma Parameters using KM Estimates			
Mean (KM)	210.2	SD (KM)	849.8
Variance (KM)	722198	SE of Mean (KM)	125.4
k hat (KM)	0.0612	k star (KM)	0.0714
nu hat (KM)	5.749	nu star (KM)	6.715
theta hat (KM)	3436	theta star (KM)	2942
80% gamma percentile (KM)	78.86	90% gamma percentile (KM)	460.7
95% gamma percentile (KM)	1212	99% gamma percentile (KM)	3924
Gamma Kaplan-Meier (KM) Statistics			
Approximate Chi Square Value (6.72, $\alpha$ )	2.016	Adjusted Chi Square Value (6.72, β)	1.935
95% Gamma Approximate KM-UCL (use when n>=50)	700.2	95% Gamma Adjusted KM-UCL (use when n<50)	729.2

95% Gamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50)

# Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.967
5% Shapiro Wilk Critical Value	0.944
Lilliefors Test Statistic	0.134
5% Lilliefors Critical Value	0.132

Detected Data appear Approximate Lognormal at 5% Significance Level

Shapiro Wilk GOF Test
Detected Data appear Lognormal at 5% Significance Level

Lilliefors GOF Test

Detected Data Not Lognormal at 5% Significance Level

# Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	210.1	Mean in Log Scale	3.454
SD in Original Scale	859	SD in Log Scale	1.855
95% t UCL (assumes normality of ROS data)	420.5	95% Percentile Bootstrap UCL	454
95% BCA Bootstrap UCL	579.3	95% Bootstrap t UCL	1389
95% H-UCL (Log ROS)	446.5		

# Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	3.438	KM Geo Mean	31.12
KM SD (logged)	1.869	95% Critical H Value (KM-Log)	3.41
KM Standard Error of Mean (logged)	0.279	95% H-UCL (KM -Log)	456.5
KM SD (logged)	1.869	95% Critical H Value (KM-Log)	3.41
KM Standard Error of Mean (logged)	0.279		

#### **DL/2 Statistics**

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	210.2	Mean in Log Scale	3.469
SD in Original Scale	859	SD in Log Scale	1.841
95% t UCL (Assumes normality)	420.5	95% H-Stat UCL	435.9

DL/2 is not a recommended method, provided for comparisons and historical reasons

# Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Lognormal Distributed at 5% Significance Level

# Suggested UCL to Use

95% KM (Chebyshev) UCL

756.7

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

#### Benzo(b)fluoranthene

#### **General Statistics**

Total Number of Observations	47	Number of Distinct Observations	47
Number of Detects	44	Number of Non-Detects	3
Number of Distinct Detects	44	Number of Distinct Non-Detects	3
Minimum Detect	1.1	Minimum Non-Detect	11.6
Maximum Detect	7700	Maximum Non-Detect	12.7
Variance Detects	1340074	Percent Non-Detects	6.383%
Mean Detects	303.6	SD Detects	1158
Median Detects	68	CV Detects	3.813
Skewness Detects	6.352	Kurtosis Detects	41.35
Mean of Logged Detects	4.014	SD of Logged Detects	1.817

#### Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.25	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.944	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.397	Lilliefors GOF Test
5% Lilliefors Critical Value	0.132	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	284.5	KM Standard Error of Mean	163.7
KM SD	1110	95% KM (BCA) UCL	621.4
95% KM (t) UCL	559.3	95% KM (Percentile Bootstrap) UCL	604.2
95% KM (z) UCL	553.8	95% KM Bootstrap t UCL	1814
90% KM Chebyshev UCL	775.7	95% KM Chebyshev UCL	998.2
97.5% KM Chebyshev UCL	1307	99% KM Chebyshev UCL	1914

# Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	2.767
5% A-D Critical Value	0.84
K-S Test Statistic	0.254
5% K-S Critical Value	0.143

Detected Data Not Gamma Distributed at 5% Significance Level

95% KM (Percentile Bootstrap) UCL
95% KM Bootstrap t UCL
95% KM Chebyshev UCL
99% KM Chebyshev UCL

# Anderson-Darling GOF Test

Detected Data Not Gamma Distributed at 5% Significance Level
Kolmogorov-Smirnov GOF
Detected Data Not Gamma Distributed at 5% Significance Level

# Gamma Statistics on Detected Data Only

k hat (MLE)	0.388	k star (bias corrected MLE)	0.377
Theta hat (MLE)	781.7	Theta star (bias corrected MLE)	805.1
nu hat (MLE)	34.18	nu star (bias corrected)	33.18
Mean (detects)	303.6		

# Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has >	50% NDs with many tied observation	ons at multiple DLs	
GROS may not be used when kstar of detect	s is small such as <1.0, especially w	when the sample size is small (e.g., <15-20)	
For such situations, GROS method may yield	l incorrect values of UCLs and BTVs	3	
This is especially true when the sample size	is small.		
For gamma distributed detected data, BTVs a	and UCLs may be computed using g	amma distribution on KM estimates	
Minimum	0.01	Mean	284.2
Maximum	7700	Median	63.9
SD	1122	CV	3.946
k hat (MLE)	0.313	k star (bias corrected MLE)	0.307
Theta hat (MLE)	907.6	Theta star (bias corrected MLE)	924.7

nu hat (MLE)	29.44	nu star (bias corrected)	28.89
Adjusted Level of Significance (β)	0.0449		
Approximate Chi Square Value (28.89, $\alpha$ )	17.63	Adjusted Chi Square Value (28.89, β)	17.35
95% Gamma Approximate UCL (use when n>=50)	466	95% Gamma Adjusted UCL (use when n<50)	473.5
Estimates of Gamma Parameters using KM Estimates			
Mean (KM)	284.5	SD (KM)	1110

Variance (KM)	1231392
k hat (KM)	0.0657
nu hat (KM)	6.178
theta hat (KM)	4328
80% gamma percentile (KM)	121.1
95% gamma percentile (KM)	1649

# Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (7.12, $\alpha$ )	2.235
95% Gamma Approximate KM-UCL (use when n>=50)	
95% Gamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50)	

#### Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.96
5% Shapiro Wilk Critical Value	0.944
Lilliefors Test Statistic	0.152
5% Lilliefors Critical Value	0.132

Detected Data appear Approximate Lognormal at 5% Significance Level

# Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	284.5
SD in Original Scale	1122
95% t UCL (assumes normality of ROS data)	559.2
95% BCA Bootstrap UCL	900.2

theta star (KM)	3757
90% gamma percentile (KM)	650.5
99% gamma percentile (KM)	5171

163.7

0.0757 7.117

Adjusted Chi Square Value (7.12, $\beta$ )	2.15
95% Gamma Adjusted KM-UCL (use when n<50)	942

# Shapiro Wilk GOF Test

SE of Mean (KM)

k star (KM)

nu star (KM)

Detected Data appear Lognormal at 5% Significance Level Lilliefors GOF Test

Detected Data Not Lognormal at 5% Significance Level

Mean in Log Scale	3.855
SD in Log Scale	1.861
95% Percentile Bootstrap UCL	596.7
95% Bootstrap t UCL	1798

#### 677.5

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	3.828	KM Geo Mean	45.98
KM SD (logged)	1.886	95% Critical H Value (KM-Log)	3.433
KM Standard Error of Mean (logged)	0.28	95% H-UCL (KM -Log)	706.8
KM SD (logged)	1.886	95% Critical H Value (KM-Log)	3.433
KM Standard Error of Mean (logged)	0.28		

#### **DL/2 Statistics**

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	284.6	Mean in Log Scale	3.873
SD in Original Scale	1122	SD in Log Scale	1.839
95% t UCL (Assumes normality)	559.3	95% H-Stat UCL	650

DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Lognormal Distributed at 5% Significance Level

#### Suggested UCL to Use

95% KM (Chebyshev) UCL

998.2

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

# Benzo(g,h,i)perylene

#### **General Statistics**

Total Number of Observations

47

Number of Detects	40	Number of Non-Detects	7
Number of Distinct Detects	40	Number of Distinct Non-Detects	7
Minimum Detect	2.7	Minimum Non-Detect	11.3
Maximum Detect	3000	Maximum Non-Detect	14.8
Variance Detects	226072	Percent Non-Detects	14.89%
Mean Detects	165.7	SD Detects	475.5
Median Detects	51	CV Detects	2.869
Skewness Detects	5.722	Kurtosis Detects	34.54
Mean of Logged Detects	3.898	SD of Logged Detects	1.478

# Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.326	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.94	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.366	Lilliefors GOF Test
5% Lilliefors Critical Value	0.139	Detected Data Not Normal at 5% Significance Level

# Detected Data Not Normal at 5% Significance Level

# Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	142	KM Standard Error of Mean	64.53
KM SD	436.8	95% KM (BCA) UCL	278.3
95% KM (t) UCL	250.3	95% KM (Percentile Bootstrap) UCL	267.5
95% KM (z) UCL	248.2	95% KM Bootstrap t UCL	546.2
90% KM Chebyshev UCL	335.6	95% KM Chebyshev UCL	423.3
97.5% KM Chebyshev UCL	545	99% KM Chebyshev UCL	784.1

# Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	2.043
5% A-D Critical Value	0.811
K-S Test Statistic	0.212
5% K-S Critical Value	0.147

Detected Data Not Gamma Distributed at 5% Significance Level

# Anderson-Darling GOF Test

Detected Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Level

# Gamma Statistics on Detected Data Only

k hat (MLE)	0.521	k star (bias corrected MLE)	0.498
Theta hat (MLE)	318.3	Theta star (bias corrected MLE)	332.6
nu hat (MLE)	41.65	nu star (bias corrected)	39.86
Mean (detects)	165.7		

# Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20) For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

# For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	141.1
Maximum	3000	Median	39.1
SD	441.8	CV	3.132
k hat (MLE)	0.298	k star (bias corrected MLE)	0.293
Theta hat (MLE)	473.5	Theta star (bias corrected MLE)	481.3
nu hat (MLE)	28	nu star (bias corrected)	27.55
Adjusted Level of Significance (β)	0.0449		
Approximate Chi Square Value (27.55, $\alpha$ )	16.58	Adjusted Chi Square Value (27.55, $\beta$ )	16.31
95% Gamma Approximate UCL (use when n>=50)	234.4	95% Gamma Adjusted UCL (use when n<50)	238.3

Estimates of Gamma	Parameters	using KN	l Estimates
--------------------	------------	----------	-------------

Mean (KM)	142	SD (KM)	436.8
Variance (KM)	190812	SE of Mean (KM)	64.53
k hat (KM)	0.106	k star (KM)	0.113
nu hat (KM)	9.935	nu star (KM)	10.63
theta hat (KM)	1344	theta star (KM)	1255
80% gamma percentile (KM)	116.2	90% gamma percentile (KM)	395.4
95% gamma percentile (KM)	815.9	99% gamma percentile (KM)	2119

# Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (10.63, $\alpha$ )	4.342
95% Gamma Approximate KM-UCL (use when n>=50)	347.8

# Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.978
5% Shapiro Wilk Critical Value	0.94
Lilliefors Test Statistic	0.101
5% Lilliefors Critical Value	0.139

# Detected Data appear Lognormal at 5% Significance Level

# Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	142
SD in Original Scale	441.5
95% t UCL (assumes normality of ROS data)	250.1
95% BCA Bootstrap UCL	376
95% H-UCL (Log ROS)	237.4

Adjusted Chi Square Value (10.63, $\beta$ )	4.215
95% Gamma Adjusted KM-UCL (use when n<50)	358.3

# Shapiro Wilk GOF Test

Detected Data appear Lognormal at 5% Significance Level Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Level

Mean in Log Scale	3.594
SD in Log Scale	1.546
95% Percentile Bootstrap UCL	264.4
95% Bootstrap t UCL	531.3

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	3.574	KM Geo Mean	35.66
KM SD (logged)	1.566	95% Critical H Value (KM-Log)	3.007
KM Standard Error of Mean (logged)	0.235	95% H-UCL (KM -Log)	243.5
KM SD (logged)	1.566	95% Critical H Value (KM-Log)	3.007
KM Standard Error of Mean (logged)	0.235		

#### **DL/2 Statistics**

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	142	Mean in Log Scale	3.588
SD in Original Scale	441.6	SD in Log Scale	1.554
95% t UCL (Assumes normality)	250.1	95% H-Stat UCL	239.8

# DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use KM H-UCL

243.5

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

#### Benzo(k)fluoranthene

#### **General Statistics**

Total Number of Observations	47	Number of Distinct Observations	47
Number of Detects	43	Number of Non-Detects	4
Number of Distinct Detects	43	Number of Distinct Non-Detects	4
Minimum Detect	0.63	Minimum Non-Detect	11.3
Maximum Detect	2940	Maximum Non-Detect	12.7
Variance Detects	200381	Percent Non-Detects	8.511%
Mean Detects	117.7	SD Detects	447.6
Median Detects	23.5	CV Detects	3.805
Skewness Detects	6.257	Kurtosis Detects	40.19
Mean of Logged Detects	3.11	SD of Logged Detects	1.685

#### Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.254	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.943	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.404	Lilliefors GOF Test

5% Lilliefors Critical Value

0.134

Detected Data Not Normal at 5% Significance Level

# Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	108	KM Standard Error of Mean	62.63
KM SD	424.4	95% KM (BCA) UCL	236.4
95% KM (t) UCL	213.1	95% KM (Percentile Bootstrap) UCL	229.3
95% KM (z) UCL	211	95% KM Bootstrap t UCL	672.4
90% KM Chebyshev UCL	295.9	95% KM Chebyshev UCL	381
97.5% KM Chebyshev UCL	499.1	99% KM Chebyshev UCL	731.1

# Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	3.223
5% A-D Critical Value	0.837
K-S Test Statistic	0.272
5% K-S Critical Value	0.145

Detected Data Not Gamma Distributed at 5% Significance Level

# Gamma Statistics on Detected Data Only

k hat (MLE)	0.397
Theta hat (MLE)	296.1
nu hat (MLE)	34.17
Mean (detects)	117.7

Anderson-Darling GOF Test
Detected Data Not Gamma Distributed at 5% Significance Level
Kolmogorov-Smirnov GOF
Detected Data Not Gamma Distributed at 5% Significance Level

k star (bias corrected MLE)	0.385
Theta star (bias corrected MLE)	305.5
nu star (bias corrected)	33.12

# Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied	d observations	at multiple DLs
GROS may not be used when kstar of detects is small such as <1.0, $\alpha$	especially whe	n the sample size is small (e.g., <15-20)
For such situations, GROS method may yield incorrect values of UCL	s and BTVs	
This is especially true when the sample size is small.		
For gamma distributed detected data, BTVs and UCLs may be compu	uted using gam	ma distribution on KM estimates
Minimum	0.01	Mean

107.6

Maximum	2940
SD	429
k hat (MLE)	0.308
Theta hat (MLE)	349
nu hat (MLE)	28.99
Adjusted Level of Significance (β)	0.0449
Approximate Chi Square Value (28.48, α)	17.3
95% Gamma Approximate UCL (use when n>=50)	177.2

# Estimates of Gamma Parameters using KM Estimates

Mean (KM)	108
Variance (KM)	180073
k hat (KM)	0.0647
nu hat (KM)	6.085
theta hat (KM)	1668
80% gamma percentile (KM)	44.79
95% gamma percentile (KM)	625.2

# Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (7.03, α)	2.187
95% Gamma Approximate KM-UCL (use when n>=50)	347.1
95% Gamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50)	

# Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.974
5% Shapiro Wilk Critical Value	0.943
Lilliefors Test Statistic	0.116
5% Lilliefors Critical Value	0.134
Detected Data appear Lognormal at 5% Significance Level	

Lognormal ROS Statistics Using Imputed Non-Detects

# Median22.5CV3.986k star (bias corrected MLE)0.303Theta star (bias corrected MLE)355.3nu star (bias corrected)28.48

Adjusted Chi Square Value (28.48, $\beta$ )	17.02
95% Gamma Adjusted UCL (use when n<50)	180.1

SD (KM) 424.4   SE of Mean (KM) 62.63   k star (KM) 0.074   nu star (KM) 7.03   theta star (KM) 1444   90% gamma percentile (KM) 244.7   99% gamma percentile (KM) 1974		
SE of Mean (KM) 62.63   k star (KM) 0.074   nu star (KM) 7.03   theta star (KM) 1444   90% gamma percentile (KM) 244.7   99% gamma percentile (KM) 1974	SD (KM)	424.4
k star (KM) 0.074   nu star (KM) 7.03   theta star (KM) 1444   90% gamma percentile (KM) 244.7   99% gamma percentile (KM) 1974	SE of Mean (KM)	62.63
nu star (KM)7.03theta star (KM)144490% gamma percentile (KM)244.799% gamma percentile (KM)1974	k star (KM)	0.0748
theta star (KM)144490% gamma percentile (KM)244.799% gamma percentile (KM)1974	nu star (KM)	7.03
90% gamma percentile (KM)244.199% gamma percentile (KM)1974	theta star (KM)	1444
99% gamma percentile (KM) 1974	90% gamma percentile (KM)	244.7
• • • • •	99% gamma percentile (KM)	1974

Adjusted Chi Square Value (7.03, $\beta$ )	2.103
95% Gamma Adjusted KM-UCL (use when n<50)	361

Shapiro Wilk GOF Test
Detected Data appear Lognormal at 5% Significance Level
Lilliefors GOF Test
Detected Data appear Lognormal at 5% Significance Level

Mean in Original Scale	107.9	Mean in Log Scale	2.949
SD in Original Scale	428.9	SD in Log Scale	1.696
95% t UCL (assumes normality of ROS data)	213	95% Percentile Bootstrap UCL	228.3
95% BCA Bootstrap UCL	302.5	95% Bootstrap t UCL	699.4
95% H-UCL (Log ROS)	177.9		

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	2.935	KM Geo Mean	18.81
KM SD (logged)	1.711	95% Critical H Value (KM-Log)	3.198
KM Standard Error of Mean (logged)	0.256	95% H-UCL (KM -Log)	182.3
KM SD (logged)	1.711	95% Critical H Value (KM-Log)	3.198
KM Standard Error of Mean (logged)	0.256		

#### **DL/2 Statistics**

DL/2 Normal		DL/2 Log-Transformed		
Mean in Original Scale	108.2	Mean in Log Scale	2.998	
SD in Original Scale	428.9	SD in Log Scale	1.652	
95% t UCL (Assumes normality)	213.2	95% H-Stat UCL	167.8	

DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

# Suggested UCL to Use

95% KM (Chebyshev) UCL

381

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

#### Bromomethane

#### **General Statistics**

Total Number of Observations	44	Number of Distinct Observations	34
		Number of Missing Observations	3
Number of Detects	0	Number of Non-Detects	44
Number of Distinct Detects	0	Number of Distinct Non-Detects	34

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

# The data set for variable Bromomethane was not processed!

#### Chloroform

#### **General Statistics**

Total Number of Observations	44	Number of Distinct Observations	28
		Number of Missing Observations	3
Number of Detects	0	Number of Non-Detects	44
Number of Distinct Detects	0	Number of Distinct Non-Detects	28

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Chloroform was not processed!

Chrysene

#### **General Statistics**

Total Number of Observations	47	Number of Distinct Observations	47
Number of Detects	44	Number of Non-Detects	3
Number of Distinct Detects	44	Number of Distinct Non-Detects	3
Minimum Detect	0.65	Minimum Non-Detect	11.6
Maximum Detect	6230	Maximum Non-Detect	12.7
Variance Detects	875185	Percent Non-Detects	6.383%
Mean Detects	238.9	SD Detects	935.5
Median Detects	50.2	CV Detects	3.916
Skewness Detects	6.395	Kurtosis Detects	41.76
Mean of Logged Detects	3.73	SD of Logged Detects	1.819

# Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.245	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.944	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.399	Lilliefors GOF Test
5% Lilliefors Critical Value	0.132	Detected Data Not Normal at 5% Significance Level

# Detected Data Not Normal at 5% Significance Level

# Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	223.9	KM Standard Error of Mean	132.3
KM SD	896.7	95% KM (BCA) UCL	491.2
95% KM (t) UCL	446	95% KM (Percentile Bootstrap) UCL	480.3
95% KM (z) UCL	441.5	95% KM Bootstrap t UCL	1643
90% KM Chebyshev UCL	620.8	95% KM Chebyshev UCL	800.6
97.5% KM Chebyshev UCL	1050	99% KM Chebyshev UCL	1540

# Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	2.744
5% A-D Critical Value	0.842

# Anderson-Darling GOF Test

Detected Data Not Gamma Distributed at 5% Significance Level

K-S Test Statistic	0.229	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.143	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

#### Gamma Statistics on Detected Data Only

k hat (MLE)	0.38	k star (bias corrected MLE)	0.369
Theta hat (MLE)	628.7	Theta star (bias corrected MLE)	647
nu hat (MLE)	33.44	nu star (bias corrected)	32.49
Mean (detects)	238.9		

# Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

# For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	223.6
Maximum	6230	Median	44.5
SD	906.4	CV	4.053
k hat (MLE)	0.31	k star (bias corrected MLE)	0.304
Theta hat (MLE)	721.3	Theta star (bias corrected MLE)	734.6
nu hat (MLE)	29.14	nu star (bias corrected)	28.62
Adjusted Level of Significance (β)	0.0449		
Approximate Chi Square Value (28.62, $\alpha$ )	17.41	Adjusted Chi Square Value (28.62, $\beta$ )	17.13
95% Gamma Approximate UCL (use when n>=50)	367.6	95% Gamma Adjusted UCL (use when n<50)	373.6

#### Estimates of Gamma Parameters using KM Estimates

Mean (KM)	223.9	SD (KM)	896.7
Variance (KM)	803991	SE of Mean (KM)	132.3
k hat (KM)	0.0624	k star (KM)	0.0726
nu hat (KM)	5.862	nu star (KM)	6.821

theta hat (KM)	3591
80% gamma percentile (KM)	87
95% gamma percentile (KM)	1293

# Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (6.82, $\alpha$ )	2.073
95% Gamma Approximate KM-UCL (use when n>=50)	736.8
95% Gamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50)	

# Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.976
5% Shapiro Wilk Critical Value	0.944
Lilliefors Test Statistic	0.115
5% Lilliefors Critical Value	0.132
Detected Data appear Lognormal at 5% Significance Level	

# Lognormal ROS Statistics Using Imputed Non-Detects

•	
Mean in Original Scale	223.9
SD in Original Scale	906.4
95% t UCL (assumes normality of ROS data)	445.8
95% BCA Bootstrap UCL	653.3
95% H-UCL (Log ROS)	500.2

# theta star (KM)308690% gamma percentile (KM)496.699% gamma percentile (KM)4150

Adjusted Chi Square Value (6.82, $\beta$ )	1.991
95% Gamma Adjusted KM-UCL (use when n<50)	767.1

Shapiro Wilk GOF Test
Detected Data appear Lognormal at 5% Significance Level
Lilliefors GOF Test
Detected Data appear Lognormal at 5% Significance Level

Mean in Log Scale	3.582
SD in Log Scale	1.849
95% Percentile Bootstrap UCL	483.7
95% Bootstrap t UCL	1546

# Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	3.563	KM Geo Mean	35.26
KM SD (logged)	1.867	95% Critical H Value (KM-Log)	3.407
KM Standard Error of Mean (logged)	0.278	95% H-UCL (KM -Log)	514.3
KM SD (logged)	1.867	95% Critical H Value (KM-Log)	3.407
KM Standard Error of Mean (logged)	0.278		

# **DL/2 Statistics**

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	224	Mean in Log Scale	3.607
SD in Original Scale	906.3	SD in Log Scale	1.822
95% t UCL (Assumes normality)	446	95% H-Stat UCL	475.8

DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

## Suggested UCL to Use

95% KM (Chebyshev) UCL

800.6

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

# Dibenz(a,h)anthracene

#### **General Statistics**

Total Number of Observations	47	Number of Distinct Observations	42
Number of Detects	38	Number of Non-Detects	9
Number of Distinct Detects	35	Number of Distinct Non-Detects	8
Minimum Detect	1.4	Minimum Non-Detect	11.3
Maximum Detect	1080	Maximum Non-Detect	14.8
Variance Detects	30510	Percent Non-Detects	19.15%
Mean Detects	52.97	SD Detects	174.7
Median Detects	13.8	CV Detects	3.298
Skewness Detects	5.799	Kurtosis Detects	34.75
Mean of Logged Detects	2.714	SD of Logged Detects	1.318

#### Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.283	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.938	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.384	Lilliefors GOF Test
5% Lilliefors Critical Value	0.142	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

#### Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	44.05	KM Standard Error of Mean	23.07
KM SD	156.1	95% KM (BCA) UCL	86.03
95% KM (t) UCL	82.78	95% KM (Percentile Bootstrap) UCL	89.08
95% KM (z) UCL	82	95% KM Bootstrap t UCL	228.7
90% KM Chebyshev UCL	113.3	95% KM Chebyshev UCL	144.6
97.5% KM Chebyshev UCL	188.1	99% KM Chebyshev UCL	273.6

# Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	3.454
5% A-D Critical Value	0.812
K-S Test Statistic	0.27
5% K-S Critical Value	0.151

#### Detected Data Not Gamma Distributed at 5% Significance Level

95% KM Bootstrap t UCL	228
95% KM Chebyshev UCL	144
99% KM Chebyshev UCL	273
Anderson-Darling GOF Test	
Detected Data Not Gamma Distributed at 5% Significance Level	

Kolmogorov-Smirnov GOF

Detected Data Not Gamma Distributed at 5% Significance Level

#### Gamma Statistics on Detected Data Only

k hat (MLE)	0.505	k star (bias corrected MLE)	0.483
Theta hat (MLE)	104.9	Theta star (bias corrected MLE)	109.7
nu hat (MLE)	38.37	nu star (bias corrected)	36.68
Mean (detects)	52.97		

# Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

# For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

# For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	42.83
Maximum	1080	Median	10
SD	158.1	CV	3.691
k hat (MLE)	0.284	k star (bias corrected MLE)	0.281
Theta hat (MLE)	150.5	Theta star (bias corrected MLE)	152.7
nu hat (MLE)	26.74	nu star (bias corrected)	26.37
Adjusted Level of Significance (β)	0.0449		
Approximate Chi Square Value (26.37, $\alpha$ )	15.66	Adjusted Chi Square Value (26.37, $\beta$ )	15.4
95% Gamma Approximate UCL (use when n>=50)	72.09	95% Gamma Adjusted UCL (use when n<50)	73.32

# Estimates of Gamma Parameters using KM Estimates

Mean (KM)	44.05
Variance (KM)	24356
k hat (KM)	0.0797
nu hat (KM)	7.488
theta hat (KM)	552.9
80% gamma percentile (KM)	25.34
95% gamma percentile (KM)	256.7

# Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (8.34, $\alpha$ )	2.935
95% Gamma Approximate KM-UCL (use when n>=50)	125.2
95% Gamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50)	

# Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.953
5% Shapiro Wilk Critical Value	0.938
Lilliefors Test Statistic	0.118

SD (KM)	156.1
SE of Mean (KM)	23.07
k star (KM)	0.0888
nu star (KM)	8.343
theta star (KM)	496.3
90% gamma percentile (KM)	110.9
99% gamma percentile (KM)	742.1

Adjusted Chi Square Value (8.34, $\beta$ )	2.835
95% Gamma Adjusted KM-UCL (use when n<50)	129.7

# Shapiro Wilk GOF Test

Detected Data appear Lognormal at 5% Significance Level Lilliefors GOF Test

5% Lilliefors Critical Value	0.142	Detected Data appear Lognormal at 5% Significance Level				
Detected Data appear Lognormal at 5% Significance Level						
Lognormal ROS Statistics Using Imputed Non-Detects						
Mean in Original Scale	43.92	Mean in Log Scale	2.525			
SD in Original Scale	157.8	SD in Log Scale	1.248			
95% t UCL (assumes normality of ROS data)	82.55	95% Percentile Bootstrap UCL	86.21			
95% BCA Bootstrap UCL	115.2	95% Bootstrap t UCL	229.3			
95% H-UCL (Log ROS)	44.01					
Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution						
KM Mean (logged)	2.516	KM Geo Mean	12.38			
KM SD (logged)	1.269	95% Critical H Value (KM-Log)	2.635			
KM Standard Error of Mean (logged)	0.194	95% H-UCL (KM -Log)	45.35			
KM SD (logged)	1.269	95% Critical H Value (KM-Log)	2.635			
KM Standard Error of Mean (logged)	0.194					
DL/2 Statistics						
DL/2 Normal		DL/2 Log-Transformed				
Mean in Original Scale	44	Mean in Log Scale	2.541			
SD in Original Scale	157.8	SD in Log Scale	1.236			
95% t UCL (Assumes normality)	82.63	95% H-Stat UCL	43.72			
DL/2 is not a recommended method, provided for comparisons and historical reasons						
Nonparametric Distribution Free UCL Statistics						
Detected Data appear Lognormal Distributed at 5% Significance Level						

# Suggested UCL to Use

KM H-UCL

45.35

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.
Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

#### Dibenzofuran

#### **General Statistics**

Total Number of Observations	47	Number of Distinct Observations	38
Number of Detects	9	Number of Non-Detects	38
Number of Distinct Detects	9	Number of Distinct Non-Detects	29
Minimum Detect	75.6	Minimum Non-Detect	355
Maximum Detect	432	Maximum Non-Detect	3830
Variance Detects	13426	Percent Non-Detects	80.85%
Mean Detects	152.1	SD Detects	115.9
Median Detects	98.9	CV Detects	0.762
Skewness Detects	2.169	Kurtosis Detects	4.764
Mean of Logged Detects	4.847	SD of Logged Detects	0.578

#### Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.695	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.829	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.333	Lilliefors GOF Test
5% Lilliefors Critical Value	0.274	Detected Data Not Normal at 5% Significance Level

#### Detected Data Not Normal at 5% Significance Level

#### Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	124.3	KM Standard Error of Mean	19.49
KM SD	67.5	95% KM (BCA) UCL	156.9
95% KM (t) UCL	157	95% KM (Percentile Bootstrap) UCL	159.3
95% KM (z) UCL	156.3	95% KM Bootstrap t UCL	189.4
90% KM Chebyshev UCL	182.8	95% KM Chebyshev UCL	209.2

97.5% KM Chebyshev UCL

246

99% KM Chebyshev UCL

#### Gamma GOF Tests on Detected Observations Only

0.851
0.727
0.275
0.281

Detected data follow Appr. Gamma Distribution at 5% Significance Level

Anderson-Darling GOF Test
Detected Data Not Gamma Distributed at 5% Significance Level
Kolmogorov-Smirnov GOF
Detected data appear Gamma Distributed at 5% Significance Level

#### Gamma Statistics on Detected Data Only

k hat (MLE)	2.965	k star (bias corrected MLE)	2.051
Theta hat (MLE)	51.29	Theta star (bias corrected MLE)	74.16
nu hat (MLE)	53.38	nu star (bias corrected)	36.92
Mean (detects)	152.1		

#### Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	64.71	Mean	121.4
Maximum	432	Median	112.4
SD	55.8	CV	0.46
k hat (MLE)	8.211	k star (bias corrected MLE)	7.701
Theta hat (MLE)	14.78	Theta star (bias corrected MLE)	15.76
nu hat (MLE)	771.9	nu star (bias corrected)	723.9
Adjusted Level of Significance (β)	0.0449		
Approximate Chi Square Value (723.92, $\alpha$ )	662.5	Adjusted Chi Square Value (723.92, β)	660.6
95% Gamma Approximate UCL (use when n>=50)	132.7	95% Gamma Adjusted UCL (use when n<50)	133

318.2

#### Estimates of Gamma Parameters using KM Estimates

Mean (KM)	124.3
Variance (KM)	4557
k hat (KM)	3.39
nu hat (KM)	318.6
theta hat (KM)	36.67
80% gamma percentile (KM)	176
95% gamma percentile (KM)	256.4

#### Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (299.62, α)	
95% Gamma Approximate KM-UCL (use when n>=50)	

#### Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.836
5% Shapiro Wilk Critical Value	0.829
Lilliefors Test Statistic	0.232
5% Lilliefors Critical Value	0.274

#### Detected Data appear Lognormal at 5% Significance Level

#### Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	120.8
SD in Original Scale	53.43
95% t UCL (assumes normality of ROS data)	133.9
95% BCA Bootstrap UCL	141
95% H-UCL (Log ROS)	128.9

SD (KM)	67.5
SE of Mean (KM)	19.49
k star (KM)	3.187
nu star (KM)	299.6
theta star (KM)	38.99
90% gamma percentile (KM)	217.6
99% gamma percentile (KM)	340

Adjusted Chi Square Value (299.62, β)	259.4
95% Gamma Adjusted KM-UCL (use when n<50)	143.6

#### Shapiro Wilk GOF Test

Detected Data appear Lognormal at 5% Significance Level
Lilliefors GOF Test
Detected Data appear Lognormal at 5% Significance Level

Mean in Log Scale	4.742
SD in Log Scale	0.287
95% Percentile Bootstrap UCL	134.6
95% Bootstrap t UCL	149.5

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	4.725	KM Geo Mean	112.7
KM SD (logged)	0.404	95% Critical H Value (KM-Log)	1.825
KM Standard Error of Mean (logged)	0.133	95% H-UCL (KM -Log)	136.4

260.5 142.9

KM SD (logged)	0.404	95% Critical H Value (KM-Log)	1.825
KM Standard Error of Mean (logged)	0.133	( ),	
DL/2 Statistics			
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	228.2	Mean in Log Scale	5.261
SD in Original Scale	257.3	SD in Log Scale	0.462
95% t UCL (Assumes normality)	291.2	95% H-Stat UCL	243.3
DL/2 is not a recommended method, provided for com	parisons and historical rea	sons	
Nonparametric Distribution Free UCL Statistics			
Detected Data appear Approximate Gamma Distribute	ed at 5% Significance Leve	I	
Suggested UCL to Use			
95% KM Adjusted Gamma UCL	143.6	95% GROS Adjusted Gamma UCL	133
When a data set follows an approximate (e.g., normal)	) distribution passing one o	f the GOF test	
When applicable, it is suggested to use a UCL based	upon a distribution (e.g., ga	amma) passing both GOF tests in ProUCL	
Note: Suggestions regarding the selection of a 95% U	CL are provided to help the	e user to select the most appropriate 95% UCL.	
Recommendations are based upon data size, data dis	tribution, and skewness.		
These recommendations are based upon the results of	f the simulation studies sur	mmarized in Singh, Maichle, and Lee (2006).	
However, simulations results will not cover all Real Wo	orld data sets; for additiona	I insight the user may want to consult a statistician.	
Ethylbenzene			
General Statistics			
Total Number of Observations	44	Number of Distinct Observations	28
		Number of Missing Observations	3
Number of Detects	0	Number of Non-Detects	44

0

Number of Distinct Non-Detects

28

Number of Distinct Detects

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Ethylbenzene was not processed!

#### Fluoranthene

#### **General Statistics**

Total Number of Observations	47	Number of Distinct Observations	46
Number of Detects	41	Number of Non-Detects	6
Number of Distinct Detects	40	Number of Distinct Non-Detects	6
Minimum Detect	2.6	Minimum Non-Detect	11.3
Maximum Detect	11000	Maximum Non-Detect	12.7
Variance Detects	2945261	Percent Non-Detects	12.77%
Mean Detects	454.5	SD Detects	1716
Median Detects	113	CV Detects	3.776
Skewness Detects	6.099	Kurtosis Detects	38.19
Mean of Logged Detects	4.448	SD of Logged Detects	1.668

#### Normal GOF Test on Detects Only

0.258	Shapiro Wilk GOF Test
0.941	Detected Data Not Normal at 5% Significance Level
0.396	Lilliefors GOF Test
0.137	Detected Data Not Normal at 5% Significance Level
	0.258 0.941 0.396 0.137

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean

397.2 KM Standard Error of Mean

KM SD	1590	95% KM (BCA) UCL	885.4
95% KM (t) UCL	791.4	95% KM (Percentile Bootstrap) UCL	852.2
95% KM (z) UCL	783.5	95% KM Bootstrap t UCL	2841
90% KM Chebyshev UCL	1102	95% KM Chebyshev UCL	1421
97.5% KM Chebyshev UCL	1864	99% KM Chebyshev UCL	2734

#### Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	3.087
5% A-D Critical Value	0.837
K-S Test Statistic	0.225
5% K-S Critical Value	0.148

Detected Data Not Gamma Distributed at 5% Significance Level
Kolmogorov-Smirnov GOF
Detected Data Not Gamma Distributed at 5% Significance Level

0.382 1190 31.33

Anderson-Darling GOF Test

#### Detected Data Not Gamma Distributed at 5% Significance Level

#### Gamma Statistics on Detected Data Only

k hat (MLE)	0.395	k star (bias corrected MLE)
Theta hat (MLE)	1152	Theta star (bias corrected MLE)
nu hat (MLE)	32.36	nu star (bias corrected)
Mean (detects)	454.5	

#### Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs wit	h many tied observatio	ns at multiple DLs	
GROS may not be used when kstar of detects is small such	h as <1.0, especially w	hen the sample size is small (e.g., <15-20)	
For such situations, GROS method may yield incorrect value	ues of UCLs and BTVs		
This is especially true when the sample size is small.			
For gamma distributed detected data, BTVs and UCLs may	y be computed using g	amma distribution on KM estimates	
Minimum	0.01	Mean	396.5
Maximum	11000	Median	76.9
SD	1608	CV	4.054
k hat (MLE)	0.262	k star (bias corrected MLE)	0.259
Theta hat (MLE)	1513	Theta star (bias corrected MLE)	1528
nu hat (MLE)	24.63	nu star (bias corrected)	24.39

Adjusted Level of Significance (β)	0.0449
Approximate Chi Square Value (24.39, α)	14.15
95% Gamma Approximate UCL (use when n>=50)	683.7

#### Estimates of Gamma Parameters using KM Estimates

Mean (KM)	397.2
Variance (KM)	2529099
k hat (KM)	0.0624
nu hat (KM)	5.863
theta hat (KM)	6368
80% gamma percentile (KM)	154.4
95% gamma percentile (KM)	2294

#### Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (6.82, $\alpha$ )	2.073
95% Gamma Approximate KM-UCL (use when n>=50)	1307
95% Gamma Adjusted KM-UCL (use when k<=1 and $15 < n < 50$ )	

#### Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.981
5% Shapiro Wilk Critical Value	0.941
Lilliefors Test Statistic	0.0786
5% Lilliefors Critical Value	0.137
Detected Data appear Lognormal at 5% Significance Level	

#### Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	397.2
SD in Original Scale	1607
95% t UCL (assumes normality of ROS data)	790.8
95% BCA Bootstrap UCL	1145
95% H-UCL (Log ROS)	756.7

Adjusted Chi Square Value (24.39, $\beta$ )	13.9
95% Gamma Adjusted UCL (use when n<50)	695.9

# SD (KM) 1590 SE of Mean (KM) 234.9 k star (KM) 0.0726 nu star (KM) 6.822 theta star (KM) 5473 90% gamma percentile (KM) 881 99% gamma percentile (KM) 7362

Adjusted Chi Square Value (6.82, $\beta$ )	1.992
95% Gamma Adjusted KM-UCL (use when n<50)	1360

#### Shapiro Wilk GOF Test

Detected Data appear Lognormal at 5% Significance Level Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Level

Mean in Log Scale	4.097
SD in Log Scale	1.812
95% Percentile Bootstrap UCL	847.4
95% Bootstrap t UCL	2985

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	4.076	KM Geo Mean	58.94
KM SD (logged)	1.827	95% Critical H Value (KM-Log)	3.353
KM Standard Error of Mean (logged)	0.272	95% H-UCL (KM -Log)	771.5
KM SD (logged)	1.827	95% Critical H Value (KM-Log)	3.353
KM Standard Error of Mean (logged)	0.272		

#### **DL/2 Statistics**

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	397.3	Mean in Log Scale	4.109
SD in Original Scale	1607	SD in Log Scale	1.796
95% t UCL (Assumes normality)	790.9	95% H-Stat UCL	733.6

DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

#### Suggested UCL to Use

95% KM (Chebyshev) UCL

1421

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

#### Fluorene

#### **General Statistics**

Total Number of Observations	47	Number of Distinct Observations	44
Number of Detects	37	Number of Non-Detects	10

Number of Distinct Detects	34	Number of Distinct Non-Detects	10
Minimum Detect	0.68	Minimum Non-Detect	11
Maximum Detect	1860	Maximum Non-Detect	14.8
Variance Detects	92659	Percent Non-Detects	21.28%
Mean Detects	62.93	SD Detects	304.4
Median Detects	5.7	CV Detects	4.837
Skewness Detects	6.036	Kurtosis Detects	36.6
Mean of Logged Detects	1.796	SD of Logged Detects	1.639

#### Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.206	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.936	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.429	Lilliefors GOF Test
5% Lilliefors Critical Value	0.144	Detected Data Not Normal at 5% Significance Level

#### Detected Data Not Normal at 5% Significance Level

#### Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	50.45	KM Standard Error of Mean
KM SD	267.5	95% KM (BCA) UCL
95% KM (t) UCL	116.9	95% KM (Percentile Bootstrap) UCL
95% KM (z) UCL	115.5	95% KM Bootstrap t UCL
90% KM Chebyshev UCL	169.1	95% KM Chebyshev UCL
97.5% KM Chebyshev UCL	297.5	99% KM Chebyshev UCL

#### Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	5.496
5% A-D Critical Value	0.86
K-S Test Statistic	0.314
5% K-S Critical Value	0.158

Detected Data Not Gamma Distributed at 5% Significance Level

KM Standard Error of Mean	39.56
95% KM (BCA) UCL	130.5
95% KM (Percentile Bootstrap) UCL	128.4
95% KM Bootstrap t UCL	898
95% KM Chebyshev UCL	222.9
99% KM Chebyshev UCL	444

Anderson-Darling GOF Test
Detected Data Not Gamma Distributed at 5% Significance Level
Kolmogorov-Smirnov GOF
Detected Data Not Gamma Distributed at 5% Significance Level

#### Gamma Statistics on Detected Data Only

k hat (MLE)	0.295	k star (bias corrected MLE)	0.289
Theta hat (MLE)	213.4	Theta star (bias corrected MLE)	217.8
nu hat (MLE)	21.82	nu star (bias corrected)	21.38
Mean (detects)	62.93		

#### Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	49.54
Maximum	1860	Median	2.8
SD	270.5	CV	5.461
k hat (MLE)	0.21	k star (bias corrected MLE)	0.211
Theta hat (MLE)	235.4	Theta star (bias corrected MLE)	234.5
nu hat (MLE)	19.79	nu star (bias corrected)	19.86
Adjusted Level of Significance (β)	0.0449		
Approximate Chi Square Value (19.86, $\alpha$ )	10.74	Adjusted Chi Square Value (19.86, $\beta$ )	10.53
95% Gamma Approximate UCL (use when n>=50)	91.55	95% Gamma Adjusted UCL (use when n<50)	93.4

#### Estimates of Gamma Parameters using KM Estimates

Mean (KM)	50.45	SD (KM)	267.5
Variance (KM)	71551	SE of Mean (KM)	39.56
k hat (KM)	0.0356	k star (KM)	0.0475
nu hat (KM)	3.344	nu star (KM)	4.464
theta hat (KM)	1418	theta star (KM)	1062
80% gamma percentile (KM)	5.67	90% gamma percentile (KM)	71.81
95% gamma percentile (KM)	263.1	99% gamma percentile (KM)	1120

#### Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (4.46, α)	0.913
95% Gamma Approximate KM-UCL (use when n>=50)	246.7
95% Gamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50)	

#### Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.912
5% Shapiro Wilk Critical Value	0.936
Lilliefors Test Statistic	0.135
5% Lilliefors Critical Value	0.144

Detected Data appear Approximate Lognormal at 5% Significance Level

#### Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	50.31
SD in Original Scale	270.4
95% t UCL (assumes normality of ROS data)	116.5
95% BCA Bootstrap UCL	169.3
95% H-UCL (Log ROS)	29.44

Adjusted Chi Square Value (4.46, β)	0.865
95% Gamma Adjusted KM-UCL (use when n<50)	260.4

#### Shapiro Wilk GOF Test

Detected Data Not Lognormal at 5% Significance Level

#### Lilliefors GOF Test

Detected Data appear Lognormal at 5% Significance Level

Mean in Log Scale	1.688
SD in Log Scale	1.465
95% Percentile Bootstrap UCL	129.2
95% Bootstrap t UCL	886.2

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	1.65	KM Geo Mean	5.207
KM SD (logged)	1.517	95% Critical H Value (KM-Log)	2.943
KM Standard Error of Mean (logged)	0.235	95% H-UCL (KM -Log)	31.77
KM SD (logged)	1.517	95% Critical H Value (KM-Log)	2.943
KM Standard Error of Mean (logged)	0.235		

#### **DL/2 Statistics**

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	50.84	Mean in Log Scale	1.798
SD in Original Scale	270.3	SD in Log Scale	1.45
95% t UCL (Assumes normality)	117	95% H-Stat UCL	31.84

#### DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Lognormal Distributed at 5% Significance Level

# Suggested UCL to Use

95% KM (Chebyshev) UCL

222.9

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

#### Indeno(1,2,3-cd)pyrene

#### **General Statistics**

Total Number of Observations	47	Number of Distinct Observations	46
Number of Detects	40	Number of Non-Detects	7
Number of Distinct Detects	39	Number of Distinct Non-Detects	7
Minimum Detect	2.2	Minimum Non-Detect	11.3
Maximum Detect	2720	Maximum Non-Detect	14.8
Variance Detects	185355	Percent Non-Detects	14.89%
Mean Detects	140.2	SD Detects	430.5
Median Detects	38.7	CV Detects	3.071
Skewness Detects	5.812	Kurtosis Detects	35.33
Mean of Logged Detects	3.67	SD of Logged Detects	1.464
Normal GOF Test on Detects Only			

Shapiro Wilk Test Statistic	0.307	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.94	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.374	Lilliefors GOF Test

5% Lilliefors Critical Value

0.139

Detected Data Not Normal at 5% Significance Level

#### Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	120.2	KM Standard Error of Mean	58.36
KM SD	395.1	95% KM (BCA) UCL	242.9
95% KM (t) UCL	218.2	95% KM (Percentile Bootstrap) UCL	231.1
95% KM (z) UCL	216.2	95% KM Bootstrap t UCL	543.4
90% KM Chebyshev UCL	295.3	95% KM Chebyshev UCL	374.6
97.5% KM Chebyshev UCL	484.7	99% KM Chebyshev UCL	700.9

#### Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	2.499
5% A-D Critical Value	0.813
K-S Test Statistic	0.23
5% K-S Critical Value	0.148

Detected Data Not Gamma Distributed at 5% Significance Level

# Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov GOF

Detected Data Not Gamma Distributed at 5% Significance Level

#### Gamma Statistics on Detected Data Only

k hat (MLE)	0.499	k star (bias corrected MLE)	0.478
Theta hat (MLE)	280.8	Theta star (bias corrected MLE)	293
nu hat (MLE)	39.94	nu star (bias corrected)	38.27
Mean (detects)	140.2		

#### Gamma ROS Statistics using Imputed Non-Detects

Minimum	0.01	Mean	
For gamma distributed detected data, BTVs and UCL	s may be computed using gam	ma distribution on KM est	imates
This is especially true when the sample size is small.			
For such situations, GROS method may yield incorre-	ct values of UCLs and BTVs		
GROS may not be used when kstar of detects is sma	II such as <1.0, especially whe	n the sample size is small	(e.g., <15-20)
GROS may not be used when data set has > 50% NE	Os with many tied observations	at multiple DLs	

Maximum	2720	Median
SD	399.6	CV
k hat (MLE)	0.295	k star (l
Theta hat (MLE)	404.4	Theta s
nu hat (MLE)	27.73	nu star
Adjusted Level of Significance (β)	0.0449	
Approximate Chi Square Value (27.29, α)	16.38	Adjuste
95% Gamma Approximate UCL (use when n>=50)	198.8	95% Ga

#### Estimates of Gamma Parameters using KM Estimates

Mean (KM)	120.2
Variance (KM)	156084
k hat (KM)	0.0926
nu hat (KM)	8.703
theta hat (KM)	1298
80% gamma percentile (KM)	84.45
95% gamma percentile (KM)	697.4

#### Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (9.48, α)	3.62
95% Gamma Approximate KM-UCL (use when n>=50)	314.8
95% Gamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50)	

#### Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.975
5% Shapiro Wilk Critical Value	0.94
Lilliefors Test Statistic	0.114
5% Lilliefors Critical Value	0.139
Detected Data appear Lognormal at 5% Significance Level	

Lognormal ROS Statistics Using Imputed Non-Detects

# Median 30.5 CV 3.35

k star (bias corrected MLE)0.29Theta star (bias corrected MLE)410.9nu star (bias corrected)27.29

Adjusted Chi Square Value (27.29, β)	16.11
95% Gamma Adjusted UCL (use when n<50)	202.1

SD (KM)	395.1
SE of Mean (KM)	58.36
k star (KM)	0.101
nu star (KM)	9.481
theta star (KM)	1192
90% gamma percentile (KM)	321.1
99% gamma percentile (KM)	1901

Adjusted Chi Square Value (9.48, $\beta$ )	3.506
95% Gamma Adjusted KM-UCL (use when n<50)	325.1

Shapiro Wilk GOF Test
Detected Data appear Lognormal at 5% Significance Level
Lilliefors GOF Test
Detected Data appear Lognormal at 5% Significance Level

Mean in Original Scale	120.2	Mean in Log Scale	3.396
SD in Original Scale	399.3	SD in Log Scale	1.501
95% t UCL (assumes normality of ROS data)	218	95% Percentile Bootstrap UCL	228.6
95% BCA Bootstrap UCL	292.7	95% Bootstrap t UCL	527.2
95% H-UCL (Log ROS)	176.1		

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	3.376	KM Geo Mean	29.26
KM SD (logged)	1.52	95% Critical H Value (KM-Log)	2.947
KM Standard Error of Mean (logged)	0.228	95% H-UCL (KM -Log)	179.7
KM SD (logged)	1.52	95% Critical H Value (KM-Log)	2.947
KM Standard Error of Mean (logged)	0.228		

#### **DL/2 Statistics**

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	120.2	Mean in Log Scale	3.394
SD in Original Scale	399.3	SD in Log Scale	1.504
95% t UCL (Assumes normality)	218	95% H-Stat UCL	176.8

DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use		
KM H-UCL		

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

179.7

#### m&p-Xylene

#### **General Statistics**

Total Number of Observations	44	Number of Distinct Observations	34
		Number of Missing Observations	3
Number of Detects	0	Number of Non-Detects	44
Number of Distinct Detects	0	Number of Distinct Non-Detects	34

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable m&p-Xylene was not processed!

#### Methylene chloride

#### **General Statistics**

Total Number of Observations	44	Number of Distinct Observations	38
		Number of Missing Observations	3
Number of Detects	2	Number of Non-Detects	42
Number of Distinct Detects	2	Number of Distinct Non-Detects	36
Minimum Detect	502	Minimum Non-Detect	15.7
Maximum Detect	628	Maximum Non-Detect	613
Variance Detects	7938	Percent Non-Detects	95.45%
Mean Detects	565	SD Detects	89.1
Median Detects	565	CV Detects	0.158
Skewness Detects	N/A	Kurtosis Detects	N/A
Mean of Logged Detects	6.331	SD of Logged Detects	0.158

#### Warning: Data set has only 2 Detected Values.

#### This is not enough to compute meaningful or reliable statistics and estimates.

#### Normal GOF Test on Detects Only

#### Not Enough Data to Perform GOF Test

#### Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	41.5	KM Standard Error of Mean	25.28
KM SD	116.8	95% KM (BCA) UCL	N/A
95% KM (t) UCL	83.99	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	83.07	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	117.3	95% KM Chebyshev UCL	151.7
97.5% KM Chebyshev UCL	199.3	99% KM Chebyshev UCL	293

#### Gamma GOF Tests on Detected Observations Only

#### Not Enough Data to Perform GOF Test

#### Gamma Statistics on Detected Data Only

k hat (MLE)	80.09	k star (bias corrected MLE)	N/A
Theta hat (MLE)	7.054	Theta star (bias corrected MLE)	N/A
nu hat (MLE)	320.4	nu star (bias corrected)	N/A
Mean (detects)	565		

#### Estimates of Gamma Parameters using KM Estimates

Mean (KM)	41.5
Variance (KM)	13633
k hat (KM)	0.126
nu hat (KM)	11.12
theta hat (KM)	328.5
80% gamma percentile (KM)	40.51
95% gamma percentile (KM)	233.4

SD (KM)	116.8
SE of Mean (KM)	25.28
k star (KM)	0.133
nu star (KM)	11.69
theta star (KM)	312.4
90% gamma percentile (KM)	120.5
99% gamma percentile (KM)	569.6

#### Gamma Kaplan-Meier (KM) Statistics

		Adjusted Level of Significance (β)	0.0445
Approximate Chi Square Value (11.69, α)	5.024	Adjusted Chi Square Value (11.69, $\beta$ )	4.876
95% Gamma Approximate KM-UCL (use when n>=50)	96.56	95% Gamma Adjusted KM-UCL (use when n<50)	99.5

#### Lognormal GOF Test on Detected Observations Only

#### Not Enough Data to Perform GOF Test

#### Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	221.6	Mean in Log Scale	5.364
SD in Original Scale	80.17	SD in Log Scale	0.24
95% t UCL (assumes normality of ROS data)	241.9	95% Percentile Bootstrap UCL	243.5
95% BCA Bootstrap UCL	252.7	95% Bootstrap t UCL	286.5
95% H-UCL (Log ROS)	234.2		

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	2.922	KM Geo Mean	18.58
KM SD (logged)	0.758	95% Critical H Value (KM-Log)	2.12
KM Standard Error of Mean (logged)	0.165	95% H-UCL (KM -Log)	31.63
KM SD (logged)	0.758	95% Critical H Value (KM-Log)	2.12
KM Standard Error of Mean (logged)	0.165		

#### **DL/2 Statistics**

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	59.65	Mean in Log Scale	2.788
SD in Original Scale	136.9	SD in Log Scale	1.249
95% t UCL (Assumes normality)	94.34	95% H-Stat UCL	58.81

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

#### Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use			
95% KM (t) UCL	83.99	KM H-UCL	31.63
95% KM (BCA) UCL	N/A		
Warning: One or more Recommended UCL(s) not available!			

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

#### Naphthalene

#### **General Statistics**

Total Number of Observations	44	Number of Distinct Observations	33
		Number of Missing Observations	3
Number of Detects	13	Number of Non-Detects	31
Number of Distinct Detects	11	Number of Distinct Non-Detects	22
Minimum Detect	0.93	Minimum Non-Detect	4
Maximum Detect	85.2	Maximum Non-Detect	149
Variance Detects	817.1	Percent Non-Detects	70.45%
Mean Detects	19.99	SD Detects	28.58
Median Detects	9.6	CV Detects	1.43
Skewness Detects	1.758	Kurtosis Detects	1.84
Mean of Logged Detects	2.066	SD of Logged Detects	1.465

#### Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.669
5% Shapiro Wilk Critical Value	0.866
Lilliefors Test Statistic	0.398

Shapiro Wilk GOF Test
Detected Data Not Normal at 5% Significance Level
Lilliefors GOF Test

5% Lilliefors Critical Value

0.234

Detected Data Not Normal at 5% Significance Level

#### Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	7.735	KM Standard Error of Mean	2.879
KM SD	17.59	95% KM (BCA) UCL	13.42
95% KM (t) UCL	12.57	95% KM (Percentile Bootstrap) UCL	12.71
95% KM (z) UCL	12.47	95% KM Bootstrap t UCL	20.54
90% KM Chebyshev UCL	16.37	95% KM Chebyshev UCL	20.29
97.5% KM Chebyshev UCL	25.72	99% KM Chebyshev UCL	36.38

#### Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.743
5% A-D Critical Value	0.778
K-S Test Statistic	0.283
5% K-S Critical Value	0.247

Detected data follow Appr. Gamma Distribution at 5% Significance Level

#### Gamma Statistics on Detected Data Only

k hat (MLE)	0.656
Theta hat (MLE)	30.45
nu hat (MLE)	17.07
Mean (detects)	19.99

Anderson-Darling GOF Test
Detected data appear Gamma Distributed at 5% Significance Level
Kolmogorov-Smirnov GOF

Detected Data Not Gamma Distributed at 5% Significance Level

k star (bias corrected MLE) 0	.556
Theta star (bias corrected MLE) 3	5.94
nu star (bias corrected) 1	4.46

#### Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied	d observations	at multiple DLs	
GROS may not be used when kstar of detects is small such as <1.0, $\epsilon$	especially wher	ו the sample size is small (e.g., <15-20)	
For such situations, GROS method may yield incorrect values of UCLs and BTVs			
This is especially true when the sample size is small.			
For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates			
Minimum	0.01	Mean	

6.01

Maximum	85.2	Median	0.01
SD	17.67	CV	2.94
k hat (MLE)	0.179	k star (bias corrected MLE)	0.182
Theta hat (MLE)	33.63	Theta star (bias corrected MLE)	33.08
nu hat (MLE)	15.73	nu star (bias corrected)	15.99
Adjusted Level of Significance (β)	0.0445		
Approximate Chi Square Value (15.99, α)	7.954	Adjusted Chi Square Value (15.99, β)	7.761
95% Gamma Approximate UCL (use when n>=50)	12.08	95% Gamma Adjusted UCL (use when n<50)	12.38

Mean (KM)	7.735
Variance (KM)	309.5
k hat (KM)	0.193
nu hat (KM)	17.01
theta hat (KM)	40.01
80% gamma percentile (KM)	10.06
95% gamma percentile (KM)	40.1

#### Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (17.18, $\alpha$ )	8.804
95% Gamma Approximate KM-UCL (use when n>=50)	15.1

Lognormal (	GOF Test or	n Detected	Observations	Only
-------------	-------------	------------	--------------	------

Shapiro Wilk Test Statistic	0.93
5% Shapiro Wilk Critical Value	0.866
Lilliefors Test Statistic	0.189
5% Lilliefors Critical Value	0.234
Detected Data appear Lognormal at 5% Significance Level	

#### Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale

SD (KM)	17.59
SE of Mean (KM)	2.879
k star (KM)	0.195
nu star (KM)	17.18
theta star (KM)	39.61
90% gamma percentile (KM)	23.39
99% gamma percentile (KM)	86.29

Adjusted Chi Square Value (17.18, $\beta$ )	8.6
95% Gamma Adjusted KM-UCL (use when n<50)	15.46

Shapiro Wilk GOF Test	
Detected Data appear Lognormal at 5% Significance L	.evel
Lilliefors GOF Test	
Detected Data appear Lognormal at 5% Significance L	.evel

Mean in Log Scale

7.388

SD in Original Scale	17.22	SD in Log Scale	1.079
95% t UCL (assumes normality of ROS data)	11.75	95% Percentile Bootstrap UCL	11.68
95% BCA Bootstrap UCL	13.76	95% Bootstrap t UCL	18.17
95% H-UCL (Log ROS)	7.82		

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	1.06	KM Geo Mean	2.887
KM SD (logged)	1.127	95% Critical H Value (KM-Log)	2.512
KM Standard Error of Mean (logged)	0.252	95% H-UCL (KM -Log)	8.391
KM SD (logged)	1.127	95% Critical H Value (KM-Log)	2.512
KM Standard Error of Mean (logged)	0.252		

#### **DL/2 Statistics**

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	11.68	Mean in Log Scale	1.471
SD in Original Scale	21.93	SD in Log Scale	1.187
95% t UCL (Assumes normality)	17.24	95% H-Stat UCL	14.05

DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Gamma Distributed at 5% Significance Level

#### Suggested UCL to Use

Gamma Adjusted KM-UCL (use when  $k \le 1$  and  $15 \le n \le 50$  but 15.46  $k \le 1$ )

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

#### Percent Moisture

#### **General Statistics**

Total Number of Observations	47	Number of Distinct Observations	38
		Number of Missing Observations	0
Minimum	5.4	Mean	17.12
Maximum	43.3	Median	16
SD	5.817	Std. Error of Mean	0.848
Coefficient of Variation	0.34	Skewness	2.254
Normal GOF Test			
Shapiro Wilk Test Statistic	0.82	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.946	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.18	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.128	Data Not Normal at 5% Significance Level	

18.54

#### Data Not Normal at 5% Significance Level

Assuming	Normal	Distribution
----------	--------	--------------

95% Normal UCL 95% Student's-t UCL

#### Gamma GOF Test

A-D Test Statistic	1.412
5% A-D Critical Value	0.749
K-S Test Statistic	0.135
5% K-S Critical Value	0.129

Data Not Normal at 5% Significance Level

#### 95% UCLs (Adjusted for Skewness)

95% Adjusted-CLT UCL (Chen-1995)	18.81
95% Modified-t UCL (Johnson-1978)	18.59

#### Anderson-Darling Gamma GOF Test

Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test

Data Not Gamma Distributed at 5% Significance Level

#### Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics			
k hat (MLE)	10.56	k star (bias corrected MLE)	9.899
Theta hat (MLE)	1.621	Theta star (bias corrected MLE)	1.729
nu hat (MLE)	992.5	nu star (bias corrected)	930.5
MLE Mean (bias corrected)	17.12	MLE Sd (bias corrected)	5.441
		Approximate Chi Square Value (0.05)	860.7
Adjusted Level of Significance	0.0449	Adjusted Chi Square Value	858.6
Assuming Gamma Distribution			
95% Approximate Gamma UCL (use when n>=50))	18.51	95% Adjusted Gamma UCL (use when n<50)	18.55
Lognormal GOF Test			
Shapiro Wilk Test Statistic	0.925	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.946	Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.145	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.128	Data Not Lognormal at 5% Significance Level	
Data Not Lognormal at 5% Significance Level			
Lognormal Statistics			
Minimum of Logged Data	1.686	Mean of logged Data	2.792
Maximum of Logged Data	3.768	SD of logged Data	0.312
Assuming Lognormal Distribution			
95% H-UCL	18.59	90% Chebyshev (MVUE) UCL	19.5
95% Chebyshev (MVUE) UCL	20.58	97.5% Chebyshev (MVUE) UCL	22.08
99% Chebyshev (MVUE) UCL	25.03		

Data do not follow a Discernible Distribution (0.05)

#### Nonparametric Distribution Free UCLs

95% CLT UCL	18.51	95% Jackknife UCL	18.54
95% Standard Bootstrap UCL	18.54	95% Bootstrap-t UCL	18.9
95% Hall's Bootstrap UCL	19.65	95% Percentile Bootstrap UCL	18.54
95% BCA Bootstrap UCL	18.76		
90% Chebyshev(Mean, Sd) UCL	19.66	95% Chebyshev(Mean, Sd) UCL	20.82
97.5% Chebyshev(Mean, Sd) UCL	22.42	99% Chebyshev(Mean, Sd) UCL	25.56
Suggested UCL to Use			
95% Student's-t UCL	18.54	or 95% Modified-t UCL	18.59

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

#### Phenanthrene

#### **General Statistics**

Total Number of Observations	47	Number of Distinct Observations	47
Number of Detects	41	Number of Non-Detects	6
Number of Distinct Detects	41	Number of Distinct Non-Detects	6
Minimum Detect	1.6	Minimum Non-Detect	11.3
Maximum Detect	9410	Maximum Non-Detect	12.7
Variance Detects	2125683	Percent Non-Detects	12.77%
Mean Detects	386.6	SD Detects	1458
Median Detects	101	CV Detects	3.772
Skewness Detects	6.223	Kurtosis Detects	39.38
Mean of Logged Detects	4.379	SD of Logged Detects	1.693

#### Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.246	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.941	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.397	Lilliefors GOF Test
5% Lilliefors Critical Value	0.137	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

#### Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	337.9	KM Standard Error of Mean	199.5
KM SD	1351	95% KM (BCA) UCL	769.1
95% KM (t) UCL	672.8	95% KM (Percentile Bootstrap) UCL	728.6
95% KM (z) UCL	666.1	95% KM Bootstrap t UCL	2497
90% KM Chebyshev UCL	936.5	95% KM Chebyshev UCL	1208
97.5% KM Chebyshev UCL	1584	99% KM Chebyshev UCL	2323

#### Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	2.629	Anderson-Darling GOF
5% A-D Critical Value	0.833	Detected Data Not Gar
K-S Test Statistic	0.219	Kolmogorov-Smirnov C
5% K-S Critical Value	0.148	Detected Data Not Gar

#### Detected Data Not Gamma Distributed at 5% Significance Level

Anderson-Darling	g GOF Test
Detected Data N	ot Gamma Distributed at 5% Significance Level
Kolmogorov-Smi	irnov GOF
Detected Data N	ot Gamma Distributed at 5% Significance Level

#### Gamma Statistics on Detected Data Only

k hat (MLE)	0.414	k star (bias corrected MLE)	0.4
Theta hat (MLE)	932.6	Theta star (bias corrected MLE)	965.4
nu hat (MLE)	33.99	nu star (bias corrected)	32.83
Mean (detects)	386.6		

#### Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

#### For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

#### For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	337.2
Maximum	9410	Median	76.3
SD	1366	CV	4.05
k hat (MLE)	0.271	k star (bias corrected MLE)	0.268
Theta hat (MLE)	1245	Theta star (bias corrected MLE)	1260
nu hat (MLE)	25.46	nu star (bias corrected)	25.17
Adjusted Level of Significance (β)	0.0449		
Approximate Chi Square Value (25.17, $\alpha$ )	14.74	Adjusted Chi Square Value (25.17, $\beta$ )	14.49
95% Gamma Approximate UCL (use when n>=50)	575.8	95% Gamma Adjusted UCL (use when n<50)	585.9

#### Estimates of Gamma Parameters using KM Estimates

Mean (KM)	337.9	SD (KM)
Variance (KM)	1825269	SE of Mean (KM)
k hat (KM)	0.0626	k star (KM)
nu hat (KM)	5.881	nu star (KM)
theta hat (KM)	5401	theta star (KM)
80% gamma percentile (KM)	132.1	90% gamma percentile (KM)
95% gamma percentile (KM)	1952	99% gamma percentile (KM)

#### Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (6.84, $\alpha$ )	2.082
95% Gamma Approximate KM-UCL (use when n>=50)	1110
95% Gamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50)	

#### Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.972
5% Shapiro Wilk Critical Value	0.941
Lilliefors Test Statistic	0.129

SD (KM)	1351
SE of Mean (KM)	199.5
k star (KM)	0.0728
nu star (KM)	6.839
theta star (KM)	4645
90% gamma percentile (KM)	750.9
99% gamma percentile (KM)	6256

Adjusted Chi Square Value (6.84, $\beta$ )	2.001
95% Gamma Adjusted KM-UCL (use when n<50)	1155

#### Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Level

#### Lilliefors GOF Test

Detected Data appear Lognormal at 5% Significance Level

5% Lilliefors Critical Value 0.137

Detected Data appear Lognormal at 5% Significance Level

#### Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	338	Mean in Log Scale	4.057
SD in Original Scale	1366	SD in Log Scale	1.794
95% t UCL (assumes normality of ROS data)	672.4	95% Percentile Bootstrap UCL	724.4
95% BCA Bootstrap UCL	953.3	95% Bootstrap t UCL	2462
95% H-UCL (Log ROS)	692.7		

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

55.46	KM Geo Mean	4.016	KM Mean (logged)
3.372	95% Critical H Value (KM-Log)	1.841	KM SD (logged)
754.5	95% H-UCL (KM -Log)	0.276	KM Standard Error of Mean (logged)
3.372	95% Critical H Value (KM-Log)	1.841	KM SD (logged)
		0.276	KM Standard Error of Mean (logged)

#### **DL/2 Statistics**

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	338	Mean in Log Scale	4.048
SD in Original Scale	1366	SD in Log Scale	1.805
95% t UCL (Assumes normality)	672.4	95% H-Stat UCL	706.8

DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

#### Suggested UCL to Use

95% KM (Chebyshev) UCL 1208

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

#### p-lsopropyltoluene

	General Statistics		
Total Number of Observations	44	Number of Distinct Observations	28
		Number of Missing Observations	3
Number of Detects	1	Number of Non-Detects	43
Number of Distinct Detects	1	Number of Distinct Non-Detects	28

Warning: Only one distinct data value was detected! ProUCL (or any other software) should not be used on such a data set! It is suggested to use alternative site specific values determined by the Project Team to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable p-lsopropyltoluene was not processed!

General Statistics

#### Pyrene

Total Number of Observations	47	Number of Distinct Observations	47
Number of Detects	43	Number of Non-Detects	4
Number of Distinct Detects	43	Number of Distinct Non-Detects	4
Minimum Detect	1.3	Minimum Non-Detect	11.3
Maximum Detect	9670	Maximum Non-Detect	12.7
Variance Detects	2175761	Percent Non-Detects	8.511%
Mean Detects	385.9	SD Detects	1475
Median Detects	72.4	CV Detects	3.823
Skewness Detects	6.228	Kurtosis Detects	39.89
Mean of Logged Detects	4.149	SD of Logged Detects	1.839

#### Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.258	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.943	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.397	Lilliefors GOF Test
5% Lilliefors Critical Value	0.134	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

#### Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	353.4	KM Standard Error of Mean	206.4
KM SD	1398	95% KM (BCA) UCL	781.6
95% KM (t) UCL	699.9	95% KM (Percentile Bootstrap) UCL	763.3
95% KM (z) UCL	692.9	95% KM Bootstrap t UCL	2415
90% KM Chebyshev UCL	972.6	95% KM Chebyshev UCL	1253
97.5% KM Chebyshev UCL	1642	99% KM Chebyshev UCL	2407

#### Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	2.812	Anderson-Darling GOF Test
5% A-D Critical Value	0.844	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.243	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.145	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

#### Gamma Statistics on Detected Data Only

0.359	k star (bias corrected MLE)	0.369	k hat (MLE)
1075	Theta star (bias corrected MLE)	1046	Theta hat (MLE)
30.86	nu star (bias corrected)	31.74	nu hat (MLE)
		385.9	Mean (detects)

#### Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

#### For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

#### For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	353
Maximum	9670	Median	69.2
SD	1414	CV	4.004
k hat (MLE)	0.283	k star (bias corrected MLE)	0.279
Theta hat (MLE)	1249	Theta star (bias corrected MLE)	1266
nu hat (MLE)	26.58	nu star (bias corrected)	26.21
Adjusted Level of Significance (β)	0.0449		
Approximate Chi Square Value (26.21, $\alpha$ )	15.54	Adjusted Chi Square Value (26.21, $\beta$ )	15.28
95% Gamma Approximate UCL (use when n>=50)	595.4	95% Gamma Adjusted UCL (use when n<50)	605.5

#### Estimates of Gamma Parameters using KM Estimates

1398	SD (KM)	353.4	Mean (KM)
206.4	SE of Mean (KM)	1955637	Variance (KM)
0.074	k star (KM)	0.0639	k hat (KM)
6.953	nu star (KM)	6.003	nu hat (KM)
4778	theta star (KM)	5534	theta hat (KM)
794.8	90% gamma percentile (KM)	143.2	80% gamma percentile (KM)
6493	99% gamma percentile (KM)	2044	95% gamma percentile (KM)

#### Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (6.95, $\alpha$ )	2.145	Adjusted Chi Square Value (6.95, $\beta$ )	2.061
95% Gamma Approximate KM-UCL (use when n>=50)	1146	95% Gamma Adjusted KM-UCL (use when n<50)	1192

95% Gamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50)

5%

Lognormal GOI	F Test on Detected Obs	servations Only
Shapiro Wilk Test Statistic	0.979	Shapiro Wilk GOF Test
Shapiro Wilk Critical Value	0.943	Detected Data appear Lognormal at 5% Significance Level

#### Lilliefors GOF Test

Lilliefors Test Statistic 0.0892

Detected Data appear Lognormal at 5% Significance Level

5% Lilliefors Critical Value

0.134

Detected Data appear Lognormal at 5% Significance Level

#### Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	353.4	Mean in Log Scale	3.924
SD in Original Scale	1414	SD in Log Scale	1.909
95% t UCL (assumes normality of ROS data)	699.5	95% Percentile Bootstrap UCL	755.9
95% BCA Bootstrap UCL	1095	95% Bootstrap t UCL	2361
95% H-UCL (Log ROS)	830.3		

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	3.898	KM Geo Mean	49.31
KM SD (logged)	1.934	95% Critical H Value (KM-Log)	3.5
KM Standard Error of Mean (logged)	0.288	95% H-UCL (KM -Log)	868.5
KM SD (logged)	1.934	95% Critical H Value (KM-Log)	3.5
KM Standard Error of Mean (logged)	0.288		

#### **DL/2 Statistics**

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	353.5	Mean in Log Scale	3.948
SD in Original Scale	1414	SD in Log Scale	1.879
95% t UCL (Assumes normality)	699.7	95% H-Stat UCL	781.4

DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 1253 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. Bramlette Former MGP Greenville, SC

# ATTACHMENT 2A

# RESIDENTIAL & CONSTRUCTION OUTPUT AND DEFAULT EXPOSURE FACTORS

**Virginia Department of Environmental Quality** 

# VURAM

# Virginia Unified Risk Assessment Model

VERSION: 3.0

# **Residential Quantitative Risk Assessment Report**

Total Hazard Index/Risk for All Media

## **Program:** Voluntary Remediation Program (VRP)

## Site Name: Former MGP Surface Soil

Non-Cancer Adult

Total: 4.97E-03 does not exceed hazard index Non-Cancer Child Total: 4.26E-02 does not exceed hazard index Cancer Total: 8.76E-06 Exceeds Cumulative Risk!

Default Hazard Index

**<u>Risk Based Performance Criteria</u>** 

Default Cumulative Risk-All Chemicals 1.00E-06

## All Report Pages are Required for Risk Assessment Submission DETAILED REPORT FOLLOWS

#### Program: Voluntary Remediation Program (VRP)

#### Risk Based Performance Criteria

Default Hazard Index	Default Risk for Indidvidual Chemical	Default Cumulative Risk (All Chemicals)
1	1.00E-06	1.00E-06

# Soil

CAS:

56-55-3

Concentration mg/kg:	8.20E-01	Calculated Hazard Index/Risk					
RfDo (mg/kg-day):		Non-Can	icer Adult	Non-Ca	ncer Child	Cancer	
RfCi (mg/m3):		Ingestion:		Ingestion:		Ingestion:	5.35E-07
SFO (mg/kg-day)-1:	1.00E-01	Dermal:		Dermal:		Dermal:	1.79E-07
IUR (µg/m3)-1:	6.00E-05	Inhalation:		Inhalation:		Inhalation:	1.10E-08
Mutagen:	Y	Total:	0.00E+00	Total:	0.00E+00	Total:	7.25E-07
VOC:	Y						
% Contri	a Hazard/Risk	0.00%	0.00%			8.28%	
	mg/kg Non-Car	ncer Adult	Non-Cancer Child		Car	ncer	
Recommended Acceptable Concentration			v/A	N/A		N	/A

#### Analyte: Benzo[a]pyrene

CAS: 50-32-	8	٦					
Concentration mg/kg:	7.60E-01		Ca	lculated Haza	rd Index/Ris	sk	
RfDo (mg/kg-day):	3.00E-04	Non-Can	cer Adult	Non-Ca	ncer Child	Са	ncer
RfCi (mg/m3):	2.00E-06	Ingestion:	3.04E-03	Ingestion:	3.24E-02	Ingestion:	4.96E-06
SFO (mg/kg-day)-1:	1.00E+00	Dermal:	1.67E-03	Dermal:	9.99E-03	Dermal:	1.66E-06
IUR (μg/m3)-1:	6.00E-04	Inhalation:	2.68E-04	Inhalation:	2.68E-04	Inhalation:	3.31E-10
Mutagen:	Y	Total:	4.97E-03	Total:	4.26E-02	Total:	6.62E-06
VOC:							
% Contri	bution to Med	ia Hazard/Risk	100.00%		100.00%		75.54%
Exc	ceeds Risk!	mg/kg Non-Car	ncer Adult	Non-Cai	ncer Child	Ca	ncer
Recommended Acceptat	ble Concentrat	ion N	I/A	٨	I/A	1.15	5E-01

#### Analyte: Benzo[b]fluoranthene

CAS: 205-99-2

Concentration mg/kg:	9.98E-01	Calculated Hazard Index/Risk					
RfDo (mg/kg-day):		Non-Car	cer Adult	Non-Ca	ancer Child	Cancer	
RfCi (mg/m3):		Ingestion:		Ingestion:		Ingestion:	6.52E-07
SFO (mg/kg-day)-1:	1.00E-01	Dermal:		Dermal:		Dermal:	2.17E-07
IUR (µg/m3)-1:	6.00E-05	Inhalation:		Inhalation:		Inhalation:	4.34E-11
Mutagen:	Y	Total:	0.00E+00	Total:	0.00E+00	Total:	8.69E-07
VOC:							
% Contri	bution to Med	_ lia Hazard/Risk	0.00%		0.00%		9.92%

Friday, July 16, 2021
#### Site Name: Former MGP

Residential

#### Program: Voluntary Remediation Program (VRP)

	<b>Risk Based Performance Criteria</b>	
Default Hazard Index	Default Risk for Indidvidual Chemical	Default Cumulative Risk (All Chemicals)
1	1.00E-06	1.00E-06

## Soil

mg/kg	g Non-Cancer Adult	Non-Cancer Child	Cancer
Recommended Acceptable Concentration	N/A	N/A	N/A

#### Analyte: Dibenz[a,h]anthracene

Concentration mg/kg:	4.50E-02		Ca	culated Haza	ard Index/Ris	sk	
RfDo (mg/kg-day):		Non-Can	icer Adult	Non-Ca	incer Child	Ca	ncer
RfCi (mg/m3):		Ingestion:		Ingestion:		Ingestion:	2.94E-07
SFO (mg/kg-day)-1:	1.00E+00	Dermal:		Dermal:		Dermal:	9.81E-08
IUR (μg/m3)-1:	6.00E-04	Inhalation:		Inhalation:		Inhalation:	1.96E-11
Mutagen:	Y	Total:	0.00E+00	Total:	0.00E+00	Total:	3.92E-07
VOC:							
% Contri	ibution to Medi	a Hazard/Risk	0.00%		0.00%		4.47%
		mg/kg Non-Car	ncer Adult	Non-Ca	ncer Child	Cai	ncer
Recommended Acceptal	ble Concentrati	on M	v/A	٨	V/A	N	I/A

#### Analyte: Indeno[1,2,3-cd]pyrene

CAS: 193-39	)-5	-					
Concentration mg/kg:	1.80E-01	Calculated Hazard Index/Risk					
RfDo (mg/kg-day):		Non-Can	cer Adult	Non-Ca	ncer Child	Ca	ncer
RfCi (mg/m3):		Ingestion:		Ingestion:		Ingestion:	1.18E-07
SFO (mg/kg-day)-1:	1.00E-01	Dermal:		Dermal:		Dermal:	3.92E-08
IUR (μg/m3)-1:	6.00E-05	Inhalation:		Inhalation:		Inhalation:	7.83E-12
Mutagen:	Y	Total:	0.00E+00	Total:	0.00E+00	Total:	1.57E-07
VOC:							
% Contri	bution to Med	ia Hazard/Risk	0.00%		0.00%		1.79%
		mg/kg Non-Car	ncer Adult	Non-Car	ncer Child	Car	ncer
Recommended Acceptat	ole Concentrati	on N	I/A	N	I/A	N,	/A

Soil

#### Total Calculated Hazard Index/Risk For Media:

Non-Cance	r Adult	Non-Cancer	Child	Cancer	
Ingestion:	3.04E-03	Ingestion:	3.24E-02	Ingestion:	6.56E-06
Dermal:	1.67E-03	Dermal:	9.99E-03	Dermal:	2.19E-06
Inhalation:	2.68E-04	Inhalation:	2.68E-04	Inhalation:	1.14E-08
Total:	4.97E-03	Total:	4.26E-02	Total:	8.76E-06

#### Program: Voluntary Remediation Program (VRP)

Risk Based Performance Criteria

Default Hazard Index

1

Default Risk for Indidvidual Chemical

1.00E-06

Default Cumulative Risk (All Chemicals) 1.00E-06

## **Total Hazard Index/Risk for All Media**

Non-Cancer Adult		Non-Car	ncer Child	Cancer		
Ingestion:	3.04E-03	Ingestion:	3.24E-02	Ingestion:	6.56E-06	
Dermal:	1.67E-03	Dermal:	9.99E-03	Dermal:	2.19E-06	
Inhalation:	2.68E-04	Inhalation:	2.68E-04	Inhalation:	1.14E-08	
Total:	4.97E-03	Total:	4.26E-02	Total:	8.76E-06	
does not exceed	hazard index	does not excee	d hazard index	Exceeds Cum	ulative Risk!	

Friday, July 16, 2021

#### Site Name: Former MGP

#### Residential

#### Program: Voluntary Remediation Program (VRP)

#### Risk Based Performance Criteria

Default Hazard Index

1

Default Risk for Indidvidual Chemical Default Cumulative Risk (All Chemicals) 1.00E-06

THIS PAGE INTENTIONALLY LEFT BLANK **Exposure Defaults Follow** 

1.00E-06

#### Program: Voluntary Remediation Program (VRP)

Risk Based Performance Criteria

Default Hazard Index 1

Default Risk for Indidvidual Chemical

1.00E-06

Default Cumulative Risk (All Chemicals) 1.00E-06

## Residential Exposure Default Values

Symbol	Description	Value	Units
AF0-02	Soil Adherence Factor - age segment 0-2	0.2	(mg/cm2)
AF02-06	Soil Adherence Factor - age segment 2-6	0.2	(mg/cm2)
AF06-16	Soil Adherence Factor - age segment 6-16	0.07	(mg/cm2)
AF16-26	Soil Adherence Factor - age segment 16-26	0.07	(mg/cm2)
AFres-a	Resident Soil Adherence Factor - adult	0.07	(mg/cm2)
AFres-c	Resident Soil Adherence Factor - child	0.2	(mg/cm2)
ATr	Resident Averaging Time	365	(days/yr)
ATres	Resident Averaging Time: 365 x LT	25550	(days)
ATres-a	Resident Averaging Time - adult: 365 x EDres	9490	(days)
ATres-c	Resident Averaging Time - child: 365 x EDres-c	2190	(days)
BW0-02	Body Weight - age segment 0-2	15	(kg)
BW02-06	Body Weight - age segment 2-6	15	(kg)
BW06-16	Body Weight - age segment 6-16	80	(kg)
BW16-26	Body Weight - age segment 16-26	80	(kg)
BWres-a	Resident Body Weight - adult	80	(kg)
BWres-c	Resident Body Weight - child	15	(kg)
DFSMres-adj	Resident Soil Mutagenic Dermal Contact Factor - age adjusted	428260	(mg/kg)
DFSres-adj	Resident Soil Dermal Contact Factor - age adjusted	103390	(mg/kg)
DFWMres-adj	Resident Groundwater Mutagenic Dermal Contact Factor - age adjusted	8191633.33333333	(cm2-event/kg)
DFWres-adj	Resident Groundwater Dermal Contact Factor - age adjusted	2610650	(cm2-event/kg)
ED0-02	Exposure Duration - age segment 0-2	2	(yrs)
ED02-06	Exposure Duration - age segment 2-6	4	(yrs)
ED06-16	Exposure Duration -age segment 6-16	10	(yrs)

#### Residential

#### Program: Voluntary Remediation Program (VRP)

#### Default Hazard Index Default Risk for Indidvidual Chemical Default Cumulative Risk (All Chemicals) 1.00F-06 1.00E-06 1 ED16-26 Exposure Duration -age segment 16-26 10 (yrs) 26 (yrs) EDres Resident Total Exposure Duration EDres-a Resident Exposure Duration - adult 20 (yrs) EDres-c Resident Exposure Duration - child 6 (yrs) EFres 350 (days/yr) Resident Exposure Frequency EFres0-02 Resident Exposure Frequency - age segment 0-2 350 (days/yr) EFres02-06 Resident Exposure Frequency - age segment 2-6 350 (days/yr) EFres06-16 350 (days/yr) Resident Exposure Frequency - age segment 6-16 EFres16-26 Resident Exposure Frequency - age segment 16-26 350 (days/yr) EFres-a 350 (days/yr) Resident Exposure Frequency - adult EFres-c Resident Exposure Frequency - child 350 (days/yr) ETevent-res(0-02) Resident Water Exposure Time - age segment 0-2 0.54 (hrs/event) ETevent-res(02-06) Resident Water Exposure Time - age segment 2-6 0.54 (hrs/event) ETevent-res(06-16) Resident Water Exposure Time - age segment 6-16 0.71 (hrs/event) ETevent-res(16-26) 0.71 (hrs/event) Resident Water Exposure Time - age segment 16-26 0.71 (hrs/event) ETevent-res-a Resident Groundwater Exposure Time -adult ETevent-res-adj Resident Water Exposure Time -age adjusted 0.670769230769231 (hrs/event) ETevent-res-c Resident Groundwater Exposure Time - child 0.54 (hrs/event) 0.670769230769231 (hrs/event) ETevent-res-madj Resident Water Exposure Time - mutagen age adjusted ETrai 24 (hrs/day) Resident Air Inhalation Exposure Time 24 (hrs/day) FTres Resident Soil Exposure Time ETres0-02 Resident Exposure Time - age segment 0-2 24 (hrs/day) ETres02-06 24 (hrs/day) Resident Exposure Time - age segment 2-6 ETres06-16 Resident Exposure Time - age segment 6-16 24 (hrs/day) ETres16-26 Resident Exposure Time - age segment 16-26 24 (hrs/day) ETres-a Resident Exposure Time - adult 24 (hrs/day)

**Risk Based Performance Criteria** 

#### Site Name: Former MGP

#### Residential

#### Program: Voluntary Remediation Program (VRP)

#### Risk Based Performance Criteria

Default H	lazard Index Default Risk for Indidvidual Chemical Defau 1 1.00E-06	It Cumulative Risl 1.00E-06	k (All Chemical
ETres-c	Resident Exposure Time - child	24	(hrs/day)
ETres-gwi	Resident Groundwater Inhalation Exposure Time	24	(hrs/day)
EVres-a	Resident Groundwater Events - adult	1	(events/day)
EVres-c	Resident Groundwater Events - child	1	(events/day)
IFSMres-adj	Resident Mutagenic Soil Ingestion Rate - age adjusted	166833.3333333333	(mg/kg)
IFSres-adj	Resident Soil Ingestion Rate - age adjusted	36750	(mg/kg)
IFWMres-adj	Resident Mutagenic Drinking Groundwater Ingestion Rate - age adjusted	1019.9	(L/kg)
IFWres-adj	Resident Drinking Groundwater Ingestion Rate - age adjusted	327.95	(L/kg)
INHMres-ai-adj	Resident Air Inhalation Exposure Duration Mutagen - age adjusted	604800	(hrs)
INHMres-gw-adj	Resident Groundwater Inhalation Exposure Duration Mutagen - age adjusted	25200	(days)
INHMres-s-adj	Resident Soil Inhalation Exposure Duration Mutagen - age adjusted	25200	(days)
IREres-a	Resident Food Eggs Ingestion Rate - Virginia DEQ	150000	(mg/day)
IRFres-a	Resident Food Fish/Shellfish Ingestion Rate - Exposure Defaults Handbook	54000	(mg/day)
IRFVres-a	Resident Food Fruit/Vegetables Ingestion Rate - Exposure Defaults Handbook	122000	(mg/day)
IRMDres-a	Resident Food Meat/Dairy - Virginia DEQ	280000	(mg/day)
IRSO-02	Soil/Sediment Ingestion Rate - age segment 0-2	200	(mg/day)
IRS02-06	Soil/Sediment Ingestion Rate - age segment 2-6	200	(mg/day)
IRS06-16	Soil/Sediment Ingestion Rate - age segment 6-16	100	(mg/day)
IRS16-26	Soil/Sediment Ingestion Rate - age segment 16-26	100	(mg/day)
IRSres-a	Resident Soil Ingestion Rate - adult	100	(mg/day)
IRSres-c	Resident Soil Ingestion Rate - child	200	(mg/day)
IRW0-02	Drinking Water Ingestion Rate - age segment 0-2	0.78	(L/day)
IRW02-06	Drinking Water Ingestion Rate - age segment 2-6	0.78	(L/day)
IRW06-16	Drinking Water Ingestion Rate - age segment 6-16	2.5	(L/day)
IRW16-26	Drinking Water Ingestion Rate - age segment 16-26	2.5	(L/day)
IRWres-a	Resident Drinking Groundwater Ingestion Rate - adult	2.5	(L/day)

#### Residential

#### Program: Voluntary Remediation Program (VRP)

Default Hazard Index 1		Default Risk for Indidvidual Chemical 1.00E-06	Default Cumulative Risl 1.00E-06	It Cumulative Risk (All Chemicals 1.00E-06	
IRWres-c	Resident Drinking	Groundwater Ingestion Rate - child	0.78	(L/day)	
SAres-a	Resident Soil Surfa	ice Area - adult	6032	(cm2/day)	
SAres-a	Resident Water Su	rface Area - adult	19652	(cm2)	
SAres-c	Resident Water Su	rface Area - child	6365	(cm2)	
SAres-c	Resident Soil Surfa	Resident Soil Surface Area - child		(cm2/day)	
SAs0-02	Surface Area Soil/	Sediment - age segment 0-2	2373	(cm2/day)	
SAs02-06	Surface Area Soil/Sediment - age segment 2-6		2373	(cm2/day)	
SAs06-16	Surface Area Soil/Sediment - age segment 6-16		6032	(cm2/day)	
SAs16-26	Surface Area Soil/Sediment - age segment 16-26		6032	(cm2/day)	
SAw0-02	Surface Area Water - age segment 0-2		6365	(cm2)	
SAw02-06	Surface Area Wate	er - age segment 2-6	6365	(cm2)	
SAw06-16	Surface Area Wate	er - age segment 6- 16	19652	(cm2)	
SAw16-26	Surface Area Wate	er - age segment 16- 26	19652	(cm2)	

Risk Based Performance Criteria

END OF REPORT

Virginia Department of Environmental Quality

# VURAM

#### Virginia Unified Risk Assessment Model

VERSION: 3.0

**Construction Worker Quantitative Risk Assessment Report** 

Site Name: Former MGP Subsurface Soil

Program: Voluntary Remediation Program

Total Hazard Index/Risk for All Media

Non-Cancer Adult

Total: 2.90E-02

does not exceed hazard index

Cancer Total: 1.03E-07

does not exceed cumulative risk

#### **Risk Based Performance Criteria**

Default Hazard Index 1 Default Cumulative Risk-All Chemicals  ${\bf 1.00E-0}6$ 

#### All Report Pages are Required for Risk Assessment Submission DETAILED REPORT FOLLOWS

Site Name:	Bramlette Subsurface	2	Construction
Program:	Voluntary Remediati	on Program	
		<b>Risk Based Performance Criteria</b>	
D	efault Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals
	1	1.00E-06	1.00E-04

CAS:

### Analyte: Benz[a]anthracene

CAS:	56-55-3
LAJ.	20-22-2

Concentration mg/kg:	4.48E+00	Calculated Hazard Quotient/Risk			
RfDo:		Non-	Cancer Adult	Ca	ncer
RfCi:		Ingestion:		Ingestion:	9.04E-09
SFO:	1.00E-01	Dermal:		Dermal:	3.77E-09
IUR:	6.00E-05	Inhalation:		Inhalation:	6.15E-11
Mutagen:	Y	Total:	0.00E+00	Total:	1.29E-08
VOC:	Y				
% Contribution to Media	Risk		0.00%	1	2.54%

Analyte:	Benzo[a]pyrene

Concentration mg/kg:	2.57E+00	Calculated Hazard Quotient/Risk			
RfDo:	3.00E-04	3.00E-04 Non-Cancer Adult		Ca	ncer
RfCi:	2.00E-06	Ingestion:	1.26E-02	Ingestion:	5.19E-08
SFO:	1.00E+00	Dermal:	5.26E-03	Dermal:	2.16E-08
IUR:	6.00E-04	Inhalation:	1.02E-02	Inhalation:	1.68E-10
Mutagen:	Y	Total:	2.81E-02	Total:	7.37E-08
VOC:					
% Contribution to Media Risk		-	96.89%	7	1.86%

#### Analyte: Benzo[b]fluoranthene

CAS: 205-99-2

Concentration mg/kg:	3.27E+00	Calculated Hazard Quotient/Risk			
RfDo:		Non-	Cancer Adult	Cai	ncer
RfCi:		Ingestion:		Ingestion:	6.60E-09
SFO:	1.00E-01	Dermal:		Dermal:	2.75E-09
IUR:	6.00E-05	Inhalation:		Inhalation:	2.12E-11
Mutagen:	Y	Total:	0.00E+00	Total:	9.37E-09
VOC:					
	o: /	-	0.00%		4 40/

% Contribution to Media Risk

0.00%

9.14%

Site Name:	Bramlette Subsurface		Construction
Program:	Voluntary Remediation	on Program	
-	-	Risk Based Performance Criteria	
C	efault Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals
	1	1.00E-06	1.00E-04

# Analyte:Benzo[k]fluorantheneCAS:207-08-9

Concentration mg/kg:	1.45E+00	Calculated Hazard Quotient/Risk			
RfDo:		Non	-Cancer Adult	Ca	ncer
RfCi:		Ingestion:		Ingestion:	2.92E-10
SFO:	1.00E-02	Dermal:		Dermal:	1.22E-10
IUR:	6.00E-06	Inhalation:		Inhalation:	9.45E-13
Mutagen:	Y	Total:	0.00E+00	Total:	4.15E-10
VOC:					
% Contribution to Media Risk			0.00%	(	).40%

Analyte:	Dibenz[a_h]anthracene
Analyte.	Dibenzla, injantinatene

CAS: 53-70-3

Concentration mg/kg:	4.12E-02	Calculated Hazard Quotient/Risk			
RfDo:		Non	-Cancer Adult	Ca	ncer
RfCi:		Ingestion:		Ingestion:	8.32E-10
SFO:	1.00E+00	Dermal:		Dermal:	3.47E-10
IUR:	6.00E-04	Inhalation:		Inhalation:	1.45E-12
Mutagen:	Y	Total:	0.00E+00	Total:	1.18E-09
VOC:					
% Contribution to Media Risk		-	0.00%	1	1.15%

#### Analyte: Indeno[1,2,3-cd]pyrene

CAS: 193-39-5

Concentration mg/kg:	1.32E+00	Calculated Hazard Quotient/Risk			
RfDo:		Non-	Cancer Adult	Ca	ncer
RfCi:		Ingestion:		Ingestion:	2.67E-09
SFO:	1.00E-01	Dermal:		Dermal:	1.11E-09
IUR:	6.00E-05	Inhalation:		Inhalation:	4.64E-12
Mutagen:	Y	Total:	0.00E+00	Total:	3.79E-09
VOC:					
		-			

% Contribution to Media Risk

0.00%

Site Name:	Bramlette Subsurface	2	Construction
Program:	Voluntary Remediati	on Program	
-	-	<b>Risk Based Performance Criteria</b>	
D	efault Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals
	1	1.00E-06	1.00E-04

Analyte: CAS:	Naphthale 91-20-3	ene				
Concentratio	n mg/kg:	4.59E+00		Calculated	Hazard Quotient/Risk	
RfDo:		6.00E-01	Non-Ca	incer Adult	Ca	ancer
RfCi:		3.00E-03	Ingestion:	1.13E-05	Ingestion:	
SFO:			Dermal:	4.70E-06	Dermal:	
IUR:		3.40E-05	Inhalation:	8.87E-04	Inhalation:	1.24E-09
Mutagen:			Total:	9.03E-04	Total:	1.24E-09
VOC:		Y				
% Contributio	on to Media Ri	isk		3.11%		1.21%

Soil

#### Total Calculated Hazard Index/Risk For Media:

Total:	2.90E-02
Inhalation:	1.11E-02
Dermal:	5.27E-03
Ingestion:	1.26E-02

# Cancer Ingestion: 7.13E-08 Dermal: 2.97E-08 Inhalation: 1.50E-09 Total: 1.03E-07

Site Name	: Bramlette Subsurface		Construction
Program:	Voluntary Remediation	Program	
•	-	Risk Based Performance Criteria	
	Default Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals
	1	1.00E-06	1.00E-04

## Total Hazard Index/Risk for All Media

Non-Cancer Adult		Cancer		
Ingestion:	1.26E-02	Ingestion:	7.13E-08	
Dermal:	5.27E-03	Dermal:	2.97E-08	
Inhalation:	1.11E-02	Inhalation:	1.50E-09	
Total:	2.90E-02	Total:	1.03E-07	
does not excee	ed hazard index	does not exceed	cumulative risk	

Default Hazard Index 1

**Default Cumulative Risk-All Chemicals** 1.00E-04

# Construction Exposure Default Values

Symbol	Description	Value	Units
A	Construction Worker Soil Inhalation Dispersion Constant - Philadelphia	14.0111	(unitless)
AFcw	Construction Worker Soil Adherence Factor	0.3	(mg/cm2)
As	Areal extent of the site or contamination	0.5	(acres)
ATcw	Construction Worker Averaging Time: 365 x LT	25550	(days)
ATcw	Construction Worker Averaging Time	365	(days/yr)
ATcw-a	Construction Worker Averaging Time: EWcw x 7 x EDcw	350	(days)
В	Construction Worker Soil Inhalation Dispersion Constant - Philadelphia	19.6154	(unitless)
BWcw	Construction Worker Body Weight	80	(kg)
С	Construction Worker Soil Inhalation Dispersion Constant - Philadelphia	225.3397	(unitless)
DWcw	Construction Worker Days Worked	5	(days/week)
EDcw	Construction Worker Exposure Duration	1	(yrs)
EFcw	Construction Worker Exposure Frequency	250	(days/yrs)
EFcw-a	Construction Worker Air Exposure Frequency	250	(days/yr)
EFcw-s	Construction Worker Soil Exposure Frequency	250	(days/yr)
EFcw-vrp	Construction Worker Soil Exposure Frequency - VRP ONLY - Virginia DEQ	125	(days/yr)
ETcw	Construction Worker Exposure Time	8	(hrs/day)
ETcw-s	Construction Worker Soil Exposure Time	8	(hrs/day)
EWcw	Construction Worker Weeks Worked	50	(weeks/yr)
F(x)	Function Dependent on 0.886 × (Ut/Um)	0.194	(unitless)
Fd	Dispersion Correction Factor	0.185	(unitless)
IRcw	Construction Worker Soil Ingestion Rate	330	(mg/day)
n	Total soil porosity: 1-(ρb/ρs)	0.433962264150943	(unitless)
PEFsc	Particulate Emission Factor Subchronic - Virginia DEQ calculated	1266503136.97919	(m3/kg)

Site Name:	Bramlette Subsurface
Program:	Voluntary Remediation Program

Default Hazard Index

1

Default Risk Individual Chemical

1.00E-06

Default Cumulative Risk-All Chemicals 1.00E-04

Q/C	Inverse of the ratio of the 1-h geometric mean concentration to the emission flux along a straight road segment bisecting a square site - Virginia DEQ	87.3689772162309	(g/m2-s per kg/m)
SAcw	Construction Worker Surface Area	3527	(cm2/day)
Тс	Total time over which construction occurs: EDcw*EWcw*7days/wk*24hrs/day*3600s/hr	30240000	(s)
TR-ACH	Trench Air Changes per Hour - Virginia DEQ	2	(h)-1
TR-ACvad	Trench Advection Coefficient Groundwater greater than 15ft - Virginia DEQ	0.25	(cm3/cm3)
TR-CF1	Trench Conversion Factor-1	0.001	(L/cm3)
TR-CF2	Trench Conversion Factor-2	10000	(cm2/m2)
TR-CF3	Trench Conversion Factor-3	3600	(s/hr)
TR-CF4	Trench Conversion Factor-4	1000000	(cm3/m3)
TR-D-dir	Trench Depth - groundwater less Than 15ft - Virginia DEQ	2.44	(m)
TR-D-ind	Trench Depth - groundwater greater than 15ft - Virginia DEQ	4.57	(m)
TR-Dsg	Trench - Depth to soil gas vapor source - Virginia DEQ	1	(cm)
TR-EFcw	Trench Construction Worker Exposure Frequency - Virginia DEQ	125	(days/yr)
TR-ETcw	Trench Construction Worker Exposure Time - Virginia DEQ	4	(hrs/day)
TR-EVcw	Trench Construction Worker Events - Virginia DEQ	1	(events/day)
TR-F	Trench Fraction of floor through which contaminant can enter - Virginia DEQ	1	(unitless)
TR-HV	Trench Thickness of Vadose Zone - groundwater greater than 15 ft - Virginia DEQ	30	(cm)
TR-IRcw	Trench Construction Worker Groundwater Ingestion Rate - Virginia DEQ	0.02	(L/day)
TR-KGH2O	Trench Gas-phase mass transfer coefficient of water vapor at 25deg C - Virginia DEQ	0.833	(cm/s)
TR-KLO2	Trench Liquid-phase mass transfer coefficient of oxygen at 25deg C - Virginia DEQ	0.002	(cm/s)
TR-L	Trench Length - Virginia DEQ	2.44	(m)
TR-Lgw	Trench Depth to groundwater - Virginia DEQ	488	(cm)
TR-MWH2O	Trench Molecular Weight of Water - Virginia DEQ	18	(unitless)
TR-MWO2	Trench Molecular Weight of Oxygen - Virginia DEQ	32	(unitless)
TR-Porvad	Trench Porosity in Vadose Zone - groundwater greater than 15ft - Virginia DEQ	0.44	(cm3/cm3)
TR-R	Trench Ideal Gas Constant - Virginia DEQ	0.000082	(atm-m3/mol-K)

Site Name	: Bramlette Subsurface		Construction
Program:	Voluntary Remediation	on Program	
-	-	Risk Based Performance Criteria	
	Default Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals
	1	1.00E-06	1.00E-04

TR-Temp-F	Trench Temperature Fahrenheit - Virginia DEQ	77 (F)
TR-Temp-K	Trench Temperature - Virginia DEQ	298 (K)
TR-W	Trench Width - Virginia DEQ	0.91 (m)
TR-W/D	Trench Width to Depth Ratio - Virginia DEQ	0.38 (unitless)
Um	Mean Annual Wind Speed	4.69 (m/s)
Ut	Equivalent Threshold Value of Wind Speed at 7m	11.32 (m/s)
V	V Fraction of Vegetative Cover	0.5 (unitless)
Θа	Air filled soil porosity: n-Øw	0.133962264150943 (unitless)
Θw	Water filled soil porosity	0.3 (unitless)
ρb	Dry soil bulk density	1.5 (kg/L)
ρs	Soil particle density	2.65 (kg/L)

#### END OF REPORT

Virginia Department of Environmental Quality

# VURAM

#### Virginia Unified Risk Assessment Model

VERSION: 3.0

**Construction Worker Quantitative Risk Assessment Report** 

Site Name: Former MGP Surface Soil

Program: Voluntary Remediation Program

Total Hazard Index/Risk for All Media

**Non-Cancer Adult** 

Total: 8.30E-03

does not exceed hazard index

Cancer Total: 2.88E-08

does not exceed cumulative risk

#### **Risk Based Performance Criteria**

Default Hazard Index 1 Default Cumulative Risk-All Chemicals 1.00E-06

#### All Report Pages are Required for Risk Assessment Submission DETAILED REPORT FOLLOWS

Site Name:	Former MGP		Constructio	
Program:	Voluntary Remediati	on Program		
-	-	<b>Risk Based Performance Criteria</b>		
D	efault Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals	
	1	1.00E-06	1.00E-06	

CAS:

### Analyte: Benz[a]anthracene

5-3

Concentration mg/kg:	8.20E-01	Calculated Hazard Quotient/Risk			
RfDo:		Non	-Cancer Adult	Са	ncer
RfCi:		Ingestion:		Ingestion:	1.65E-09
SFO:	1.00E-01	Dermal:		Dermal:	6.90E-10
IUR:	6.00E-05	Inhalation		Inhalation:	1.13E-11
Mutagen:	Y	Total:	0.00E+00	Total:	2.36E-09
VOC:	Y				
% Contribution to Media	Risk		0.00%	8	3.18%

Analyte:	Benzo[a]pyrene
•	/

#### 50-32-8

Concentration mg/kg:	7.60E-01	Calculated Hazard Quotient/Risk			
RfDo:	3.00E-04	Non-Ca	ncer Adult	Са	ncer
RfCi:	2.00E-06	Ingestion:	3.73E-03	Ingestion:	1.53E-08
SFO:	1.00E+00	Dermal:	1.56E-03	Dermal:	6.39E-09
IUR:	6.00E-04	Inhalation:	3.01E-03	Inhalation:	4.95E-11
Mutagen:	Y	Total:	8.30E-03	Total:	2.18E-08
VOC:					
% Contribution to Media Risk		-	100.00%	-	75.63%

#### Analyte: Benzo[b]fluoranthene

CAS:	205-99-2
сдэ.	205 55 2

Concentration mg/kg:	9.98E-01	Calculated Hazard Quotient/Risk			
RfDo:		Non-	Cancer Adult	Ca	ncer
RfCi:		Ingestion:		Ingestion:	2.01E-09
SFO:	1.00E-01	Dermal:		Dermal:	8.40E-10
IUR:	6.00E-05	Inhalation:		Inhalation:	6.46E-12
Mutagen:	Y	Total:	0.00E+00	Total:	2.86E-09
VOC:					
	o: /	-	0.00%		0.000/

% Contribution to Media Risk

0.00%

9.93%

Site Name:	Former MGP		Construction
Program:	Voluntary Remediati	on Program	
C	•	<b>Risk Based Performance Criteria</b>	
D	efault Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals
	1	1.00E-06	1.00E-06

# Analyte:Dibenz[a,h]anthraceneCAS:53-70-3

Concentration mg/kg:	4.50E-02	Calculated Hazard Quotient/Risk			
RfDo:		Non	-Cancer Adult	Ca	ncer
RfCi:		Ingestion:		Ingestion:	9.08E-10
SFO:	1.00E+00	Dermal:		Dermal:	3.79E-10
IUR:	6.00E-04	Inhalation:		Inhalation:	1.58E-12
Mutagen:	Y	Total:	0.00E+00	Total:	1.29E-09
VOC:					
% Contribution to Media	Risk	-	0.00%	2	1.47%

Analvte:	Indeno[1.2.3-cd]pvrene
/	

CAS:	193-39-5						
Concentratio	n mg/kg:	1.80E-01		Calcul	ated Hazard Quotient	/Risk	
RfDo:			Non-C	ancer Adult		С	ancer
RfCi:			Ingestion:			Ingestion:	3.63E-10
SFO:		1.00E-01	Dermal:			Dermal:	1.51E-10
IUR:		6.00E-05	Inhalation:			Inhalation:	6.30E-13
Mutagen:		Y	Total:	0.00E+00		Total:	5.15E-10
VOC:							
% Contributio	on to Media Ris	sk	_	0.00%			1.79%

#### Total Calculated Hazard Index/Risk For Media: Soil

Non-Canc	er Adult	Cano	er
Ingestion:	3.73E-03	Ingestion:	2.03E-08
Dermal:	1.56E-03	Dermal:	8.45E-09
Inhalation:	3.01E-03	Inhalation:	6.95E-11
Total:	8.30E-03	Total:	2.88E-08

Site Name:	Former MGP		Construction
Program:	Voluntary Remediati	on Program	
U U	·	Risk Based Performance Criteria	
D	efault Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals
	1	1.00E-06	1.00E-06

## Total Hazard Index/Risk for All Media

#### **Non-Cancer Adult**

does not exceed hazard index		does not exceed cumulative r		
Total:	8.30E-03	Total:	2.88E-08	
Inhalation:	3.01E-03	Inhalation:	6.95E-11	
Dermal:	1.56E-03	Dermal:	8.45E-09	
Ingestion:	3.73E-03	Ingestion:	2.03E-08	

Program: Voluntary Remediation Program

Default Hazard Index 1

Site Name: Former MGP

Default Cumulative Risk-All Chemicals 1.00E-06

## Construction Exposure Default Values

Symbol	Description	Value	Units
A	Construction Worker Soil Inhalation Dispersion Constant - Philadelphia	14.0111	(unitless)
AFcw	Construction Worker Soil Adherence Factor	0.3	(mg/cm2)
As	Areal extent of the site or contamination	0.5	(acres)
ATcw	Construction Worker Averaging Time: 365 x LT	25550	(days)
ATcw	Construction Worker Averaging Time	365	(days/yr)
ATcw-a	Construction Worker Averaging Time: EWcw x 7 x EDcw	350	(days)
В	Construction Worker Soil Inhalation Dispersion Constant - Philadelphia	19.6154	(unitless)
BWcw	Construction Worker Body Weight	80	(kg)
С	Construction Worker Soil Inhalation Dispersion Constant - Philadelphia	225.3397	(unitless)
DWcw	Construction Worker Days Worked	5	(days/week)
EDcw	Construction Worker Exposure Duration	1	(yrs)
EFcw	Construction Worker Exposure Frequency	250	(days/yrs)
EFcw-a	Construction Worker Air Exposure Frequency	250	(days/yr)
EFcw-s	Construction Worker Soil Exposure Frequency	250	(days/yr)
EFcw-vrp	Construction Worker Soil Exposure Frequency - VRP ONLY - Virginia DEQ	125	(days/yr)
ETcw	Construction Worker Exposure Time	8	(hrs/day)
ETcw-s	Construction Worker Soil Exposure Time	8	(hrs/day)
EWcw	Construction Worker Weeks Worked	50	(weeks/yr)
F(x)	Function Dependent on 0.886 × (Ut/Um)	0.194	(unitless)
Fd	Dispersion Correction Factor	0.185	(unitless)
IRcw	Construction Worker Soil Ingestion Rate	330	(mg/day)
n	Total soil porosity: 1-(ρb/ρs)	0.433962264150943	(unitless)
PEFsc	Particulate Emission Factor Subchronic - Virginia DEQ calculated	1266503136.97919	(m3/kg)

Site Name:	Former MGP		Construction
Program:	Voluntary Remediation I	Program	
C		Risk Based Performance Criteria	
ĺ	Default Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals

1.00E-06

1

Default Cumulative Risk-All Chemicals 1.00E-06

Q/C	Inverse of the ratio of the 1-h geometric mean concentration to the emission flux along a straight road segment bisecting a square site - Virginia DEQ calculated	87.3689772162309	(g/m2-s per kg/m)
SAcw	Construction Worker Surface Area	3527	(cm2/day)
Тс	Total time over which construction occurs: EDcw*EWcw*7days/wk*24hrs/day*3600s/hr	30240000	(s)
TR-ACH	Trench Air Changes per Hour - Virginia DEQ	2	(h)-1
TR-ACvad	Trench Advection Coefficient Groundwater greater than 15ft - Virginia DEQ	0.25	(cm3/cm3)
TR-CF1	Trench Conversion Factor-1	0.001	(L/cm3)
TR-CF2	Trench Conversion Factor-2	10000	(cm2/m2)
TR-CF3	Trench Conversion Factor-3	3600	(s/hr)
TR-CF4	Trench Conversion Factor-4	1000000	(cm3/m3)
TR-D-dir	Trench Depth - groundwater less Than 15ft - Virginia DEQ	2.44	(m)
TR-D-ind	Trench Depth - groundwater greater than 15ft - Virginia DEQ	4.57	(m)
TR-Dsg	Trench - Depth to soil gas vapor source - Virginia DEQ	1	(cm)
TR-EFcw	Trench Construction Worker Exposure Frequency - Virginia DEQ	125	(days/yr)
TR-ETcw	Trench Construction Worker Exposure Time - Virginia DEQ	4	(hrs/day)
TR-EVcw	Trench Construction Worker Events - Virginia DEQ	1	(events/day)
TR-F	Trench Fraction of floor through which contaminant can enter - Virginia DEQ	1	(unitless)
TR-HV	Trench Thickness of Vadose Zone - groundwater greater than 15 ft - Virginia DEQ	30	(cm)
TR-IRcw	Trench Construction Worker Groundwater Ingestion Rate - Virginia DEQ	0.02	(L/day)
TR-KGH2O	Trench Gas-phase mass transfer coefficient of water vapor at 25deg C - Virginia DEQ	0.833	(cm/s)
TR-KLO2	Trench Liquid-phase mass transfer coefficient of oxygen at 25deg C - Virginia DEQ	0.002	(cm/s)
TR-L	Trench Length - Virginia DEQ	2.44	(m)
TR-Lgw	Trench Depth to groundwater - Virginia DEQ	488	(cm)
TR-MWH2O	Trench Molecular Weight of Water - Virginia DEQ	18	(unitless)
TR-MWO2	Trench Molecular Weight of Oxygen - Virginia DEQ	32	(unitless)
TR-Porvad	Trench Porosity in Vadose Zone - groundwater greater than 15ft - Virginia DEQ	0.44	(cm3/cm3)
TR-R	Trench Ideal Gas Constant - Virginia DEQ	0.000082	(atm-m3/mol-K)

Site Name:	Former MGP		Construction
Program:	Voluntary Remediati	on Program	
		Risk Based Performance Criteria	
[	Default Hazard Index	Default Risk Individual Chemical	Default Cumulative Risk-All Chemicals
	1	1.00E-06	1.00E-06

TR-Temp-F	Trench Temperature Fahrenheit - Virginia DEQ	77	(F)
TR-Temp-K	Trench Temperature - Virginia DEQ	298	(К)
TR-W	Trench Width - Virginia DEQ	0.91	(m)
TR-W/D	Trench Width to Depth Ratio - Virginia DEQ	0.38	(unitless)
Um	Mean Annual Wind Speed	4.69	(m/s)
Ut	Equivalent Threshold Value of Wind Speed at 7m	11.32	(m/s)
V	V Fraction of Vegetative Cover	0.5	(unitless)
Θа	Air filled soil porosity: n-Ow	0.133962264150943	(unitless)
Θw	Water filled soil porosity	0.3	(unitless)
ρb	Dry soil bulk density	1.5	(kg/L)
ρs	Soil particle density	2.65	(kg/L)

#### END OF REPORT

Bramlette Former MGP Greenville, SC

## ATTACHMENT 2B

## RESIDENTIAL VURAM BAP POST-SOIL REMOVAL OUTPUT AND DEFAULT EXPOSURE FACTORS

**Virginia Department of Environmental Quality** 

# VURAM

### Virginia Unified Risk Assessment Model

VERSION: 3.0

### **Residential Quantitative Risk Assessment Report**

Total Hazard Index/Risk for All Media

**Program:** Voluntary Remediation Program (VRP)

#### Site Name: Former MGP Surface Soil

Non-Cancer Adult

Total: 6.74E-04 does not exceed hazard index Non-Cancer Child Total: 5.78E-03 does not exceed hazard index Cancer

Total: 8.97E-07 does not exceed cumulative risk

Default Hazard Index 1 **<u>Risk Based Performance Criteria</u>** 

Default Cumulative Risk-All Chemicals 1.00E-06

#### All Report Pages are Required for Risk Assessment Submission DETAILED REPORT FOLLOWS

#### Program: Voluntary Remediation Program (VRP)

#### Risk Based Performance Criteria

Default Hazard Index	Default Risk for Indidvidual Chemical	Default Cumulative Risk (All Chemicals)
1	1.00E-06	1.00E-06

## Soil

Analyte:	Benzo[a]pyrene
CAS:	50-32-8

Concentration mg/kg: 1.03E-01 **Calculated Hazard Index/Risk** RfDo (mg/kg-day): 3.00E-04 Non-Cancer Adult Non-Cancer Child Cancer RfCi (mg/m3): 2.00E-06 Ingestion: 4.12E-04 Ingestion: 4.39E-03 Ingestion: 6.73E-07 SFO (mg/kg-day)-1: 1.00E+00 Dermal: 2.26E-04 Dermal: 1.35E-03 Dermal: 2.24E-07 IUR (µg/m3)-1: 6.00E-04 Inhalation: 3.63E-05 Inhalation: 3.63E-05 Inhalation: 4.48E-11 Mutagen: Y Total: Total: Total: 6.74E-04 5.78E-03 8.97E-07 VOC: % Contribution to Media Hazard/Risk 100.00% 100.00% 100.00% mg/kg Non-Cancer Adult Non-Cancer Child Cancer Recommended Acceptable Concentration N/A N/A N/A

Soil

#### Total Calculated Hazard Index/Risk For Media:

Non-Cancer	[.] Adult	Non-Cancer	Child	Cancer	
Ingestion:	4.12E-04	Ingestion:	4.39E-03	Ingestion:	6.73E-07
Dermal:	2.26E-04	Dermal:	1.35E-03	Dermal:	2.24E-07
Inhalation:	3.63E-05	Inhalation:	3.63E-05	Inhalation:	4.48E-11
Total:	6.74E-04	Total:	5.78E-03	Total:	8.97E-07

#### Program: Voluntary Remediation Program (VRP)

**Risk Based Performance Criteria** 

Default Hazard Index

1

Default Risk for Indidvidual Chemical

1.00E-06

Default Cumulative Risk (All Chemicals) 1.00E-06

## **Total Hazard Index/Risk for All Media**

Non-Cancer Adult		Non-Cancer Child		Cancer	
Ingestion:	4.12E-04	Ingestion:	4.39E-03	Ingestion:	6.73E-07
Dermal:	2.26E-04	Dermal:	1.35E-03	Dermal:	2.24E-07
Inhalation:	3.63E-05	Inhalation:	3.63E-05	Inhalation:	4.48E-11
Total:	6.74E-04	Total:	5.78E-03	Total:	8.97E-07
does not exceed	hazard index	does not excee	d hazard index	does not exceed	cumulative risk

Friday, July 16, 2021

#### Site Name: Former MGP

#### Residential

#### Program: Voluntary Remediation Program (VRP)

#### Risk Based Performance Criteria

Default Hazard Index

1

Default Risk for Indidvidual Chemical Default Cumulative Risk (All Chemicals) 1.00E-06

THIS PAGE INTENTIONALLY LEFT BLANK **Exposure Defaults Follow** 

1.00E-06

#### Program: Voluntary Remediation Program (VRP)

Risk Based Performance Criteria

Default Hazard Index 1

Default Risk for Indidvidual Chemical

1.00E-06

Default Cumulative Risk (All Chemicals) 1.00E-06

## Residential Exposure Default Values

Symbol	Description	Value	Units
AF0-02	Soil Adherence Factor - age segment 0-2	0.2	(mg/cm2)
AF02-06	Soil Adherence Factor - age segment 2-6	0.2	(mg/cm2)
AF06-16	Soil Adherence Factor - age segment 6-16	0.07	(mg/cm2)
AF16-26	Soil Adherence Factor - age segment 16-26	0.07	(mg/cm2)
AFres-a	Resident Soil Adherence Factor - adult	0.07	(mg/cm2)
AFres-c	Resident Soil Adherence Factor - child	0.2	(mg/cm2)
ATr	Resident Averaging Time	365	(days/yr)
ATres	Resident Averaging Time: 365 x LT	25550	(days)
ATres-a	Resident Averaging Time - adult: 365 x EDres	9490	(days)
ATres-c	Resident Averaging Time - child: 365 x EDres-c	2190	(days)
BW0-02	Body Weight - age segment 0-2	15	(kg)
BW02-06	Body Weight - age segment 2-6	15	(kg)
BW06-16	Body Weight - age segment 6-16	80	(kg)
BW16-26	Body Weight - age segment 16-26	80	(kg)
BWres-a	Resident Body Weight - adult	80	(kg)
BWres-c	Resident Body Weight - child	15	(kg)
DFSMres-adj	Resident Soil Mutagenic Dermal Contact Factor - age adjusted	428260	(mg/kg)
DFSres-adj	Resident Soil Dermal Contact Factor - age adjusted	103390	(mg/kg)
DFWMres-adj	Resident Groundwater Mutagenic Dermal Contact Factor - age adjusted	8191633.33333333	(cm2-event/kg)
DFWres-adj	Resident Groundwater Dermal Contact Factor - age adjusted	2610650	(cm2-event/kg)
ED0-02	Exposure Duration - age segment 0-2	2	(yrs)
ED02-06	Exposure Duration - age segment 2-6	4	(yrs)
ED06-16	Exposure Duration -age segment 6-16	10	(yrs)

#### Residential

#### **Program:** Voluntary Remediation Program (VRP)

#### Default Hazard Index Default Risk for Indidvidual Chemical Default Cumulative Risk (All Chemicals) 1.00F-06 1.00E-06 1 ED16-26 Exposure Duration -age segment 16-26 10 (yrs) 26 (vrs) EDres Resident Total Exposure Duration EDres-a Resident Exposure Duration - adult 20 (yrs) EDres-c Resident Exposure Duration - child 6 (yrs) EFres 350 (days/yr) Resident Exposure Frequency EFres0-02 Resident Exposure Frequency - age segment 0-2 350 (days/yr) EFres02-06 Resident Exposure Frequency - age segment 2-6 350 (days/yr) EFres06-16 350 (days/yr) Resident Exposure Frequency - age segment 6-16 EFres16-26 Resident Exposure Frequency - age segment 16-26 350 (days/yr) EFres-a 350 (days/yr) Resident Exposure Frequency - adult EFres-c Resident Exposure Frequency - child 350 (days/yr) ETevent-res(0-02) Resident Water Exposure Time - age segment 0-2 0.54 (hrs/event) ETevent-res(02-06) Resident Water Exposure Time - age segment 2-6 0.54 (hrs/event) ETevent-res(06-16) Resident Water Exposure Time - age segment 6-16 0.71 (hrs/event) ETevent-res(16-26) 0.71 (hrs/event) Resident Water Exposure Time - age segment 16-26 0.71 (hrs/event) ETevent-res-a Resident Groundwater Exposure Time -adult ETevent-res-adj Resident Water Exposure Time -age adjusted 0.670769230769231 (hrs/event) ETevent-res-c Resident Groundwater Exposure Time - child 0.54 (hrs/event) 0.670769230769231 (hrs/event) ETevent-res-madj Resident Water Exposure Time - mutagen age adjusted ETrai 24 (hrs/day) Resident Air Inhalation Exposure Time 24 (hrs/day) FTres Resident Soil Exposure Time ETres0-02 Resident Exposure Time - age segment 0-2 24 (hrs/day) ETres02-06 24 (hrs/day) Resident Exposure Time - age segment 2-6 ETres06-16 Resident Exposure Time - age segment 6-16 24 (hrs/day) ETres16-26 Resident Exposure Time - age segment 16-26 24 (hrs/day)

**Risk Based Performance Criteria** 

Resident Exposure Time - adult

ETres-a

24 (hrs/day)

#### Site Name: Former MGP

#### Residential

#### Program: Voluntary Remediation Program (VRP)

#### Risk Based Performance Criteria

Default H	lazard Index	Default Risk for Indidvidual Chemical	Default	Cumulative Risk	(All Chemicals)
	1	1.00E-06		1.00E-06	
ETres-c	Resident Exposure Ti	me - child		24	(hrs/day)
ETres-gwi	Resident Groundwat	er Inhalation Exposure Time		24	(hrs/day)
EVres-a	Resident Groundwat	er Events - adult		1	(events/day)
EVres-c	Resident Groundwat	er Events - child		1	(events/day)
IFSMres-adj	Resident Mutagenic	Soil Ingestion Rate - age adjusted		166833.3333333333	(mg/kg)
IFSres-adj	Resident Soil Ingestio	on Rate - age adjusted		36750	(mg/kg)
IFWMres-adj	Resident Mutagenic	Drinking Groundwater Ingestion Rate - age adjuste	ed	1019.9	(L/kg)
IFWres-adj	Resident Drinking Gr	oundwater Ingestion Rate - age adjusted		327.95	(L/kg)
INHMres-ai-adj	Resident Air Inhalati	on Exposure Duration Mutagen - age adjusted		604800	(hrs)
INHMres-gw-adj	Resident Groundwat	er Inhalation Exposure Duration Mutagen - age ad	djusted	25200	(days)
INHMres-s-adj	Resident Soil Inhalat	on Exposure Duration Mutagen - age adjusted		25200	(days)
IREres-a	Resident Food Eggs I	ngestion Rate - Virginia DEQ		150000	(mg/day)
IRFres-a	Resident Food Fish/S	hellfish Ingestion Rate - Exposure Defaults Handbo	ook	54000	(mg/day)
IRFVres-a	Resident Food Fruit/	Vegetables Ingestion Rate - Exposure Defaults Har	ndbook	122000	(mg/day)
IRMDres-a	Resident Food Meat,	/Dairy - Virginia DEQ		280000	(mg/day)
IRS0-02	Soil/Sediment Ingest	ion Rate - age segment 0-2		200	(mg/day)
IRS02-06	Soil/Sediment Ingest	ion Rate - age segment 2-6		200	(mg/day)
IRS06-16	Soil/Sediment Ingest	ion Rate - age segment 6-16		100	(mg/day)
IRS16-26	Soil/Sediment Ingest	ion Rate - age segment 16-26		100	(mg/day)
IRSres-a	Resident Soil Ingestio	on Rate - adult		100	(mg/day)
IRSres-c	Resident Soil Ingestio	on Rate - child		200	(mg/day)
IRW0-02	Drinking Water Inges	tion Rate - age segment 0-2		0.78	(L/day)
IRW02-06	Drinking Water Inges	tion Rate - age segment 2-6		0.78	(L/day)
IRW06-16	Drinking Water Inges	tion Rate - age segment 6-16		2.5	(L/day)
IRW16-26	Drinking Water Inges	tion Rate - age segment 16-26		2.5	(L/day)
IRWres-a	Resident Drinking Gr	oundwater Ingestion Rate - adult		2.5	(L/day)

#### Residential

#### Program: Voluntary Remediation Program (VRP)

Defau	lt Hazard Index 1	Default Risk for Indidvidual Chemical 1.00E-06	Default Cumulative Risl 1.00E-06	(All Chemicals)
IRWres-c	Resident Drinking	Groundwater Ingestion Rate - child	0.78	(L/day)
SAres-a	Resident Soil Surfa	ice Area - adult	6032	(cm2/day)
SAres-a	Resident Water Su	rface Area - adult	19652	(cm2)
SAres-c	Resident Water Su	rface Area - child	6365	(cm2)
SAres-c	Resident Soil Surfa	ice Area - child	2373	(cm2/day)
SAs0-02	Surface Area Soil/	Sediment - age segment 0-2	2373	(cm2/day)
SAs02-06	Surface Area Soil/	Sediment - age segment 2-6	2373	(cm2/day)
SAs06-16	Surface Area Soil/	Sediment - age segment 6-16	6032	(cm2/day)
SAs16-26	Surface Area Soil/	Sediment - age segment 16-26	6032	(cm2/day)
SAw0-02	Surface Area Wate	er - age segment 0-2	6365	(cm2)
SAw02-06	Surface Area Wate	er - age segment 2-6	6365	(cm2)
SAw06-16	Surface Area Wate	er - age segment 6- 16	19652	(cm2)
SAw16-26	Surface Area Wate	er - age segment 16- 26	19652	(cm2)

Risk Based Performance Criteria

END OF REPORT

Bramlette Former MGP Greenville, SC

## Attachment 3

## BORING LOGS

PROJECT: Former Bramlette Road MGP Site	WELL / BORING NO: SA-SB-46				
PROJECT NO: 1026.800	STARTED: 11/14/19 COMPLETED: 11/14/19				
DRILLING COMPANY: Geologic Exploration	NORTHING: EASTING:				
DRILLING METHOD: Sonic	G.S. ELEV: NM ft M.P. ELEV: ft				
BOREHOLE DIAMETER: 4 IN	DEPTH TO WATER: ft TOC TOTAL DEPTH: 6.0 ft BGS				
NOTES:	LOGGED BY: T. King CHECKED BY: TCK				
HLdg DESCRIPTION DESCRIPTION	SAMPLE SAMPLE (FT) . (FT) . (FT) . (PID (PPm)) . (PID (PPm)) . (PPm)				
-         0         TOPSOIL;           organic soil, dark brown-orange, moist.         FILL;           Brick debris.         FILL;           FILL;         Wood debris.           Borehole terminated at 6 feet bgs.           No odor, no visible staining.           10-           11-           10-           10-           10-           10-           10-           10-           10-           10-           10-           10-           10-           10-           115-           120-           130-           130-           140-           140-           140-           140-           145-	CLENT: Duke Energy Carolinas, LLC.				
Greenville, South Carolina 29601					
Phone: 864-421-9999	PAGE 1 OF 1				

PROJECT: Former Bramlette Road MGP Site WELL / BOR				DRING NO: RI-SB-13				
PROJECT NO: 00.2731.00	STARTED:		3/	15/21		COMPLETED: 3/15/21		
DRILLING COMPANY: Geologic Exploration	NORTHIN	G:				EASTING:		
DRILLING METHOD: Direct-Push G.S. ELE		G.S. ELEV: NM ft				M.P. ELEV: ft		
BOREHOLE DIAMETER: 2 IN	DEPTH TO	WA1	TER: f	t TOC		TOTAL DEPTH: 8.0 ft BLS		
NOTES:	LOGGED	3Y: -	T. King	(0		CHECKED BY: G. Khang		
HLAND SS DESCRIPTION		SAMPLE	RECOV. (FT)	VISUAL	(mqq)	WELL CONSTRUCTION		
FILL; SILT, sandy, lean clay with sand; SILT, sandy, lean clay with sand; Dark yellow browm (10YR 4/6), very dark gr red (2.5YR 5/6), and light gray (N7); moist; o some gravel; wood debris; micaceous	ay (5Y 3/1), organic matter;		4.0					
5       FILL;         SM       SAND with silt         Reddish brown (5YR 4/4); wet; some wood f         and is fine to large grained         ALLUVIUM;         CLY, lean, silty;         Dark gray (10YR 4/1); wet; little very fine san         Bottom of boring 8' bls	nd		3.0					
40-								
CLIENT: Duke Energy Carolinas, LLC.								
148 River Street, Suite 220						PROJECT LOCATION: Greenville, SC		
SynTerra Greenville, South Carolina 29601 Phone: 864-421-9999 PAGE 1 OF 1								

PROJECT: Former Bramlette Road MGP Site WELL / BORING NO: RI-SB-14					8-14			
PROJECT NO	D: 00.2	2731.00	STARTED		3/	15/21		COMPLETED: 3/15/21
DRILLING CO	OMPAN	Y: Geologic Exploration	NORTHIN	G:				EASTING:
DRILLING M	ETHOD:	Direct-Push	G.S. ELEV	:	N	IM ft		M.P. ELEV: ft
BOREHOLE	DIAMET	ER: 2 IN	DEPTH TO	WA ⁻	TER: f	t TOC		TOTAL DEPTH: 8.0 ft BLS
NOTES:			LOGGED	BY: '	T. King			CHECKED BY: G. Khang
DEPTH (ft) GRAPHIC LOG	uscs	DESCRIPTION		SAMPLE	RECOV. (FT)	VISUAL IMPACTS	(mqq)	WELL CONSTRUCTION
5-	ML	FILL; SILT, sandy, lean clay with sand and gravel Dark yellow brown (10YR 4/6), dark gray (10 gray (N7), and red (2.5YR 5/6); organic debri wet	YR 4/1), light is; moist to		4.0			
	CL	ALLUVIUM; CLAY, lean, organics and sand; Very dark gray (5Y 3/1); decaying organic ma	atter;		2.5			
10 - - -		transitions to red brown (5YR 4/4); fine grain micaceous, wet Bottom of boring 8' bls	ed,					
15 - - -								
- 20 - -								
- - 25 - -								
30								
35-								
- 40 - - -								
45								
5	Sy 14	nTerra 8 River Street, Suite 220 eenville, South Carolina 29601						CLIENT: Duke Energy Carolinas, LLC. PROJECT LOCATION: Greenville, SC
synier	Id Ph	none: 864-421-9999						PAGE 1 OF 1

PROJECT: Former Bramlette Road MGP Site WELL / BORING NO: RI-SB-15					8-15				
PROJECT NO	: 00.2	2731.00	STARTED		3/	15/21		COMPLETED: 3/15/21	
DRILLING CO	MPANY	C: Geologic Exploration	NORTHIN	G:				EASTING:	
DRILLING ME	THOD:	Direct-Push	G.S. ELEV	:	Ν	IM ft		M.P. ELEV: ft	
BOREHOLE D	IAMETI	ER: 2 IN	DEPTH TO	WA ⁻	TER: f	t TOC		TOTAL DEPTH: 8.0 ft BLS	
NOTES:			LOGGED	BY: [·]	T. King			CHECKED BY: G. Khang	
DEPTH (ft) GRAPHIC LOG	nscs	DESCRIPTION		SAMPLE	RECOV. (FT)	VISUAL	PID (ppm)	WELL CONSTRUCTION	
5-	ML	FILL; SILT, sandy, lean clay; Red (2.5YR 5/6), dark gray (10YR 4/1), and b brown; gravel and woody debris; moist to wet	dark yellow		2.0				
	CL	ALLUVIUM; CLAY, lean, sand; Reddish brown (5YR 4/4); wet; sand is fine g micaceous Bottom of boring 8' bls	rained;		1.5				
- 15 - -									
20-									
- 25 - -									
30									
- 35 - -									
40									
45- - - - - -									
	CLIENT: Duke Energy Carolinas, LL/							CLIENT: Duke Energy Carolinas, LLC.	
•7	Syn Lerra 148 River Street, Suite 220 PROJECT LOCATION: Greenville, SC								
synTerr		eenville, South Carolina 29601							
	- F0	010.007-721-3333						PAGE I UF I	
PROJE	PROJECT: Former Bramlette Road MGP Site WELL / BORING NO: RI-SB-16							3-16	
-----------------	--------------------------------------------------------------------	----------	--------------------------------------------------------------------------------------------------------------	-------------	--------	----------------	-------------------	--------------	-------------------------------------------------------------------------
PROJE	PROJECT NO: 00.2731.00 STARTEE					3/	15/21		COMPLETED: 3/15/21
DRILL	ING CON	/IPAN	Y: Geologic Exploration	NORTHIN	G:				EASTING:
DRILL	DRILLING METHOD: Direct-Push G.S. E			G.S. ELEV	:	N	IM ft		M.P. ELEV: ft
BORE	HOLE DI	AMET	TER: 2 IN	DEPTH TO	WA	TER: f	t TOC		TOTAL DEPTH: 8.0 ft BLS
NOTE	S:			LOGGED	BY:	T. King			CHECKED BY: G. Khang
DEPTH (ft)	GRAPHIC LOG	NSCS	DESCRIPTION		SAMPLE	RECOV. (FT)	VISUAL IMPACTS	(mqq) DIA	WELL CONSTRUCTION
		SM	FILL; SAND, silty Red brown (5YR 4/4); moist to wet; few grav fragments; micaceous	el and wood		3.0			
					- জন্ম				
- 10-		CL	ALLUVIUM; CLAY, lean, silty Dark gray (10YR 4/1); wet; little very fine sar Bottom of boring 8' bls	nd		2.0			
- 15									
-									
- 20-									
-									
- - 25									
-									
30									
35 -									
45									
BKAWILE I IE. G									
	2	Sy 14	ynTerra 18 River Street, Suite 220 reenville, South Carolina 29601						CLIENT: Duke Energy Carolinas, LLC. PROJECT LOCATION: Greenville, SC
syn	Phone: 864-421-9999 PAGE 1 OF 1								

PROJECT: Former Bramlette Road MGP Site WELL / BORING NO: RI-SB-17					
PROJECT NO: 00.2731.00	STARTED:	3	8/15/21		COMPLETED: 3/15/21
DRILLING COMPANY: Geologic Exploration	NORTHING:				EASTING:
DRILLING METHOD: Direct-Push	G.S. ELEV:		NM ft		M.P. ELEV: ft
BOREHOLE DIAMETER: 2 IN	DEPTH TO V	WATER:	ft TOC		TOTAL DEPTH: 8.0 ft BLS
NOTES:	LOGGED BY	Y: T. King	9		CHECKED BY: G. Khang
HEAD DESCRIPTION		SAMPLE RECOV. (FT)	VISUAL	(mqq)	WELL CONSTRUCTION
5- SM FILL; SAND, silty; Brown (7.5YR 5/2) to red (2.5YR 4/8); som organic material, some small gravel; moist	e lean clay; to wet	2.0			
FILL; SPG SAND, silty with gravel; Red (2.5YR 4/8); lean clay; gravel small to					
Bottom of boring 8' bls		2.5			
	-		-		
SynTerra					CLIENT: Duke Energy Carolinas, LLC.
148 River Street, Suite 220   PROJECT LOCATION: Greenville, SC     Synleria   Greenville, South Carolina 29601     Phone: 864-421-9999   PAGE 1 OF 1					

PROJECT: Former Bramlette Road MGP Site WELL / BORING NO: RI-SB-18						3-18	
PROJECT NO: 00.2731.00 STARTE			3/	15/21		COMPLETED: 3/15/21	
DRILLING COMPANY: Geologic Exploration	NORTHIN	G:				EASTING:	
DRILLING METHOD: Direct-Push	G.S. ELEV	<b>'</b> :	N	M ft		M.P. ELEV: ft	
BOREHOLE DIAMETER: 2 IN	DEPTH TC	) WAT	ER: f	t TOC		TOTAL DEPTH: 8.0 ft BLS	
NOTES:	LOGGED I	BY: T	. King			CHECKED BY: G. Khang	
HLdgg Cription		SAMPLE	RECOV. (FT)	VISUAL IMPACTS	(mqq) DIG	WELL CONSTRUCTION	
FILL; SM SAND, silty with some gravel; Brown (7.5YR 5/2) to Red (2.5YR 4/8); moi	ist to wet		2.0				
		জ্য					
SM REWORKED FILL;   SILT, sandy; SILT, sandy;   Red (2.5YR 4/8) light red (5R 6/6) and dark   10- \ 4/1); some residual structure; dense; biotite   Bottom of boring 8' bls	ر چgray (10YR / prevalent /	-	2.0				
SynTerra						CLIENT: Duke Energy Carolinas, LLC.	
148 River Street, Suite 220						PROJECT LOCATION: Greenville, SC	
Synlerra Greenville, South Carolina 29601 Phone: 864-421-9999	Phone: 864-421-9999 PAGE 1 OF 1						

PROJECT: Former Bramlette Road MGP Site WELL / BORING NO ⁻ RI-SB-19						
PROJECT NO: 00.2731.00	STARTED		3/	15/21		COMPLETED: 3/15/21
DRILLING COMPANY: Geologic Exploration	NORTHIN	G:				EASTING:
DRILLING METHOD: Direct-Push	G.S. ELEV	G.S. ELEV: NM ft				M.P. ELEV: ft
BOREHOLE DIAMETER: 2 IN	DEPTH TO	D WA	TER: f	t TOC		TOTAL DEPTH: 8.0 ft BLS
NOTES:	LOGGED	BY:	T. King			CHECKED BY: G. Khang
H C C C C C C C C C C C C C C C C C C C		SAMPLE	RECOV. (FT)	VISUAL MPACTS	(mqq)	WELL CONSTRUCTION
SM FILL; Brown (7.5YR 5/2); sandy SILT; woody debr	is; moist;/	- 200	1.5			
Core loss						
5 FILL; Red (2.5YR 4/8); silty SAND with gravel; coa clay; gravel small to medium; wet	tings of lean			-		
Bottom of boring 8' bis			3.0			
30-						
SynTerra 148 River Street, Suite 220						CLIENT: Duke Energy Carolinas, LLC. PROJECT LOCATION: Greenville, SC
Phone: 864-421-9999 PAGE 1 OF						

PROJUCT NO.     COMPLETE:     3/15/21     COMPLETE:     3/15/21       DRULING COMPANY:     Goolegic Exploration     NORTHING:     EASTING:     EASTING:     EASTING:     DESTING:     BASTING:     EASTING:     EAST	PROJECT: Former Bramlette Road MGP Site WELL / BORING NO: RI-SB-20						
DPILLING COMPANY:     Gendpote Exploration     NORTHING:     EASTING:     EASTING:     M.P.ELEV:     n       DRILLING METHOD:     Direct-Push     G.S.ELEV:     NM.R.     M.P.ELEV:     n       DORENUE DUMETER:     2.M     DIRECTION     Bit Status     DIRECTION     Bit Status     CONSTRUCTION       Bit Status     DESCRIPTION     Bit Status     DIRECTION     Bit Status     CONSTRUCTION       So Status     Status     DESCRIPTION     Bit Status     CONSTRUCTION     Bit Status     CONSTRUCTION       So Status     Status     FILL:     DESCRIPTION     Bit Status     CONSTRUCTION     Bit Status     CONSTRUCTION       So Status     FILL:     DESCRIPTION     Bit Status     Bit Status     CONSTRUCTION     Bit Status     CONSTRUCTION       So Status     Status     Status     Status     Status     Status     CONSTRUCTION       So Status     Status     Status     Status     Status     Status     Status     Status       So Status     Status     Status     Status     Status     <	PROJECT NO: 00.2731.00	STARTED:		3/	15/21		COMPLETED: 3/15/21
DelLING METHOD: Direct-Planh G.S. ELEV: NM It M.P. ELEV: 8   BOREHOLE DUAMETER: 2 IN DEPTH TO WATER: TOTAL DEPTH: 8.0 IBJS   MOTES: LOGGED BY: T Mig CENCED BY: G.S. ELEV: 8   E B S S B S S CONSTRUCTION   E B S S B S S CONSTRUCTION   B S S S S S S CONSTRUCTION   B S S S S S S CONSTRUCTION   S S S S S S S S   S S S S S S S S   S S S S S S S S   S S S S S S S S   S S S S S S S S   S S S S S S S S   S S S S S S S S   S S S S S <td>DRILLING COMPANY: Geologic Exploration</td> <td>NORTHIN</td> <td>G:</td> <td></td> <td></td> <td></td> <td>EASTING:</td>	DRILLING COMPANY: Geologic Exploration	NORTHIN	G:				EASTING:
BOREHOLE DAMETER:     21N     DEPTH TO WATER:     TOTO     TOTAL DEPTH:     SOIT B2       NOTE:     100GED bY:     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0	DRILLING METHOD: Direct-Push	G.S. ELEV	:	N	M ft		M.P. ELEV: ft
NOTE:     LOGGE PY: T. Keng     CHECKED BY: G. Keng       Log E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     CONSTRUCTION       SM     SM     Sity with gravet: rest and yiele adapt and dy     Image: Site adapt	BOREHOLE DIAMETER: 2 IN	DEPTH TO	WA	TER: f	t TOC		TOTAL DEPTH: 8.0 ft BLS
End Sol DESCRIPTION W Sol End CONSTRUCTION   5 SM Fill.: SMOD_sity with gravel: Red travel (SYR 44) most to wet; some wood fragments this lesses of darker sandy lean day 3.0 3.0 3.0 3.0   10 Bottom of boring 8 bits 1.5 1.5 1.5 1.5 1.5   20 Bottom of boring 8 bits 1.5 1.5 1.5 1.5   30 Bottom of boring 8 bits 1.5 1.5 1.5 1.5   10 Bottom of boring 8 bits 1.5 1.5 1.5 1.5   30 Bottom of boring 8 bits 1.5 1.5 1.5 1.5   14 Bottom of boring 8 bits 1.5 1.5 1.5 1.5   30 Bottom of boring 8 bits 1.5 1.5 1.5 1.5   30 Bottom of boring 8 bits 1.5 1.5 1.5 1.5   31 Bottom of boring 8 bits 1.5 1.5 1.5 1.5   32 Bottom of boring 8 bits 1.5 1.5 1.5 1.5   33 Bottom of boring 8 bits Bottom of boring 8 bits 1.5 1.5 1.5   34 Bottom of boring 8 bits Bottom of boring 8 bits 1.5	NOTES:	LOGGED	BY: ·	T. King			CHECKED BY: G. Khang
5     SM     FilL: Red Drown (3/R 44); noist to wet; some wood fragments; thin hones of darker sandy ican city     30     30       10     Bottem of boring 8' bis     1.5     1.5       20     Bottem of boring 8' bis     1.5       30     1.5     1.5       10     Bottem of boring 8' bis     1.5       20     1.5     1.5       30     1.5     1.5       10     1.5     1.5       10     1.5     1.5       10     1.5     1.5       10     1.5     1.5       10     1.5     1.5       20     1.5     1.5       30     1.5     1.5       31     1.5     1.5       32     1.5     1.5       33     1.5     1.5       340     1.5     1.5       35     1.5     1.5       36     1.5     1.5       37     1.5     1.5       38     1.5     1.5       39     1.5 <td>HL(1) DESCRIPTION</td> <td></td> <td>SAMPLE</td> <td>RECOV. (FT)</td> <td>VISUAL IMPACTS</td> <td>PID (ppm)</td> <td>WELL CONSTRUCTION</td>	HL(1) DESCRIPTION		SAMPLE	RECOV. (FT)	VISUAL IMPACTS	PID (ppm)	WELL CONSTRUCTION
Bottom of boring 8' bis 1.5	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ood fragments;		3.0			
	Bottom of boring 8' bls			1.5			
35- 40- 40- 45- 5ynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTerra SynTer							
40 - 40 - 40 - 40 - 40 - 40 - 40 - 40 -							
45- 45- 45- 45- 45- 45- 45- 45-							
SynTerra 440 Diver Street Suite 200 PROJECT LOCATION: Greenville St							
THAN RIVER Street, Suite 220 Greenville, South Carolina 29601 Broom 964 421 0000							

PROJECT: Former Bramlette Road MGP Site WELL / BORING NO: RI-SB-21						8-21
PROJECT NO: 00.2731.00	STARTED:		3/	15/21		COMPLETED: 3/15/21
DRILLING COMPANY: Geologic Exploration	NORTHIN	G:				EASTING:
DRILLING METHOD: Direct-Push	G.S. ELEV	:	N	IM ft		M.P. ELEV: ft
BOREHOLE DIAMETER: 2 IN	DEPTH TO	WA	TER: f	t TOC		TOTAL DEPTH: 8.0 ft BLS
NOTES:	LOGGED	3Y: '	T. King			CHECKED BY: G. Khang
HLdgg BEAPHIC COG Cog Cog Cog DESCRIPTION		SAMPLE	RECOV. (FT)	VISUAL IMPACTS	PID (ppm)	WELL CONSTRUCTION
FILL; SAND, silty; Dark yelow brown (10YR 4/6) and red (2.5Y some gravel and woody debris	R 5/16); moist;		3.5			
CL ML Dark gray (10YR 4/1); wet; slightly micaceou Bottom of boring 8' bls	IS		2.5			
30-						
SynTerra 148 River Street, Suite 220 Greenville, South Carolina 29601 Phone: 864 421 0000 Phone: 864 421 0000						
Priorie: 804-421-9999						PAGE 1 OF 1

PROJECT: Former Bramlette Road MGP Site WELL / BORING NO: RI-SB-22						3-22
PROJECT NO: 00.2731.00	:	3/	15/21		COMPLETED: 3/15/21	
DRILLING COMPANY: Geologic Exploration	NORTHIN	G:				EASTING:
DRILLING METHOD: Direct-Push	G.S. ELE	/:	N	IM ft		M.P. ELEV: ft
BOREHOLE DIAMETER: 2 IN	DEPTH T	D WAT	TER: f	t TOC		TOTAL DEPTH: 8.0 ft BLS
NOTES:	LOGGED	BY: ⁻	T. King			CHECKED BY: G. Khang
H (1) H		SAMPLE	RECOV. (FT)	VISUAL IMPACTS	(mqq) DIG	WELL CONSTRUCTION
FILL; SAND, silty with gravel; Dark yellow brown (10YR 4/6), red (2.5YR gray (10YR 4/1); moist to wet; significant v	5/6), and dark voody debris		3.0			
from 6 to 7 Ft. BGS		- 23				
10- 10- 10- 10- 10- 10- 10- 10-	sand /	-	1.5			
		[				
SynTerra 148 River Street, Suite 220 Greenville, South Caroline 20601						PROJECT LOCATION: Greenville, SC
Synierra Phone: 864-421-9999						PAGE 1 OF 1

PROJECT:	PROJECT: Former Bramlette Road MGP Site WELL / BORING NO: RI-SB-23						3-23	
PROJECT	PROJECT NO: 00.2731.00 STARTEI					- 15/21		COMPLETED: 3/15/21
DRILLING	COMPAN	NY: Geologic Exploration	NORTHIN	G:				EASTING:
DRILLING I	METHOD	D: Direct-Push	G.S. ELEV	<b>'</b> :	N	IM ft		M.P. ELEV: ft
BOREHOLE	E DIAME	TER: 2 IN	DEPTH TO	D WA	TER: f	t TOC		TOTAL DEPTH: 8.0 ft BLS
NOTES:			LOGGED	BY: [·]	T. King			CHECKED BY: G. Khang
DEPTH (ft) GRAPHIC	USCS	DESCRIPTION		SAMPLE	RECOV. (FT)	VISUAL IMPACTS	PID (ppm)	WELL CONSTRUCTION
	SM	FILL; SAND, silty; Brown (7.5YR 4/3) and fark gray (10YR 4/1) woody debris; some gravel	); moist to wet;		2.0			
5				- 20				
	CL ML	ALLUVIUM; CLAY, lean, silty; Dark gray (N4); wet; micaceous Bottom of boring 8' bls	/	-	2.0			
- - 15 - - -								
20-								
- 25 - -								
30								
	SynTerra 148 River Street, Suite 220 Greenville, South Carolina 29601							
synie	Phone: 864-421-9999 PAGE 1 OF 1							

PROJECT: Former Bramlette Road MGP Site WELL / BORING NO: RI-SB-24						3-24
PROJECT NO: 00.2731.00 STARTED:			3/	15/21		COMPLETED: 3/15/21
DRILLING COMPANY: Geologic Exploration	NORTHIN	G:				EASTING:
DRILLING METHOD: Direct-Push	G.S. ELE\	/:	N	IM ft		M.P. ELEV: ft
BOREHOLE DIAMETER: 2 IN	DEPTH TO	D WAT	TER: f	t TOC		TOTAL DEPTH: 8.0 ft BLS
NOTES:	LOGGED	BY: -	T. King	-		CHECKED BY: G. Khang
HTP DESCRIPTION		SAMPLE	RECOV. (FT)	VISUAL IMPACTS	PID (ppm)	WELL CONSTRUCTION
FILL; SM SAND, silty with gravel; Dark yellow brown (10YR 4/6); moist to well some woody debis	t; micaceous;		4.0			
CL ALLUVIUM; ML CLAY, lean, silty; Dark gray (N4); wet; micaceous; with some of decayed organics Bottom of boring 8' bls	black mottling	-	3.0			
20-						
30-						
40-						
SynTerra						CLIENT: Duke Energy Carolinas, LLC.
148 River Street, Suite 220						PROJECT LOCATION: Greenville, SC
PAGE 1 OF 1						

PROJECT: Former Bramlette Road MGP Site WELL / BORING NO: RI-SB-25						3-25		
PROJECT NO: 00.2731.00 STARTE			STARTED		3/	16/21		COMPLETED: 3/16/21
DRILLING CO	MPAN	Y: Geologic Exploration	NORTHIN	G:				EASTING:
DRILLING ME	THOD	Direct-Push	G.S. ELEV	:	N	IM ft		M.P. ELEV: ft
BOREHOLE D	IAME	TER: 2 IN	DEPTH TO	WA	TER: f	t TOC		TOTAL DEPTH: 8.0 ft BLS
NOTES:			LOGGED	BY: '	T. King			CHECKED BY: G. Khang
DEPTH (ff) GRAPHIC LOG	NSCS	DESCRIPTION		SAMPLE	RECOV. (FT)	VISUAL IMPACTS	(mqq)	WELL CONSTRUCTION
	SM	FILL; SAND, silty; Brown (10YR 4/3) to light red brown (2.5YR f gravel; micaceous Bottom of boring 8' bls	6/3); some		2.5			
					2.3			
6	S	ynTerra						CLIENT: Duke Energy Carolinas, LLC.
synTerr		48 River Street, Suite 220 reenville, South Carolina 29601 hone: 864-421-9999						
		1010.004-421-3333						FAGE I UF 1

PROJECT: Former Bramlette Road MGP Site WELL / BORING NO: RI-SB-26					
PROJECT NO: 00.2731.00	STARTED: 3/16/21 COMPLETED: 3/16/21				
DRILLING COMPANY: Geologic Exploration	NORTHING: EASTING:				
DRILLING METHOD: Direct-Push	G.S. ELEV: NM ft M.P. ELEV: ft				
BOREHOLE DIAMETER: 2 IN	DEPTH TO WATER: ft TOC TOTAL DEPTH: 8.0 ft BLS				
NOTES:	LOGGED BY: T. King CHECKED BY: G. Khang				
H Ld D DESCRIPTION	WEIL WEIL WEIL WEIL WEIL CONSTRUCTION (PDM) WEIL CONSTRUCTION				
5	ightly				
SPG SLAG/ COAL TAR Sand to gravel sized; odor present Bottom of boring 8' bls	3.0				
SynTerra 148 River Street, Suite 220	CLIENT: Duke Energy Carolinas, LLC. PROJECT LOCATION: Greenville, SC				
Synleria Greenville, South Carolina 29601 Phone: 864-421-9999 PAGE 1 OF 1					

PROJECT: Former Bramlette Road MGP Site WELL / BORING NO: RI-SB-27						3-27
PROJECT NO: 00.2731.00 STARTE			3/	17/21		COMPLETED: 3/17/21
DRILLING COMPANY: Geologic Exploration	NORTHIN	G:				EASTING:
DRILLING METHOD: Direct-Push	G.S. ELE	/:	Ν	IM ft		M.P. ELEV: ft
BOREHOLE DIAMETER: 2 IN	DEPTH TO	D WA	TER: f	t TOC		TOTAL DEPTH: 8.0 ft BLS
NOTES:	LOGGED	BY: ·	T. King			CHECKED BY: G. Khang
HL (J) SS DESCRIPTION		SAMPLE	RECOV. (FT)	VISUAL IMPACTS	(mqq)	WELL CONSTRUCTION
SM FILL; SAND, silty with gravel; Red (SR 4/6); gravel is small to large micad wet	ceous; moist to		2.0			
SM SM SAND, silty with gravel; Red (SR 4/6); gravel small to large; micace wet; sand and gravel content increasing with CLAY, lean;	eous; moist to		2.5		<1	
10 Bottom of boring 8' bls				_		
35						
40-						
SynTerra 148 River Street, Suite 220 Greenville, South Caroline 20601						CLIEN I : Duke Energy Carolinas, LLC. PROJECT LOCATION: Greenville, SC
Phone: 864-421-9999 PAGE 1 OF 1						

PROJECT: Former Bramlette Road MGP Site WELL / Br					RIN	G NO:		RI-SE	3-28
PROJEC	PROJECT NO: 00.2731.00 STARTE					3/	17/21		COMPLETED: 3/17/21
DRILLIN	IG CON	/IPAN`	Y: Geologic Exploration	NORTHIN	THING: EASTING:				
DRILLIN	IG MET	HOD:	Direct-Push	G.S. ELEV	:	N	IM ft		M.P. ELEV: ft
BOREH	OLE DI	AMET	ER: 2 IN	DEPTH TO	DEPTH TO WATER: ft TOC				TOTAL DEPTH: 8.0 ft BLS
NOTES:				LOGGED	BY:	T. King			CHECKED BY: G. Khang
DEPTH (ft)	DI DESCRIPTION DESCRIPTION					RECOV. (FT)	VISUAL IMPACTS	(mqq)	WELL CONSTRUCTION
		SM	FILL; SAND, silty with gravel Red brown; gravel increasing with depth; moi	st to wet		4.0			
					89			5	
		CL	ALLOVIUM; CLAY, lean; Dark gray; wet; micaceous; heavy organic ma odor present at 6.7 - 7 Ft. BGS (possible coa ppm) indicated presence of volatiles Bottom of boring 8' bls	atter; slight I tar); PID (5		2.5			
- 15 - - -									
20									
25-									
30									
35-									
	>	Sy 14	nTerra 18 River Street, Suite 220						CLIENT: Duke Energy Carolinas, LLC. PROJECT LOCATION: Greenville, SC
synt	erra	Gr Ph	eenville, South Carolina 29601 none: 864-421-9999						PAGE 1 OF 1

PROJECT: Former Bramlette Road MGP Site WELL / BC				RIN	G NO:		RI-SE	3-29		
PROJECT NO: 00.2731.00 STARTED						3/	/17/21		COMPLETED: 3/17/21	
DRILLING	COM	PANY	2: Geologic Exploration	NORTHIN	ING: EASTING:					
DRILLING	METH	HOD:	Direct-Push	G.S. ELEV	:	Ν	IM ft		M.P. ELEV: ft	
BOREHOL	E DIA	METE	ER: 2 IN	DEPTH TC	PTH TO WATER: ft TOC TOTAL DEPTH: 8.0 ft BL					
NOTES:				LOGGED I	BY:	T. King			CHECKED BY: G. Khang	
DEPTH (ft) GRAPHIC	FOG	nscs	DESCRIPTION		SAMPLE	RECOV. (FT)	VISUAL IMPACTS	PID (ppm)	WELL CONSTRUCTION	
		SM	FILL; SAND, silty; Dark brown thermally treated soil; some smal slag present; odor and PID indicated volatiles BGS (8ppm)	l zones of 4" to 12"	- 653	4.0		8		
↓ ° ₩		SM	FILL; SAND, silty with gravel;		্ৰজ			5		
10-			Red; wet CLAY, lean, silty; Dark gray; micaceous; heavy organic matter a - 7 ft BGS PID indicated VOCs present (5 pp Bottom of boring 8' bls	/ and wood. 6.5 m)/		2.0				
							-			
20										
- - 25 - -										
- - 30- - -										
35-										
40										
45-										
6		Syr 148	nTerra 8 River Street, Suite 220 penville, South Carolina 20601						CLIENT: Duke Energy Carolinas, LLC. PROJECT LOCATION: Greenville, SC	
synie	rra	Ph	one: 864-421-9999						PAGE 1 OF 1	

PROJECT: Former Bramlette Road MGP Site	ORINO	G NO:		RI-SE	3-30	
PROJECT NO: 00.2731.00	STARTED: 3/17/21 COMPLETED: 3/17/21					COMPLETED: 3/17/21
DRILLING COMPANY: Geologic Exploration	NORTHIN	G:				EASTING:
DRILLING METHOD: Direct-Push	G.S. ELEV	G.S. ELEV: NM ft				M.P. ELEV: ft
BOREHOLE DIAMETER: 2 IN	DEPTH TO WATER: ft TOC					TOTAL DEPTH: 8.0 ft BLS
NOTES:	LOGGED BY: T. King					CHECKED BY: G. Khang
H U S S DESCRIPTION		SAMPLE	RECOV. (FT)	VISUAL MPACTS	(mqq)	WELL CONSTRUCTION
CL   FILL;     ML_   CLAY, silty;     CLAY, silty;   CLAY, silty;     FILL;   SM     SM   SAND, silty with lean clay;     SM   Red, light brown, and gray; gravelly; moist to	/ /		3.0			
CL ALLUVIUM; ML CLAY, lean,silty; Dark gray; wet; micaceous; heavy organic ma BGS	atter at 6.5 Ft.		2.0			
Bottom of boring 8' bis						
SynTerra 148 River Street, Suite 220 Creen illo South Carolina 20001		<u> </u>	<u> </u>	<u> </u>	1	CLIENT: Duke Energy Carolinas, LLC. PROJECT LOCATION: Greenville, SC
Synierra Phone: 864-421-9999						PAGE 1 OF 1

PROJECT: Former Bramlette Road MGP Site	WELL / BO	RINC	G NO:	F	RI-SE	3-31
PROJECT NO: 00.2731.00	STARTED:		3/	17/21		COMPLETED: 3/17/21
DRILLING COMPANY: Geologic Exploration	NORTHIN	NORTHING: EASTING:				
DRILLING METHOD: Direct-Push	G.S. ELEV: NM ft					M.P. ELEV: ft
BOREHOLE DIAMETER: 2 IN	DEPTH TC	WA	TER: f	t TOC		TOTAL DEPTH: 8.0 ft BLS
NOTES:	LOGGED	3Y: '	T. King			CHECKED BY: G. Khang
HL (J) SS DESCRIPTION		SAMPLE	RECOV. (FT)	VISUAL IMPACTS	(mqq) DID	WELL CONSTRUCTION
Image: Solution of the second seco	GS; PID		3.0		6-20 . 1	
SynTerra						CLIENT: Duke Energy Carolinas, LLC.
148 River Street, Suite 220 Greenville, South Carolina 29601 Phone: 864-421-9999						PAGE 1 OF 1

PROJECT: Former Bramlette Road MGP Site WELL					G NO:	F	RI-SE	3-32
PROJECT NO:	00.	2731.00	STARTED:		3/	17/21		COMPLETED: 3/17/21
DRILLING COM	MPAN	Y: Geologic Exploration	NORTHIN	G:				EASTING:
DRILLING MET	THOD	Direct-Push	G.S. ELEV	G.S. ELEV: NM ft				M.P. ELEV: ft
BOREHOLE D	IAMET	TER: 2 IN	DEPTH TO WATER: ft TOC			t TOC	TOTAL DEPTH: 8.0 ft BLS	
NOTES:			LOGGED	BY:	T. King	(0		CHECKED BY: G. Khang
DEPTH (ft) GRAPHIC LOG	DESCRIPTION				RECOV. (FT)	VISUAL	(mqq) DID	WELL CONSTRUCTION
	SM	FILL; SAND, silty, with gravel; dark yellow brown to red; moist to wet; some no odor detected; PID reads 1-6 ppm	wood debris;	- 253 	3.0		1-6	
	CL	CLAY, lean Dark gray; organics at 6 Ft wet; micaceous;	PID reads 0.7				0.7	
		Bottom of boring 8' bis			3.0			
15-								
- 25 -								
- 35 -								
45- -								
69	Sy 14	ynTerra 18 River Street, Suite 220						CLIENT: Duke Energy Carolinas, LLC. PROJECT LOCATION: Greenville, SC
synTerra	SynTerra Greenville, South Carolina 29601 Phone: 864-421-9999 PAGE 1 OF 1							PAGE 1 OF 1

PROJECT: Former Bramlette Road MGP Site WELL					G NO:		RI-SE	3-33			
PROJECT NO: 00.2731.00 STARTE					3/	17/21		COMPLETED: 3/17/21			
DRILLING CO	DRILLING COMPANY: Geologic Exploration NORTHIN						G: EASTING:				
DRILLING MI	ETHOD	: Direct-Push	G.S. ELEV	ELEV: NM ft M.P. ELEV: ft							
BOREHOLE	DIAMET	TER: 2 IN	DEPTH TO	WA	TER: f	t TOC		TOTAL DEPTH: 8.0 ft BLS			
NOTES:			LOGGED	BY:	T. King			CHECKED BY: G. Khang			
DEPTH (ft) GRAPHIC LOG	USCS	DESCRIPTION			RECOV. (FT)	VISUAL IMPACTS	(mqq) DIG	WELL CONSTRUCTION			
	FILL; SM SAND, silty with gravel; Brown to red brown; moist to wet; micaceous; increasing										
				- 23			>1				
- - 10-		Dark gray; wet; micaceous; woody debris; co odor present; PID indicated 7 ppm Bottom of boring 8' bls	al tar resins;		2.5						
						-					
15											
20-											
- - 25- -											
- - 30 - -											
35-											
40											
- 45- - - -											
6	SynTerra 148 River Street, Suite 220 CLIENT: Duke Energy Carolinas, LLC. PROJECT LOCATION: Greenville, SC										
synter	148 River Street, Suite 220   PROJECT LOCATION. Greenville, SC     SynTerra   Greenville, South Carolina 29601     Phone: 864-421-9999   PAGE 1 OF 1										

PROJECT: Former Bramlette Road MGP Site WELL					RIN	G NO:		RI-SE	3-34
PROJEC	PROJECT NO: 00.2731.00 ST						17/21		COMPLETED: 3/17/21
DRILLIN	G COM	1PAN`	Y: Geologic Exploration	NORTHIN	G:				EASTING:
DRILLIN	G MET	HOD:	Direct-Push	G.S. ELEV: NM ft					M.P. ELEV: ft
BOREHO	DLE DIA	AMET	ER: 2 IN	DEPTH TO	WA	TER: f	t TOC		TOTAL DEPTH: 8.0 ft BLS
NOTES:				LOGGED	BY: [·]	T. King			CHECKED BY: G. Khang
DEPTH (ft)	LOG	NSCS	DESCRIPTION		SAMPLE	RECOV. (FT)	VISUAL IMPACTS	PID (ppm)	WELL CONSTRUCTION
5-		SM	FILL; SAND, silty, with gravel; Brown to red brown; moist to wet; biotite			2.5			
10-		CL	CLAY, lean, sandy; Dark gray; some slag with coal tar coating; or PID indicated <1 PPM Bottom of boring 8' bls	dor present;		2.0		<1	
- - - 15 - - -									
20-									
- 25- - - -									
- 30- - - -									
		Sy 14	nTerra 8 River Street, Suite 220		I	1	1	1	CLIENT: Duke Energy Carolinas, LLC. PROJECT LOCATION: Greenville, SC
synle	erra	Gr Ph	reenville, South Carolina 29601 none: 864-421-9999						PAGE 1 OF 1

PROJECT:	WELL / BO	RINO	G NO:		RI-SE	3-35			
PROJECT NO	00	2731.00	STARTED: 3/17/21 COMPLETED: 3/17/21						
DRILLING CO	MPAN	Y: Geologic Exploration	NORTHING:					EASTING:	
DRILLING ME	THOD	Direct-Push	G.S. ELEV: NM ft					M.P. ELEV: ft	
BOREHOLE D	IAMET	TER: 2 IN	DEPTH TO	WA ⁻	TER: f	t TOC		TOTAL DEPTH: 8.0 ft BLS	
NOTES:			LOGGED	3Y: '	T. King			CHECKED BY: G. Khang	
HLGG CLOB CLOB CLOB CLOB CLOB CLOB CLOB CLOB					RECOV. (FT)	VISUAL IMPACTS	(mqq) DIA	WELL CONSTRUCTION	
	5 5 5 5 5 5 5 5 5 5 5 5 5 5						0.5 - 1.3		
- - 10 -	CL	CLAY, lean; Dark gray; wet; micaceous; slight odor; PID in ppm Bottom of boring 8' bls	ndicated <1		3.0				
- 15- - - - 20- -									
- 25- - - - - - - - - - - - - - - - - -									
- - 35 - - -									
6	S	ynTerra						CLIENT: Duke Energy Carolinas, LLC.	
	14 C	18 River Street, Suite 220 reenville, South Carolina 29601						PROJECT LUCATION: Greenville, SC	
syniem	Greenville, South Carolina 29601 Phone: 864-421-9999 PAGE 1 OF 1								

PROJECT:	WELL / BO	ORINO	g NO:		RI-SE	3-36			
PROJECT NO	PROJECT NO: 00.2731.00					17/21		COMPLETED: 3/17/21	
DRILLING CO	MPAN	Y: Geologic Exploration	NORTHING:					EASTING:	
DRILLING ME	THOD	: Direct-Push	G.S. ELEV: NM ft				M.P. ELEV: ft		
BOREHOLE D	IAME	TER: 2 IN	DEPTH TO	D WA	TER: f	t TOC		TOTAL DEPTH: 8.0 ft BLS	
NOTES:			LOGGED	BY:	T. King			CHECKED BY: G. Khang	
DEPTH (ft) (ft) CRAPHIC LOG	DI BO S DESCRIPTION					VISUAL	(mqq)	WELL CONSTRUCTION	
5-	FILL; SAND, silty with gravel Heat treated soils; brown to red brown; some spent coal fragments; PID indicated >2 ppm in top 8"; increasing gravel with depth; asphalt and brick around 5 Ft BGS; moist to wet				3.5		>2		
	CL	CLAY, lean; Dark gray; wet; micaceous; dense; organic m BGS	natter at 6 Ft.						
_		Bottom of boring 8' bls	/		2.0				
15									
-									
25-									
30-									
35-									
40-									
45-									
67	SynTerra 148 Piver Street Suite 220 CLIENT: Duke Energy Carolinas, LLC. PROJECT LOCATION: Greenville, SC								
synTerr	148 River Street, Suite 220   PROJECT LOCATION: Greenville, SC     Greenville, South Carolina 29601   PAGE 1 OF 1								

Bramlette Former MGP Greenville, SC

# Attachment 4

# LABORATORY ANALYTICAL REPORTS



May 13, 2021

Program Manager Duke Energy 13339 Hagers Ferry Road Bldg. 7405 MG30A2 Huntersville, NC 28078

RE: Project: BRAMLETTE J21030497 Pace Project No.: 92528011

Dear Program Manager:

Enclosed are the analytical results for sample(s) received by the laboratory on March 16, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Charlotte

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kan slang

Kevin Herring kevin.herring@pacelabs.com 1(704)875-9092 HORIZON Database Administrator

Enclosures

cc: Tom King Amber Lipsky Program Manager, Duke Energy Mike Mastbaum Todd Plating, Synterra Rick Powell B. Russo Heather Smith





## CERTIFICATIONS

Project: BRAMLETTE J21030497

Pace Project No.: 92528011

## Pace Analytical Services Charlotte

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12 South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221



# SAMPLE SUMMARY

Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92528011001	RI-SB-13 (0.5-1.0)	Solid	03/15/21 10:35	03/16/21 11:45
92528011002	RI-SB-13 (5.5-6.0)	Solid	03/15/21 10:35	03/16/21 11:45
92528011003	RI-SB-14 (0.5-1.0)	Solid	03/15/21 10:40	03/16/21 11:45
92528011004	RI-SB-14 (5.5-6.0)	Solid	03/15/21 10:40	03/16/21 11:45
92528011005	RI-SB-15 (0.5-1.0)	Solid	03/15/21 11:30	03/16/21 11:45
92528011006	RI-SB-15 (5.5-6.0)	Solid	03/15/21 11:35	03/16/21 11:45
92528011007	RI-SB-16 (0.5-1.0)	Solid	03/15/21 11:45	03/16/21 11:45
92528011008	RI-SB-16 (5.5-6.0)	Solid	03/15/21 11:50	03/16/21 11:45
92528011009	RI-SB-17 (0.5-1.0)	Solid	03/15/21 13:30	03/16/21 11:45
92528011010	RI-SB-17 (5.5-6.0)	Solid	03/15/21 13:35	03/16/21 11:45
92528011011	RI-SB-18 (0.5-1.0)	Solid	03/15/21 13:45	03/16/21 11:45
92528011012	RI-SB-18 (5.5-6.0)	Solid	03/15/21 13:50	03/16/21 11:45
92528011013	RI-SB-21 (0.5-1.0)	Solid	03/15/21 15:05	03/16/21 11:45
92528011014	RI-SB-21 (5.5-6.0)	Solid	03/15/21 15:10	03/16/21 11:45
92528011015	RI-SB-22 (0.5-1.0)	Solid	03/15/21 15:25	03/16/21 11:45
92528011016	RI-SB-22 (5.5-6.0)	Solid	03/15/21 15:30	03/16/21 11:45
92528011017	RI-SB-23 (0.5-1.0)	Solid	03/15/21 15:35	03/16/21 11:45
92528011018	RI-SB-23 (5.5-6.0)	Solid	03/15/21 15:40	03/16/21 11:45
92528011019	RI-SB-24 (0.5-1.0)	Solid	03/15/21 15:55	03/16/21 11:45
92528011020	RI-SB-24 (5.5-6.0)	Solid	03/15/21 16:00	03/16/21 11:45
92528011021	TRIP BLANK	Water	03/15/21 00:00	03/16/21 11:45



# SAMPLE ANALYTE COUNT

Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92528011001	RI-SB-13 (0.5-1.0)	EPA 8270E	BPJ	69	PASI-C
		EPA 8260D	CL	70	PASI-C
		SW-846	KDF	1	PASI-C
92528011002	RI-SB-13 (5.5-6.0)	EPA 8270E	BPJ	69	PASI-C
		EPA 8260D	CL	70	PASI-C
		SW-846	KDF	1	PASI-C
92528011003	RI-SB-14 (0.5-1.0)	EPA 8270E	BPJ	69	PASI-C
		EPA 8260D	CL	70	PASI-C
		SW-846	KDF	1	PASI-C
92528011004	RI-SB-14 (5.5-6.0)	EPA 8270E	BPJ	69	PASI-C
		EPA 8260D	CL	70	PASI-C
		SW-846	KDF	1	PASI-C
92528011005	RI-SB-15 (0.5-1.0)	EPA 8270E	BPJ	69	PASI-C
		EPA 8260D	CL	70	PASI-C
		SW-846	KDF	1	PASI-C
92528011006	RI-SB-15 (5.5-6.0)	EPA 8270E	BPJ	69	PASI-C
		EPA 8260D	CL	70	PASI-C
		SW-846	KDF	1	PASI-C
92528011007	RI-SB-16 (0.5-1.0)	EPA 8270E	BPJ	69	PASI-C
		EPA 8260D	CL	70	PASI-C
		SW-846	KDF	1	PASI-C
92528011008	RI-SB-16 (5.5-6.0)	EPA 8270E	BPJ	69	PASI-C
		EPA 8260D	CL	70	PASI-C
		SW-846	KDF	1	PASI-C
92528011009	RI-SB-17 (0.5-1.0)	EPA 8270E	BPJ	69	PASI-C
		EPA 8260D	CL	70	PASI-C
		SW-846	KDF	1	PASI-C
92528011010	RI-SB-17 (5.5-6.0)	EPA 8270E	BPJ	69	PASI-C
		EPA 8260D	CL	70	PASI-C
		SW-846	KDF	1	PASI-C
92528011011	RI-SB-18 (0.5-1.0)	EPA 8270E	BPJ	69	PASI-C
		EPA 8260D	CL	70	PASI-C
		SW-846	KDF	1	PASI-C
92528011012	RI-SB-18 (5.5-6.0)	EPA 8270E	BPJ	69	PASI-C
		EPA 8260D	CL	70	PASI-C
		SW-846	KDF	1	PASI-C
92528011013	RI-SB-21 (0.5-1.0)	SW-846	KDF	1	PASI-C



# SAMPLE ANALYTE COUNT

Project:BRAMLETTE J21030497Pace Project No.:92528011

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92528011014	RI-SB-21 (5.5-6.0)	SW-846	KDF	1	PASI-C
92528011015	RI-SB-22 (0.5-1.0)	SW-846	KDF	1	PASI-C
92528011016	RI-SB-22 (5.5-6.0)	SW-846	KDF	1	PASI-C
92528011017	RI-SB-23 (0.5-1.0)	EPA 8270E	BPJ	69	PASI-C
		EPA 8260D	CL	70	PASI-C
		SW-846	KDF	1	PASI-C
92528011018	RI-SB-23 (5.5-6.0)	EPA 8270E	BPJ	69	PASI-C
		EPA 8260D	CL	70	PASI-C
		SW-846	KDF	1	PASI-C
92528011019	RI-SB-24 (0.5-1.0)	EPA 8270E	BPJ	69	PASI-C
		EPA 8260D	CL	70	PASI-C
		SW-846	KDF	1	PASI-C
92528011020	RI-SB-24 (5.5-6.0)	EPA 8270E	BPJ	69	PASI-C
		EPA 8260D	CL	70	PASI-C
		SW-846	KDF	1	PASI-C
92528011021	TRIP BLANK	EPA 8260D	CL	62	PASI-C

PASI-C = Pace Analytical Services - Charlotte



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

-	-				_	_		_	 	 _	_	-	-	
	-	-	-	-	-									

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92528011001	RI-SB-13 (0.5-1.0)					
SW-846	Percent Moisture	14.3	%	0.10	03/17/21 14:11	N2
92528011002	RI-SB-13 (5.5-6.0)					
EPA 8270E	Benzo(a)anthracene	291J	ug/kg	557	03/18/21 09:44	
EPA 8270E	Benzo(a)pyrene	254J	ug/kg	557	03/18/21 09:44	
EPA 8270E	Benzo(b)fluoranthene	330J	ug/kg	557	03/18/21 09:44	
EPA 8270E	Chrysene	271J	ug/kg	557	03/18/21 09:44	
EPA 8270E	Fluoranthene	574	ug/kg	557	03/18/21 09:44	
EPA 8270E	Phenanthrene	219J	ug/kg	557	03/18/21 09:44	
EPA 8270E	Pyrene	556J	ug/kg	557	03/18/21 09:44	
EPA 8260D	Acetone	139J	ug/kg	386	03/17/21 22:35	
EPA 8260D	2-Butanone (MEK)	97.5J	ua/ka	386	03/17/21 22:35	
EPA 8260D	Chlorobenzene	11.9J	ua/ka	19.3	03/17/21 22:35	
EPA 8260D	Ethylbenzene	40.6	ua/ka	19.3	03/17/21 22:35	
EPA 8260D	Isopropylbenzene (Cumene)	95.2	ua/ka	19.3	03/17/21 22:35	
FPA 8260D	p-Isopropyltoluene	54.1	ua/ka	19.3	03/17/21 22:35	
EPA 8260D	Naphthalene	315	ua/ka	19.3	03/17/21 22:35	
EPA 8260D	Toluene	32.5	ug/kg	19.3	03/17/21 22:35	
EPA 8260D	1.2.4-Trimethylbenzene	66.7	ug/kg	19.3	03/17/21 22:35	
EPA 8260D	1.3.5-Trimethylbenzene	24.9	ug/kg	19.3	03/17/21 22:35	
EPA 8260D	Xylene (Total)	153	ug/kg	38.6	03/17/21 22:35	
EPA 8260D	m&p-Xylene	90.6	ug/kg	38.6	03/17/21 22:35	
EPA 8260D	o-Xvlene	62.3	ug/kg	19.3	03/17/21 22:35	
SW-846	Percent Moisture	41.1	%	0.10	03/17/21 14:11	N2
92528011003	RI-SB-14 (0.5-1.0)					
EPA 8260D	Naphthalene	29.7	ua/ka	7.0	03/17/21 17:54	
EPA 8260D	Toluene	12.8	ua/ka	7.0	03/17/21 17:54	
EPA 8260D	1.2.4-Trimethylbenzene	11.0	ua/ka	7.0	03/17/21 17:54	
EPA 8260D	Xvlene (Total)	32.5	ua/ka	13.9	03/17/21 17:54	
EPA 8260D	m&p-Xvlene	20.5	ua/ka	13.9	03/17/21 17:54	
EPA 8260D	o-Xvlene	12.0	ua/ka	7.0	03/17/21 17:54	
SW-846	Percent Moisture	11.8	%	0.10	03/17/21 14:11	N2
92528011004	RI-SB-14 (5.5-6.0)					
EPA 8270E	Benzo(a)anthracene	269J	ug/kg	493	03/18/21 11:15	
EPA 8270E	Benzo(a)pyrene	231J	ug/kg	493	03/18/21 11:15	
EPA 8270E	Benzo(b)fluoranthene	333J	ug/kg	493	03/18/21 11:15	
EPA 8270E	Chrysene	255J	ug/kg	493	03/18/21 11:15	
EPA 8270E	Fluoranthene	598	ug/kg	493	03/18/21 11:15	
EPA 8270E	Phenanthrene	406J	ug/kg	493	03/18/21 11:15	
EPA 8270E	Pyrene	505	ug/kg	493	03/18/21 11:15	
EPA 8260D	Acetone	164J	ug/kg	256	03/17/21 22:53	
EPA 8260D	2-Butanone (MEK)	81.0J	ug/kg	256	03/17/21 22:53	
EPA 8260D	Chlorobenzene	20.8	ug/ka	12.8	03/17/21 22:53	
EPA 8260D	1,4-Dichlorobenzene	6.5J	ug/ka	12.8	03/17/21 22:53	
EPA 8260D	Ethylbenzene	32.8	ug/ka	12.8	03/17/21 22:53	
EPA 8260D	Isopropylbenzene (Cumene)	97.8	ug/ka	12.8	03/17/21 22:53	
EPA 8260D	p-Isopropyltoluene	70.4	ug/kg	12.8	03/17/21 22:53	



Project: BRAMLETTE J21030497

P Project No

92528011

Ρ	ace	Project	t No.:	9252
---	-----	---------	--------	------

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92528011004	RI-SB-14 (5.5-6.0)					
EPA 8260D	Naphthalene	203	ug/kg	12.8	03/17/21 22:53	
EPA 8260D	Toluene	20.0	ug/kg	12.8	03/17/21 22:53	
EPA 8260D	1,2,4-Trimethylbenzene	33.4	ug/kg	12.8	03/17/21 22:53	
EPA 8260D	Xylene (Total)	74.1	ug/kg	25.6	03/17/21 22:53	
EPA 8260D	m&p-Xylene	43.7	ug/kg	25.6	03/17/21 22:53	
EPA 8260D	o-Xylene	30.4	ug/kg	12.8	03/17/21 22:53	
SW-846	Percent Moisture	33.1	%	0.10	03/17/21 14:12	N2
92528011005	RI-SB-15 (0.5-1.0)					
EPA 8270E	Acenaphthene	214J	ug/kg	372	03/18/21 11:46	
EPA 8270E	Acenaphthylene	169J	ug/kg	372	03/18/21 11:46	
EPA 8270E	Anthracene	376	ug/kg	372	03/18/21 11:46	
EPA 8270E	Benzo(a)anthracene	801	ug/kg	372	03/18/21 11:46	
EPA 8270E	Benzo(a)pyrene	693	ug/kg	372	03/18/21 11:46	
EPA 8270E	Benzo(b)fluoranthene	944	ug/kg	372	03/18/21 11:46	
EPA 8270E	Benzo(g,h,i)perylene	436	ug/kg	372	03/18/21 11:46	
EPA 8270E	Benzo(k)fluoranthene	398	ug/kg	372	03/18/21 11:46	
EPA 8270E	Chrysene	822	ug/kg	372	03/18/21 11:46	
EPA 8270E	Dibenzofuran	260J	ug/kg	372	03/18/21 11:46	
EPA 8270E	Fluoranthene	1370	ug/kg	372	03/18/21 11:46	
EPA 8270E	Fluorene	289J	ug/kg	372	03/18/21 11:46	
EPA 8270E	Indeno(1,2,3-cd)pyrene	370J	ug/kg	372	03/18/21 11:46	
EPA 8270E	1-Methylnaphthalene	458	ug/kg	372	03/18/21 11:46	
EPA 8270E	2-Methylnaphthalene	520	ug/kg	372	03/18/21 11:46	
EPA 8270E	Phenanthrene	1470	ug/kg	372	03/18/21 11:46	
EPA 8270E	Pyrene	1400	ug/kg	372	03/18/21 11:46	
EPA 8260D	Benzene	41.8	ug/kg	6.3	03/17/21 18:11	
EPA 8260D	Chlorobenzene	7.0	ug/kg	6.3	03/17/21 18:11	
EPA 8260D	Ethylbenzene	23.4	ug/kg	6.3	03/17/21 18:11	
EPA 8260D	Isopropylbenzene (Cumene)	5.7J	ug/kg	6.3	03/17/21 18:11	
EPA 8260D	p-Isopropyltoluene	9.6	ug/kg	6.3	03/17/21 18:11	
EPA 8260D	Naphthalene	372	ug/kg	6.3	03/17/21 18:11	
EPA 8260D	Styrene	3.8J	ug/kg	6.3	03/17/21 18:11	
EPA 8260D	Toluene	64.6	ug/kg	6.3	03/17/21 18:11	
EPA 8260D	1,2,4-Trimethylbenzene	19.2	ug/kg	6.3	03/17/21 18:11	
EPA 8260D	1,3,5-Trimethylbenzene	6.8	ug/kg	6.3	03/17/21 18:11	
EPA 8260D	Xylene (Total)	70.4	ug/kg	12.5	03/17/21 18:11	
EPA 8260D	m&p-Xylene	49.8	ug/kg	12.5	03/17/21 18:11	
EPA 8260D	o-Xylene	20.6	ug/kg	6.3	03/17/21 18:11	
SW-846	Percent Moisture	11.9	%	0.10	03/17/21 14:12	N2
92528011006	RI-SB-15 (5.5-6.0)					
EPA 8270E	Acenaphthene	269J	ug/kg	517	03/18/21 12:47	
EPA 8270E	Acenaphthylene	185J	ug/kg	517	03/18/21 12:47	
EPA 8270E	Anthracene	716	ug/kg	517	03/18/21 12:47	
EPA 8270E	Benzo(a)anthracene	1640	ug/kg	517	03/18/21 12:47	
EPA 8270E	Benzo(a)pyrene	1440	ug/kg	517	03/18/21 12:47	
EPA 8270E	Benzo(b)fluoranthene	2020	ug/kg	517	03/18/21 12:47	



Project: BRAMLETTE J21030497

Pace	Project No.:	925

Pace Project No.: 92	2528011					
Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92528011006	RI-SB-15 (5.5-6.0)					
EPA 8270E	Benzo(g,h,i)perylene	975	ug/kg	517	03/18/21 12:47	
EPA 8270E	Benzo(k)fluoranthene	791	ug/kg	517	03/18/21 12:47	
EPA 8270E	Chrysene	1530	ug/kg	517	03/18/21 12:47	
EPA 8270E	Fluoranthene	3920	ug/kg	517	03/18/21 12:47	
EPA 8270E	Fluorene	329J	ug/kg	517	03/18/21 12:47	
EPA 8270E	Indeno(1,2,3-cd)pyrene	800	ug/kg	517	03/18/21 12:47	
EPA 8270E	Phenanthrene	2730	ug/kg	517	03/18/21 12:47	
EPA 8270E	Pyrene	3540	ug/kg	517	03/18/21 12:47	
EPA 8260D	Chlorobenzene	6.8J	ug/kg	10	03/17/21 18:29	
EPA 8260D	Isopropylbenzene (Cumene)	20.6	ug/kg	10	03/17/21 18:29	
EPA 8260D	p-Isopropyltoluene	34.3	ug/kg	10	03/17/21 18:29	
EPA 8260D	Naphthalene	60.0	ug/kg	10	03/17/21 18:29	
EPA 8260D	Toluene	5.1J	ug/kg	10	03/17/21 18:29	
EPA 8260D	1,2,4-Trimethylbenzene	13.0	ug/kg	10	03/17/21 18:29	
EPA 8260D	Xylene (Total)	15.7J	ug/kg	19.9	03/17/21 18:29	
EPA 8260D	m&p-Xylene	15.7J	ug/kg	19.9	03/17/21 18:29	
SW-846	Percent Moisture	36.8	%	0.10	03/17/21 14:12	N2
92528011007	RI-SB-16 (0.5-1.0)					
EPA 8260D	Naphthalene	7.8	ug/kg	6.2	03/19/21 00:27	
EPA 8260D	Toluene	9.7	ug/kg	6.2	03/19/21 00:27	
EPA 8260D	1,2,4-Trimethylbenzene	3.4J	ug/kg	6.2	03/19/21 00:27	
EPA 8260D	Xylene (Total)	10.5J	ug/kg	12.4	03/19/21 00:27	
EPA 8260D	m&p-Xylene	10.5J	ug/kg	12.4	03/19/21 00:27	
SW-846	Percent Moisture	14.2	%	0.10	03/17/21 14:12	N2
92528011008	RI-SB-16 (5.5-6.0)					
EPA 8270E	Acenaphthene	7710	ug/kg	516	03/18/21 13:49	E
EPA 8270E	Anthracene	17300	ug/kg	10300	03/18/21 22:41	
EPA 8270E	Benzo(a)anthracene	23800	ug/kg	10300	03/18/21 22:41	
EPA 8270E	Benzo(a)pyrene	15900	ug/kg	10300	03/18/21 22:41	
EPA 8270E	Benzo(b)fluoranthene	21300	ug/kg	10300	03/18/21 22:41	
EPA 8270E	Benzo(g,h,i)perylene	9630	ug/kg	516	03/18/21 13:49	
EPA 8270E	Benzo(k)fluoranthene	8160	ug/kg	516	03/18/21 13:49	
EPA 8270E	Chrysene	23000	ug/kg	10300	03/18/21 22:41	
EPA 8270E	Dibenz(a,h)anthracene	2920	ug/kg	516	03/18/21 13:49	
EPA 8270E	Dibenzofuran	4160	ug/kg	516	03/18/21 13:49	
EPA 8270E	Fluoranthene	58500	ug/kg	10300	03/18/21 22:41	
EPA 8270E	Fluorene	10200	ug/kg	516	03/18/21 13:49	E
EPA 8270E	Indeno(1,2,3-cd)pyrene	9200	ug/kg	516	03/18/21 13:49	
EPA 8270E	1-Methylnaphthalene	1490	ug/kg	516	03/18/21 13:49	
EPA 8270E	2-Methylnaphthalene	695	ug/kg	516	03/18/21 13:49	
EPA 8270E	Phenanthrene	55400	ug/kg	10300	03/18/21 22:41	
EPA 8270E	Pyrene	48100	ug/kg	10300	03/18/21 22:41	
EPA 8260D	Acetone	83.5J	ug/kg	215	03/17/21 23:11	
EPA 8260D	2-Butanone (MEK)	74.6J	ug/kg	215	03/17/21 23:11	
EPA 8260D	Chlorobenzene	40.2	ug/kg	10.7	03/17/21 23:11	
EPA 8260D	1,4-Dichlorobenzene	12.2	ug/kg	10.7	03/17/21 23:11	



Project: BRAMLETTE J21030497

P Project No

Lab Sample ID	Client Sample ID						
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers	
92528011008	RI-SB-16 (5.5-6.0)						
EPA 8260D	Ethylbenzene	10.8	ug/kg	10.7	03/17/21 23:11		
EPA 8260D	Isopropylbenzene (Cumene)	173	ug/kg	10.7	03/17/21 23:11		
EPA 8260D	p-Isopropyltoluene	56.9	ug/kg	10.7	03/17/21 23:11		
EPA 8260D	Naphthalene	1410	ug/kg	10.7	03/17/21 23:11		
EPA 8260D	Styrene	5.8J	ug/kg	10.7	03/17/21 23:11		
EPA 8260D	Toluene	17.2	ug/kg	10.7	03/17/21 23:11		
EPA 8260D	1,2,4-Trimethylbenzene	107	ug/kg	10.7	03/17/21 23:11		
EPA 8260D	1,3,5- I rimethylbenzene	43.0	ug/kg	10.7	03/17/21 23:11		
EPA 8260D	Xylene (Total)	131	ug/kg	21.5	03/17/21 23:11		
	map-Aylene	09.0 61.1	ug/kg	21.5	03/17/21 23:11		
SW-846	Percent Moisture	35.9	ug/kg %	0.10	03/17/21 23.11	N2	
92528011009	RI-SB-17 (0.5-1.0)						
EPA 8260D	Naphthalene	8.0J	ug/kg	8.7	03/17/21 19:04	C8	
EPA 8260D	Toluene	12.7	ug/kg	8.7	03/17/21 19:04		
EPA 8260D	Xylene (Total)	11.4J	ug/kg	17.4	03/17/21 19:04		
EPA 8260D	m&p-Xylene	11.4J	ug/kg	17.4	03/17/21 19:04		
SW-846	Percent Moisture	20.1	%	0.10	03/17/21 14:12	N2	
92528011010	RI-SB-17 (5.5-6.0)						
EPA 8260D	Toluene	5.0J	ug/kg	6.4	03/17/21 19:22		
SW-846	Percent Moisture	21.7	%	0.10	03/17/21 14:12	N2	
92528011011	RI-SB-18 (0.5-1.0)						
SW-846	Percent Moisture	20.4	%	0.10	03/17/21 14:12	N2	
92528011012	RI-SB-18 (5.5-6.0)						
SW-846	Percent Moisture	22.5	%	0.10	03/17/21 14:12	N2	
92528011013	RI-SB-21 (0.5-1.0)						
SW-846	Percent Moisture	13.5	%	0.10	03/17/21 14:12	N2	
92528011014	RI-SB-21 (5.5-6.0)						
SW-846	Percent Moisture	34.0	%	0.10	03/17/21 14:12	N2	
92528011015	RI-SB-22 (0.5-1.0)						
SW-846	Percent Moisture	13.4	%	0.10	03/17/21 14:13	N2	
92528011016	RI-SB-22 (5.5-6.0)						
SW-846	Percent Moisture	40.6	%	0.10	03/17/21 14:13	N2	
92528011017	RI-SB-23 (0.5-1.0)						
SW-846	Percent Moisture	14.7	%	0.10	03/17/21 14:13	N2	
92528011018	RI-SB-23 (5.5-6.0)						
EPA 8260D	Ethylbenzene	5.4J	ug/kg	8.8	03/24/21 15:06		
EPA 8260D	Naphthalene	21.0	ug/kg	8.8	03/24/21 15:06		
EPA 8260D	Toluene	8.1J	ug/kg	8.8	03/24/21 15:06		
SW-846	Percent Moisture	20.4	%	0.10	03/17/21 14:13	N2	



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Lab Sample ID Client Sample ID Method Parameters Result Qualifiers Units Report Limit Analyzed 92528011019 RI-SB-24 (0.5-1.0) EPA 8260D Naphthalene 7.7 ug/kg 7.1 03/24/21 15:24 EPA 8260D Toluene 4.6J ug/kg 7.1 03/24/21 15:24 SW-846 Percent Moisture 14.7 % 0.10 03/17/21 14:13 N2 92528011020 RI-SB-24 (5.5-6.0) EPA 8270E Acenaphthylene 194J ug/kg 492 03/24/21 18:22 EPA 8270E Benzo(a)anthracene 172J 492 03/24/21 18:22 ug/kg EPA 8270E Benzo(a)pyrene 184J ug/kg 492 03/24/21 18:22 EPA 8270E Benzo(b)fluoranthene 306J ug/kg 492 03/24/21 18:22 EPA 8270E Benzo(g,h,i)perylene 224J 492 03/24/21 18:22 ug/kg v1 199J 492 03/24/21 18:22 EPA 8270E Chrysene ug/kg Fluoranthene 267J 492 03/24/21 18:22 EPA 8270E ug/kg 209J 492 03/24/21 18:22 EPA 8270E Indeno(1,2,3-cd)pyrene ug/kg EPA 8270E Pyrene 261J ug/kg 492 03/24/21 18:22 222 03/24/21 15:42 EPA 8260D Acetone 273 ug/kg EPA 8260D Benzene 5.7J ug/kg 11.1 03/24/21 15:42 EPA 8260D 2-Butanone (MEK) 117J 222 03/24/21 15:42 ug/kg ug/kg EPA 8260D Chlorobenzene 17.2 11.1 03/24/21 15:42 03/24/21 15:42 EPA 8260D Ethylbenzene 19.0 ug/kg 11.1 EPA 8260D Isopropylbenzene (Cumene) 254 ug/kg 11.1 03/24/21 15:42 EPA 8260D Naphthalene 1320 03/24/21 15:42 ug/kg 11 1 EPA 8260D n-Propylbenzene 16.1 03/24/21 15:42 ug/kg 11.1 EPA 8260D Toluene 24.1 ug/kg 11.1 03/24/21 15:42 1,2,4-Trimethylbenzene ug/kg EPA 8260D 69.3 11.1 03/24/21 15:42 29.9 1,3,5-Trimethylbenzene 03/24/21 15:42 EPA 8260D ug/kg 11.1 EPA 8260D Xylene (Total) 174 ug/kg 22.2 03/24/21 15:42 EPA 8260D m&p-Xylene 94.2 ug/kg 22.2 03/24/21 15:42 EPA 8260D o-Xylene 80.1 11.1 03/24/21 15:42 ug/kg SW-846 Percent Moisture 33.1 % 0.10 03/17/21 14:13 N2



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Method:EPA 8270EDescription:8270E MSSV MicrowaveClient:Duke EnergyDate:May 13, 2021

## **General Information:**

16 samples were analyzed for EPA 8270E by Pace Analytical Services Charlotte. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

#### Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

#### Sample Preparation:

The samples were prepared in accordance with EPA 3546 with any exceptions noted below.

#### Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

### **Continuing Calibration:**

All criteria were within method requirements with any exceptions noted below.

QC Batch: 608843

v1: The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.

- BLANK (Lab ID: 3206787)
  - Benzo(g,h,i)perylene
  - Butylbenzylphthalate
  - Di-n-octylphthalate
- DUP (Lab ID: 3206790)
  - Benzo(g,h,i)perylene
  - Butylbenzylphthalate
  - Di-n-octylphthalate
- LCS (Lab ID: 3206788)
  - Benzo(g,h,i)perylene
  - Butylbenzylphthalate
  - Di-n-octylphthalate
- MS (Lab ID: 3206789)
  - Benzo(g,h,i)perylene
  - Butylbenzylphthalate
  - Di-n-octylphthalate
- RI-SB-23 (0.5-1.0) (Lab ID: 92528011017)
  - Benzo(g,h,i)perylene
  - Butylbenzylphthalate
  - Di-n-octylphthalate
- RI-SB-23 (5.5-6.0) (Lab ID: 92528011018)
  - Benzo(g,h,i)perylene
  - Butylbenzylphthalate
  - Di-n-octylphthalate
- RI-SB-24 (0.5-1.0) (Lab ID: 92528011019)



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Method:EPA 8270EDescription:8270E MSSV MicrowaveClient:Duke EnergyDate:May 13, 2021

## QC Batch: 608843

v1: The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.

- Benzo(g,h,i)perylene
- Butylbenzylphthalate
- Di-n-octylphthalate
- RI-SB-24 (5.5-6.0) (Lab ID: 92528011020)
  - Benzo(g,h,i)perylene
  - Butylbenzylphthalate
  - Di-n-octylphthalate

#### Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

#### Surrogates:

All surrogates were within QC limits with any exceptions noted below.

#### Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

#### Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

## Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 608843

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 92528011017

- M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
  - MS (Lab ID: 3206789)
    - bis(2-Chloroethyl) ether

#### Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

## Additional Comments:

Analyte Comments:

QC Batch: 607315

- E: Analyte concentration exceeded the calibration range. The reported result is estimated.
  - RI-SB-16 (5.5-6.0) (Lab ID: 92528011008)
    - Acenaphthene
    - Fluorene



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Method:EPA 8260DDescription:8260 MSV Low Level SCClient:Duke EnergyDate:May 13, 2021

## General Information:

1 sample was analyzed for EPA 8260D by Pace Analytical Services Charlotte. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

## Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

#### Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

## Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

## Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

#### Surrogates:

All surrogates were within QC limits with any exceptions noted below.

## Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

## Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

#### Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

## Additional Comments:



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

## Method: EPA 8260D

Description:8260D/5035A/5030B SC VolatilesClient:Duke EnergyDate:May 13, 2021

## General Information:

16 samples were analyzed for EPA 8260D by Pace Analytical Services Charlotte. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

## Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

## Sample Preparation:

The samples were prepared in accordance with EPA 5035A/5030B with any exceptions noted below.

## Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

QC Batch: 607356

IK: The recalculated concentration of the calibration standard(s) did not meet method acceptance criteria; this result should be considered an estimated value.

- BLANK (Lab ID: 3199767)
  - Bromomethane
  - Hexachloro-1,3-butadiene
- DUP (Lab ID: 3199769)
  - Bromomethane
  - Hexachloro-1,3-butadiene
- LCS (Lab ID: 3199768)
  - Bromomethane
  - Hexachloro-1,3-butadiene
- MS (Lab ID: 3200136)
  - Bromomethane
  - Hexachloro-1,3-butadiene
- RI-SB-13 (0.5-1.0) (Lab ID: 92528011001)
  - Bromomethane
  - Hexachloro-1,3-butadiene
- RI-SB-13 (5.5-6.0) (Lab ID: 92528011002)
  - Bromomethane
  - Hexachloro-1,3-butadiene
- RI-SB-14 (0.5-1.0) (Lab ID: 92528011003)
  - Bromomethane
  - Hexachloro-1,3-butadiene
- RI-SB-14 (5.5-6.0) (Lab ID: 92528011004)
  - Bromomethane
  - Hexachloro-1,3-butadiene
- RI-SB-15 (0.5-1.0) (Lab ID: 92528011005)
  - Bromomethane
  - Hexachloro-1,3-butadiene
- RI-SB-15 (5.5-6.0) (Lab ID: 92528011006)
  - Bromomethane


Project: BRAMLETTE J21030497

Pace Project No.: 92528011

#### Method: EPA 8260D

Description: 8260D/5035A/5030B SC Volatiles Client: Duke Energy

Date: May 13, 2021

#### QC Batch: 607356

IK: The recalculated concentration of the calibration standard(s) did not meet method acceptance criteria; this result should be considered an estimated value.

- Hexachloro-1,3-butadiene
- RI-SB-16 (5.5-6.0) (Lab ID: 92528011008)
- Bromomethane
  - Hexachloro-1,3-butadiene
- RI-SB-17 (0.5-1.0) (Lab ID: 92528011009)
  - Bromomethane
  - Hexachloro-1,3-butadiene
- RI-SB-17 (5.5-6.0) (Lab ID: 92528011010)
  - Bromomethane
  - Hexachloro-1,3-butadiene
- RI-SB-18 (0.5-1.0) (Lab ID: 92528011011)
  - Bromomethane
  - Hexachloro-1,3-butadiene
- RI-SB-18 (5.5-6.0) (Lab ID: 92528011012)
  - Bromomethane
  - Hexachloro-1,3-butadiene

#### QC Batch: 607623

IK: The recalculated concentration of the calibration standard(s) did not meet method acceptance criteria; this result should be considered an estimated value.

- BLANK (Lab ID: 3200879)
  - Bromomethane
  - Hexachloro-1,3-butadiene
- DUP (Lab ID: 3200881)
  - Bromomethane
  - Hexachloro-1,3-butadiene
- LCS (Lab ID: 3200880)
  - Bromomethane
  - Hexachloro-1,3-butadiene
- MS (Lab ID: 3200882)
  - Bromomethane
  - Hexachloro-1,3-butadiene
- RI-SB-16 (0.5-1.0) (Lab ID: 92528011007)
  - Bromomethane
    - Hexachloro-1,3-butadiene

#### **Continuing Calibration:**

All criteria were within method requirements with any exceptions noted below.

QC Batch: 607356

v1: The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.

- BLANK (Lab ID: 3199767)
  - Bromomethane



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Method: Description: Client: Date:	EPA 8260D 8260D/5035A/5030B SC Volatiles Duke Energy May 13, 2021
QC Batch: 60	7356
v1: Ti samp	he continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated les may have a high bias.
• []	Promomethane
• L	CS (Lab ID: 3199768)
	Bromomethane
• N	IS (Lab ID: 3200136)
	Bromomethane
• R	I-SB-13 (0.5-1.0) (Lab ID: 92528011001)
_	• Bromomethane
• R	I-SB-13 (5.5-6.0) (Lab ID: 92528011002)
۰P	• Bromometnane
• 1	• Bromomethane
• R	I-SB-14 (5.5-6.0) (Lab ID: 92528011004)
	• Bromomethane
• R	I-SB-15 (0.5-1.0) (Lab ID: 92528011005)
	Bromomethane
• R	I-SB-15 (5.5-6.0) (Lab ID: 92528011006)
_	• Bromomethane
• R	I-SB-16 (5.5-6.0) (Lab ID: 92528011008)
• P	• Bromometnane
• K	• Bromomethane
• R	I-SB-17 (5.5-6.0) (Lab ID: 92528011010)
-	• Bromomethane
• R	I-SB-18 (0.5-1.0) (Lab ID: 92528011011)
	Bromomethane
• R	II-SB-18 (5.5-6.0) (Lab ID: 92528011012)
	Bromomethane
v2: Ti samp	he continuing calibration verification was below the method acceptance limit. The analyte was not detected in the associated les and the sensitivity of the instrument was verified with a reporting limit check standard.
• B	LANK (Lab ID: 3199767)
. 0	• tert-Butylbenzene
• 🛛	etert Rutulbenzene
• R	- tert-butyloenzene I-SB-13 (0.5-1.0) (Lab ID: 92528011001)
- 1	• tert-Butylbenzene
• R	I-SB-13 (5.5-6.0) (Lab ID: 92528011002)
	• tert-Butylbenzene
• R	I-SB-14 (0.5-1.0) (Lab ID: 92528011003)
	• tert-Butylbenzene

- RI-SB-14 (5.5-6.0) (Lab ID: 92528011004) • tert-Butylbenzene
- RI-SB-15 (0.5-1.0) (Lab ID: 92528011005)



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

#### Method: EPA 8260D

**Description:** 8260D/5035A/5030B SC Volatiles **Client:** Duke Energy

Date: May 13, 2021

#### QC Batch: 607356

v2: The continuing calibration verification was below the method acceptance limit. The analyte was not detected in the associated samples and the sensitivity of the instrument was verified with a reporting limit check standard.

tert-Butylbenzene

- RI-SB-15 (5.5-6.0) (Lab ID: 92528011006)
- tert-Butylbenzene
- RI-SB-16 (5.5-6.0) (Lab ID: 92528011008)
   tert-Butylbenzene
- RI-SB-17 (0.5-1.0) (Lab ID: 92528011009)
  - tert-Butylbenzene
- RI-SB-17 (5.5-6.0) (Lab ID: 92528011010)
- tert-Butylbenzene • RI-SB-18 (0.5-1.0) (Lab ID: 92528011011)
  - tert-Butylbenzene
- RI-SB-18 (5.5-6.0) (Lab ID: 92528011012)
  - tert-Butylbenzene

v3: The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have low bias.

- LCS (Lab ID: 3199768)
- tert-Butylbenzene
- MS (Lab ID: 3200136)
  - tert-Butylbenzene

QC Batch: 607623

v1: The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.

- BLANK (Lab ID: 3200879)
- Bromomethane
- DUP (Lab ID: 3200881)
- Bromomethane
- LCS (Lab ID: 3200880)
  - Bromomethane
- MS (Lab ID: 3200882)
- Bromomethane
- RI-SB-16 (0.5-1.0) (Lab ID: 92528011007)
  - Bromomethane

v2: The continuing calibration verification was below the method acceptance limit. The analyte was not detected in the associated samples and the sensitivity of the instrument was verified with a reporting limit check standard.

- BLANK (Lab ID: 3200879)
- tert-Butylbenzene
- DUP (Lab ID: 3200881)
- tert-Butylbenzene
- LCS (Lab ID: 3200880)
- tert-Butylbenzene
- MS (Lab ID: 3200882)
- tert-Butylbenzene
- RI-SB-16 (0.5-1.0) (Lab ID: 92528011007)



#### Project: BRAMLETTE J21030497

Pace Project No.: 92528011

#### Method: EPA 8260D

 Description:
 8260D/5035A/5030B SC Volatiles

 Client:
 Duke Energy

 Date:
 May 13, 2021

#### QC Batch: 607623

v2: The continuing calibration verification was below the method acceptance limit. The analyte was not detected in the associated samples and the sensitivity of the instrument was verified with a reporting limit check standard.

tert-Butylbenzene

#### Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

#### Surrogates:

All surrogates were within QC limits with any exceptions noted below.

#### Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

#### Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

#### QC Batch: 607356

L1: Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.

- LCS (Lab ID: 3199768)
  - Bromomethane

#### QC Batch: 607623

L1: Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.

- LCS (Lab ID: 3200880)
  - Bromomethane

#### Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

#### QC Batch: 607623

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 92528353002

- M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
  - MS (Lab ID: 3200882)

Chloromethane

#### QC Batch: 608883

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 92528011018

- M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
  - MS (Lab ID: 3206987)
    - 1,2-Dibromoethane (EDB)

#### **Duplicate Sample:**

All duplicate sample results were within method acceptance criteria with any exceptions noted below.



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Method: EPA 8260D

Description:8260D/5035A/5030B SC VolatilesClient:Duke EnergyDate:May 13, 2021

#### Additional Comments:

Analyte Comments:

QC Batch: 607356

C8: Result may be biased high due to carryover from previously analyzed sample.

• RI-SB-17 (0.5-1.0) (Lab ID: 92528011009)

Naphthalene

This data package has been reviewed for quality and completeness and is approved for release.



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-13 (0.5-1.0)	Lab ID:	9252801100	01 Collected	l: 03/15/2′	1 10:35	5 Received: 03/	16/21 11:45 Ma	atrix: Solid	
Results reported on a "dry weig	ght" basis and are	e adjusted f	or percent mo	isture, sar	nple s	ize and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270E MSSV Microwave	Analytical	Method: EP	A 8270E Prepa	aration Met	hod: E	PA 3546			
	Pace Anal	ytical Servic	es - Charlotte						
Acenaphthene	ND	ua/ka	381	134	1	03/17/21 16:29	03/18/21 08:42	83-32-9	
Acenaphthylene	ND	ua/ka	381	134	1	03/17/21 16:29	03/18/21 08:42	208-96-8	
Aniline	ND	ua/ka	381	149	1	03/17/21 16:29	03/18/21 08:42	62-53-3	
Anthracene	ND	ua/ka	381	125	1	03/17/21 16:29	03/18/21 08:42	120-12-7	
Benzo(a)anthracene	ND	ug/kg	381	127	1	03/17/21 16:29	03/18/21 08:42	56-55-3	
Benzo(a)pyrene	ND	ug/kg	381	132	1	03/17/21 16:29	03/18/21 08:42	50-32-8	
Benzo(b)fluoranthene	ND	ug/kg	381	127	1	03/17/21 16:29	03/18/21 08:42	205-99-2	
Benzo(g,h,i)perylene	ND	ug/kg	381	148	1	03/17/21 16:29	03/18/21 08:42	191-24-2	
Benzo(k)fluoranthene	ND	ug/kg	381	134	1	03/17/21 16:29	03/18/21 08:42	207-08-9	
Benzoic Acid	ND	ug/kg	1910	819	1	03/17/21 16:29	03/18/21 08:42	65-85-0	
Benzyl alcohol	ND	ug/kg	762	289	1	03/17/21 16:29	03/18/21 08:42	100-51-6	
4-Bromophenylphenyl ether	ND	ug/kg	381	147	1	03/17/21 16:29	03/18/21 08:42	101-55-3	
Butylbenzylphthalate	ND	ug/kg	381	161	1	03/17/21 16:29	03/18/21 08:42	85-68-7	
4-Chloro-3-methylphenol	ND	ug/kg	762	268	1	03/17/21 16:29	03/18/21 08:42	59-50-7	
4-Chloroaniline	ND	ug/kg	762	299	1	03/17/21 16:29	03/18/21 08:42	106-47-8	
bis(2-Chloroethoxy)methane	ND	ug/kg	381	158	1	03/17/21 16:29	03/18/21 08:42	111-91-1	
bis(2-Chloroethyl) ether	ND	ug/kg	381	143	1	03/17/21 16:29	03/18/21 08:42	111-44-4	
2-Chloronaphthalene	ND	ug/kg	381	151	1	03/17/21 16:29	03/18/21 08:42	91-58-7	
2-Chlorophenol	ND	ug/kg	381	143	1	03/17/21 16:29	03/18/21 08:42	95-57-8	
4-Chlorophenylphenyl ether	ND	ug/kg	381	142	1	03/17/21 16:29	03/18/21 08:42	7005-72-3	
Chrysene	ND	ug/kg	381	139	1	03/17/21 16:29	03/18/21 08:42	218-01-9	
Dibenz(a,h)anthracene	ND	ug/kg	381	147	1	03/17/21 16:29	03/18/21 08:42	53-70-3	
Dibenzofuran	ND	ug/kg	381	137	1	03/17/21 16:29	03/18/21 08:42	132-64-9	
3,3'-Dichlorobenzidine	ND	ug/kg	762	258	1	03/17/21 16:29	03/18/21 08:42	91-94-1	IL
2,4-Dichlorophenol	ND	ug/kg	381	149	1	03/17/21 16:29	03/18/21 08:42	120-83-2	
Diethylphthalate	ND	ug/kg	381	140	1	03/17/21 16:29	03/18/21 08:42	84-66-2	
2,4-Dimethylphenol	ND	ug/kg	381	158	1	03/17/21 16:29	03/18/21 08:42	105-67-9	
Dimethylphthalate	ND	ug/kg	381	139	1	03/17/21 16:29	03/18/21 08:42	131-11-3	
Di-n-butylphthalate	ND	ug/kg	381	128	1	03/17/21 16:29	03/18/21 08:42	84-74-2	
4,6-Dinitro-2-methylphenol	ND	ug/kg	762	356	1	03/17/21 16:29	03/18/21 08:42	534-52-1	
2,4-Dinitrophenol	ND	ug/kg	1910	1180	1	03/17/21 16:29	03/18/21 08:42	51-28-5	
2,4-Dinitrotoluene	ND	ug/kg	381	147	1	03/17/21 16:29	03/18/21 08:42	121-14-2	
2,6-Dinitrotoluene	ND	ug/kg	381	140	1	03/17/21 16:29	03/18/21 08:42	606-20-2	
Di-n-octylphthalate	ND	ug/kg	381	150	1	03/17/21 16:29	03/18/21 08:42	117-84-0	
bis(2-Ethylhexyl)phthalate	ND	ug/kg	381	148	1	03/17/21 16:29	03/18/21 08:42	117-81-7	
Fluoranthene	ND	ug/kg	381	131	1	03/17/21 16:29	03/18/21 08:42	206-44-0	
Fluorene	ND	ug/kg	381	134	1	03/17/21 16:29	03/18/21 08:42	86-73-7	
Hexachlorobenzene	ND	ug/kg	381	149	1	03/17/21 16:29	03/18/21 08:42	118-74-1	
Hexachlorocyclopentadiene	ND	ug/kg	381	218	1	03/17/21 16:29	03/18/21 08:42	77-47-4	
Hexachloroethane	ND	ug/kg	381	146	1	03/17/21 16:29	03/18/21 08:42	67-72-1	
Indeno(1,2,3-cd)pyrene	ND	ug/kg	381	150	1	03/17/21 16:29	03/18/21 08:42	193-39-5	
Isophorone	ND	ug/kg	381	170	1	03/17/21 16:29	03/18/21 08:42	78-59-1	
1-Methylnaphthalene	ND	ug/kg	381	134	1	03/17/21 16:29	03/18/21 08:42	90-12-0	
2-Methylnaphthalene	ND	ug/kg	381	152	1	03/17/21 16:29	03/18/21 08:42	91-57-6	



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-13 (0.5-1.0)	Lab ID:	9252801100	1 Collected	d: 03/15/2 ²	1 10:35	Received: 03/	16/21 11:45 Ma	atrix: Solid	
Results reported on a "dry weight	" basis and are	adjusted fo	or percent mo	oisture, sar	nple s	ize and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270F MSSV Microwave	Analytical	Method: EPA	8270F Pren	aration Met	hod: E	PA 3546		_	
	Pace Anal	vtical Service	es - Charlotte						
		,							
2-Methylphenol(o-Cresol)	ND	ug/kg	381	156	1	03/17/21 16:29	03/18/21 08:42	95-48-7	
3&4-Methylphenol(m&p Cresol)	ND	ug/kg	381	154	1	03/17/21 16:29	03/18/21 08:42	15831-10-4	
2-Nitroaniline	ND	ug/kg	1910	312	1	03/17/21 16:29	03/18/21 08:42	88-74-4	
3-Nitroaniline	ND	ug/kg	1910	299	1	03/17/21 16:29	03/18/21 08:42	99-09-2	
4-Nitroaniline	ND	ug/kg	762	290	1	03/17/21 16:29	03/18/21 08:42	100-01-6	
	ND	ug/kg	381	1//	1	03/17/21 16:29	03/18/21 08:42	98-95-3	
	ND	ug/kg	381	165	1	03/17/21 16:29	03/18/21 08:42	88-75-5	
4-Nitrophenoi	ND	ug/kg	1910	/3/	1	03/17/21 16:29	03/18/21 08:42	100-02-7	
N-Nitrosodimethylamine	ND	ug/kg	381	128	1	03/17/21 16:29	03/18/21 08:42	62-75-9	
N-Nitroso-di-n-propylamine	ND	ug/kg	381	143	1	03/17/21 16:29	03/18/21 08:42	621-64-7	
	ND	ug/kg	381	135	1	03/17/21 16:29	03/18/21 08:42	86-30-6	
2,2'-Oxybis(1-chloropropane)	ND	ug/kg	381	181	1	03/17/21 16:29	03/18/21 08:42	108-60-1	
Pentachlorophenol	ND	ug/kg	762	373	1	03/17/21 16:29	03/18/21 08:42	87-86-5	
Phenanthrene	ND	ug/kg	381	125	1	03/17/21 16:29	03/18/21 08:42	85-01-8	
Phenol	ND	ug/kg	381	170	1	03/17/21 16:29	03/18/21 08:42	108-95-2	
Pyrene	ND	ug/kg	381	155	1	03/17/21 16:29	03/18/21 08:42	129-00-0	
Pyridine	ND	ug/kg	381	120	1	03/17/21 16:29	03/18/21 08:42	110-86-1	
2,4,5-Trichlorophenol	ND	ug/kg	381	174	1	03/17/21 16:29	03/18/21 08:42	95-95-4	
2,4,6-Trichlorophenol Surrogates	ND	ug/kg	381	157	1	03/17/21 16:29	03/18/21 08:42	88-06-2	
Nitrobenzene-d5 (S)	70	%	21-130		1	03/17/21 16:29	03/18/21 08:42	4165-60-0	
2-Fluorobiphenyl (S)	69	%	19-130		1	03/17/21 16:29	03/18/21 08:42	321-60-8	
Terphenyl-d14 (S)	107	%	15-130		1	03/17/21 16:29	03/18/21 08:42	1718-51-0	
Phenol-d6 (S)	72	%	18-130		1	03/17/21 16:29	03/18/21 08:42	13127-88-3	
2-Fluorophenol (S)	67	%	18-130		1	03/17/21 16:29	03/18/21 08:42	367-12-4	
2,4,6-Tribromophenol (S)	84	%	18-130		1	03/17/21 16:29	03/18/21 08:42	118-79-6	
8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA	8260D Prepa	aration Met	hod: E	PA 5035A/5030B			
	Pace Anal	vtical Service	es - Charlotte						
Acetone	ND	ug/kg	125	40.2	1	03/17/21 16:07	03/17/21 17:19	67-64-1	
Benzene	ND	ug/kg	6.3	2.5	1	03/17/21 16:07	03/17/21 17:19	71-43-2	
Bromobenzene	ND	ug/kg	6.3	2.0	1	03/17/21 16:07	03/17/21 17:19	108-86-1	
Bromochloromethane	ND	ug/kg	6.3	1.9	1	03/17/21 16:07	03/17/21 17:19	74-97-5	
Bromodichloromethane	ND	ug/kg	6.3	2.4	1	03/17/21 16:07	03/17/21 17:19	75-27-4	
Bromoform	ND	ug/kg	6.3	2.2	1	03/17/21 16:07	03/17/21 17:19	75-25-2	
Bromomethane	ND	ug/kg	12.5	9.9	1	03/17/21 16:07	03/17/21 17:19	74-83-9	IH,IK,
2 Butenene (MEK)			105	20.4	4	02/47/24 46:07	02/17/21 17:10	70.02.2	L1,v1
2-Butahone (MEK)	ND	ug/kg	125	30.1	1	03/17/21 16:07	03/17/21 17:19	78-93-3	
	ND	ug/kg	6.3	3.0	1	03/17/21 16:07	03/17/21 17:19	104-51-8	
sec-Butylbenzene	ND	ug/kg	6.3	2.8	1	03/17/21 16:07	03/17/21 17:19	135-98-8	
tert-Butylbenzene	ND	ug/kg	6.3	2.2	1	03/17/21 16:07	03/17/21 17:19	98-06-6	v2
Carbon tetrachioride	ND	ug/kg	6.3	2.3	1	03/17/21 16:07	03/17/21 17:19	50-23-5	
Chiorobenzene	ND	ug/kg	6.3	1.2	1	03/17/21 16:07	03/17/21 17:19	108-90-7	
Chloroethane	ND	ug/kg	12.5	4.8	1	03/17/21 16:07	03/17/21 17:19	75-00-3	



#### Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-13 (0.5-1.0)	Lab ID:	9252801100	1 Collected	d: 03/15/2 ⁻	1 10:35	6 Received: 03/	16/21 11:45 Ma	atrix: Solid				
Results reported on a "dry weight"	esults reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.											
			Report									
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual			
8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA	8260D Prepa	aration Met	thod: E	PA 5035A/5030B						
	Pace Anal	ytical Service	s - Charlotte									
Chloroform	ND	ua/ka	6.3	3.8	1	03/17/21 16:07	03/17/21 17:19	67-66-3				
Chloromethane	ND	ua/ka	12.5	5.3	1	03/17/21 16:07	03/17/21 17:19	74-87-3				
2-Chlorotoluene	ND	ug/kg	6.3	2.2	1	03/17/21 16:07	03/17/21 17:19	95-49-8				
4-Chlorotoluene	ND	ua/ka	6.3	1.1	1	03/17/21 16:07	03/17/21 17:19	106-43-4				
1.2-Dibromo-3-chloropropane	ND	ua/ka	6.3	2.4	1	03/17/21 16:07	03/17/21 17:19	96-12-8				
Dibromochloromethane	ND	ug/kg	6.3	3.5	1	03/17/21 16:07	03/17/21 17:19	124-48-1				
1,2-Dibromoethane (EDB)	ND	ug/kg	6.3	2.8	1	03/17/21 16:07	03/17/21 17:19	106-93-4				
Dibromomethane	ND	ug/kg	6.3	1.3	1	03/17/21 16:07	03/17/21 17:19	74-95-3				
1,2-Dichlorobenzene	ND	ug/kg	6.3	2.3	1	03/17/21 16:07	03/17/21 17:19	95-50-1				
1,3-Dichlorobenzene	ND	ug/kg	6.3	1.9	1	03/17/21 16:07	03/17/21 17:19	541-73-1				
1,4-Dichlorobenzene	ND	ug/kg	6.3	1.6	1	03/17/21 16:07	03/17/21 17:19	106-46-7				
Dichlorodifluoromethane	ND	ug/kg	12.5	2.7	1	03/17/21 16:07	03/17/21 17:19	75-71-8				
1,1-Dichloroethane	ND	ug/kg	6.3	2.6	1	03/17/21 16:07	03/17/21 17:19	75-34-3				
1,2-Dichloroethane	ND	ug/kg	6.3	4.1	1	03/17/21 16:07	03/17/21 17:19	107-06-2				
1,1-Dichloroethene	ND	ug/kg	6.3	2.6	1	03/17/21 16:07	03/17/21 17:19	75-35-4				
cis-1,2-Dichloroethene	ND	ug/kg	6.3	2.1	1	03/17/21 16:07	03/17/21 17:19	156-59-2				
trans-1,2-Dichloroethene	ND	ug/kg	6.3	2.2	1	03/17/21 16:07	03/17/21 17:19	156-60-5				
1,2-Dichloropropane	ND	ug/kg	6.3	1.9	1	03/17/21 16:07	03/17/21 17:19	78-87-5				
1,3-Dichloropropane	ND	ug/kg	6.3	2.0	1	03/17/21 16:07	03/17/21 17:19	142-28-9				
2,2-Dichloropropane	ND	ug/kg	6.3	2.0	1	03/17/21 16:07	03/17/21 17:19	594-20-7				
1,1-Dichloropropene	ND	ug/kg	6.3	3.0	1	03/17/21 16:07	03/17/21 17:19	563-58-6				
cis-1,3-Dichloropropene	ND	ug/kg	6.3	1.7	1	03/17/21 16:07	03/17/21 17:19	10061-01-5				
trans-1,3-Dichloropropene	ND	ug/kg	6.3	2.2	1	03/17/21 16:07	03/17/21 17:19	10061-02-6				
Diisopropyl ether	ND	ug/kg	6.3	1.7	1	03/17/21 16:07	03/17/21 17:19	108-20-3				
Ethylbenzene	ND	ug/kg	6.3	2.9	1	03/17/21 16:07	03/17/21 17:19	100-41-4				
Hexachloro-1,3-butadiene	ND	ug/kg	12.5	10.2	1	03/17/21 16:07	03/17/21 17:19	87-68-3	IK			
2-Hexanone	ND	ug/kg	62.6	6.0	1	03/17/21 16:07	03/17/21 17:19	591-78-6				
Isopropylbenzene (Cumene)	ND	ug/kg	6.3	2.1	1	03/17/21 16:07	03/17/21 17:19	98-82-8				
p-lsopropyltoluene	ND	ug/kg	6.3	3.1	1	03/17/21 16:07	03/17/21 17:19	99-87-6				
Methylene Chloride	ND	ug/kg	25.0	17.2	1	03/17/21 16:07	03/17/21 17:19	75-09-2				
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	62.6	6.0	1	03/17/21 16:07	03/17/21 17:19	108-10-1				
Methyl-tert-butyl ether	ND	ug/kg	6.3	2.3	1	03/17/21 16:07	03/17/21 17:19	1634-04-4				
Naphthalene	ND	ug/kg	6.3	3.3	1	03/17/21 16:07	03/17/21 17:19	91-20-3				
n-Propylbenzene	ND	ug/kg	6.3	2.2	1	03/17/21 16:07	03/17/21 17:19	103-65-1				
Styrene	ND	ug/kg	6.3	1.7	1	03/17/21 16:07	03/17/21 17:19	100-42-5				
1,1,1,2-Tetrachloroethane	ND	ug/kg	6.3	2.4	1	03/17/21 16:07	03/17/21 17:19	630-20-6				
1,1,2,2-Tetrachloroethane	ND	ug/kg	6.3	1.7	1	03/17/21 16:07	03/17/21 17:19	79-34-5				
Tetrachloroethene	ND	ug/kg	6.3	2.0	1	03/17/21 16:07	03/17/21 17:19	127-18-4				
Toluene	ND	ug/kg	6.3	1.8	1	03/17/21 16:07	03/17/21 17:19	108-88-3				
1,2,3-Trichlorobenzene	ND	ug/kg	6.3	5.1	1	03/17/21 16:07	03/17/21 17:19	87-61-6				
1,2,4-Trichlorobenzene	ND	ug/kg	6.3	5.3	1	03/17/21 16:07	03/17/21 17:19	120-82-1				
1,1,1-Trichloroethane	ND	ug/kg	6.3	3.3	1	03/17/21 16:07	03/17/21 17:19	71-55-6				
1,1,2-Trichloroethane	ND	ug/kg	6.3	2.1	1	03/17/21 16:07	03/17/21 17:19	79-00-5				
Trichloroethene	ND	ug/kg	6.3	1.6	1	03/17/21 16:07	03/17/21 17:19	79-01-6				



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-13 (0.5-1.0)	Lab ID:	9252801100	01 Collected	I: 03/15/21	10:35	Received: 03/	16/21 11:45 Ma	atrix: Solid			
Results reported on a "dry weight"	' basis and are	e adjusted fo	or percent mo	isture, sar	nple s	ize and any diluti	ons.				
			Report								
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual		
8260D/5035A/5030B SC Volatiles	Analytical	Analytical Method: EPA 8260D Preparation Method: EPA 5035A/5030B									
	Pace Anal	ytical Service	es - Charlotte								
Trichlorofluoromethane	ND	ug/kg	6.3	3.4	1	03/17/21 16:07	03/17/21 17:19	75-69-4			
1,2,3-Trichloropropane	ND	ug/kg	6.3	3.2	1	03/17/21 16:07	03/17/21 17:19	96-18-4			
1,2,4-Trimethylbenzene	ND	ug/kg	6.3	1.7	1	03/17/21 16:07	03/17/21 17:19	95-63-6			
1,3,5-Trimethylbenzene	ND	ug/kg	6.3	2.1	1	03/17/21 16:07	03/17/21 17:19	108-67-8			
Vinyl acetate	ND	ug/kg	62.6	4.6	1	03/17/21 16:07	03/17/21 17:19	108-05-4			
Vinyl chloride	ND	ug/kg	12.5	3.2	1	03/17/21 16:07	03/17/21 17:19	75-01-4			
Xylene (Total)	ND	ug/kg	12.5	3.6	1	03/17/21 16:07	03/17/21 17:19	1330-20-7			
m&p-Xylene	ND	ug/kg	12.5	4.3	1	03/17/21 16:07	03/17/21 17:19	179601-23-1			
o-Xylene	ND	ug/kg	6.3	2.8	1	03/17/21 16:07	03/17/21 17:19	95-47-6			
Surrogates											
Toluene-d8 (S)	102	%	70-130		1	03/17/21 16:07	03/17/21 17:19	2037-26-5			
4-Bromofluorobenzene (S)	96	%	69-134		1	03/17/21 16:07	03/17/21 17:19	460-00-4			
1,2-Dichloroethane-d4 (S)	108	%	70-130		1	03/17/21 16:07	03/17/21 17:19	17060-07-0			
Percent Moisture	Analytical	Method: SW	-846								
	Pace Anal	ytical Service	es - Charlotte								
Percent Moisture	14.3	%	0.10	0.10	1		03/17/21 14:11		N2		



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-13 (5.5-6.0)	Lab ID:	9252801100	2 Collected	d: 03/15/2 ⁻	1 10:35	Received: 03/	16/21 11:45 Ma	atrix: Solid			
Results reported on a "dry weig	esults reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.										
			Report								
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual		
8270E MSSV Microwave	Analytical	Method: EPA	8270E Prepa	aration Met	hod: E	PA 3546					
	Pace Anal	ytical Service	es - Charlotte								
Acenaphthene	ND	ua/ka	557	196	1	03/17/21 16:29	03/18/21 09:44	83-32-9			
Acenaphthylene	ND	ua/ka	557	196	1	03/17/21 16:29	03/18/21 09:44	208-96-8			
Aniline	ND	ua/ka	557	218	1	03/17/21 16:29	03/18/21 09:44	62-53-3			
Anthracene	ND	ug/kg	557	182	1	03/17/21 16:29	03/18/21 09:44	120-12-7			
Benzo(a)anthracene	291J	ug/kg	557	186	1	03/17/21 16:29	03/18/21 09:44	56-55-3			
Benzo(a)pyrene	254J	ug/kg	557	192	1	03/17/21 16:29	03/18/21 09:44	50-32-8			
Benzo(b)fluoranthene	330J	ug/kg	557	186	1	03/17/21 16:29	03/18/21 09:44	205-99-2			
Benzo(g,h,i)perylene	ND	ug/kg	557	216	1	03/17/21 16:29	03/18/21 09:44	191-24-2			
Benzo(k)fluoranthene	ND	ug/kg	557	196	1	03/17/21 16:29	03/18/21 09:44	207-08-9			
Benzoic Acid	ND	ug/kg	2790	1200	1	03/17/21 16:29	03/18/21 09:44	65-85-0			
Benzyl alcohol	ND	ug/kg	1110	422	1	03/17/21 16:29	03/18/21 09:44	100-51-6			
4-Bromophenylphenyl ether	ND	ug/kg	557	214	1	03/17/21 16:29	03/18/21 09:44	101-55-3			
Butylbenzylphthalate	ND	ug/kg	557	235	1	03/17/21 16:29	03/18/21 09:44	85-68-7			
4-Chloro-3-methylphenol	ND	ug/kg	1110	392	1	03/17/21 16:29	03/18/21 09:44	59-50-7			
4-Chloroaniline	ND	ug/kg	1110	437	1	03/17/21 16:29	03/18/21 09:44	106-47-8			
bis(2-Chloroethoxy)methane	ND	ug/kg	557	231	1	03/17/21 16:29	03/18/21 09:44	111-91-1			
bis(2-Chloroethyl) ether	ND	ug/kg	557	209	1	03/17/21 16:29	03/18/21 09:44	111-44-4			
2-Chloronaphthalene	ND	ug/kg	557	221	1	03/17/21 16:29	03/18/21 09:44	91-58-7			
2-Chlorophenol	ND	ug/kg	557	209	1	03/17/21 16:29	03/18/21 09:44	95-57-8			
4-Chlorophenylphenyl ether	ND	ug/kg	557	208	1	03/17/21 16:29	03/18/21 09:44	7005-72-3			
Chrysene	271J	ug/kg	557	203	1	03/17/21 16:29	03/18/21 09:44	218-01-9			
Dibenz(a,h)anthracene	ND	ug/kg	557	214	1	03/17/21 16:29	03/18/21 09:44	53-70-3			
Dibenzofuran	ND	ug/kg	557	201	1	03/17/21 16:29	03/18/21 09:44	132-64-9			
3,3'-Dichlorobenzidine	ND	ug/kg	1110	376	1	03/17/21 16:29	03/18/21 09:44	91-94-1	IL		
2,4-Dichlorophenol	ND	ug/kg	557	218	1	03/17/21 16:29	03/18/21 09:44	120-83-2			
Diethylphthalate	ND	ug/kg	557	204	1	03/17/21 16:29	03/18/21 09:44	84-66-2			
2,4-Dimethylphenol	ND	ug/kg	557	231	1	03/17/21 16:29	03/18/21 09:44	105-67-9			
Dimethylphthalate	ND	ug/kg	557	203	1	03/17/21 16:29	03/18/21 09:44	131-11-3			
Di-n-butylphthalate	ND	ug/kg	557	187	1	03/17/21 16:29	03/18/21 09:44	84-74-2			
4,6-Dinitro-2-methylphenol	ND	ug/kg	1110	520	1	03/17/21 16:29	03/18/21 09:44	534-52-1			
2,4-Dinitrophenol	ND	ug/kg	2790	1720	1	03/17/21 16:29	03/18/21 09:44	51-28-5			
2,4-Dinitrotoluene	ND	ug/kg	557	214	1	03/17/21 16:29	03/18/21 09:44	121-14-2			
2,6-Dinitrotoluene	ND	ug/kg	557	204	1	03/17/21 16:29	03/18/21 09:44	606-20-2			
Di-n-octylphthalate	ND	ug/kg	557	219	1	03/17/21 16:29	03/18/21 09:44	117-84-0			
bis(2-Ethylhexyl)phthalate	ND	ug/kg	557	216	1	03/17/21 16:29	03/18/21 09:44	117-81-7			
Fluoranthene	574	ug/kg	557	191	1	03/17/21 16:29	03/18/21 09:44	206-44-0			
Fluorene	ND	ug/kg	557	196	1	03/17/21 16:29	03/18/21 09:44	86-73-7			
Hexachlorobenzene	ND	ug/kg	557	218	1	03/17/21 16:29	03/18/21 09:44	118-74-1			
Hexachlorocyclopentadiene	ND	ug/kg	557	319	1	03/17/21 16:29	03/18/21 09:44	77-47-4			
Hexachloroethane	ND	ug/kg	557	213	1	03/17/21 16:29	03/18/21 09:44	67-72-1			
Indeno(1,2,3-cd)pyrene	ND	ug/kg	557	219	1	03/17/21 16:29	03/18/21 09:44	193-39-5			
Isophorone	ND	ug/kg	557	248	1	03/17/21 16:29	03/18/21 09:44	78-59-1			
1-Methylnaphthalene	ND	ug/kg	557	196	1	03/17/21 16:29	03/18/21 09:44	90-12-0			
2-Methylnaphthalene	ND	ug/kg	557	223	1	03/17/21 16:29	03/18/21 09:44	91-57-6			



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-13 (5.5-6.0)	Lab ID:	9252801100	2 Collected	l: 03/15/21	10:35	Received: 03/	16/21 11:45 Ma	atrix: Solid	
Results reported on a "dry weight	" basis and are	adjusted fo	or percent mo	isture, sar	nple s	ize and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270E MSSV Microwave	Analvtical	Method: EPA	8270E Prepa	aration Met	hod: E	PA 3546			
	Pace Anal	ytical Service	es - Charlotte						
2-Methylphenol(o-Cresol)	ND	, ua/ka	557	228	1	03/17/21 16:29	03/18/21 09.44	95-48-7	
3&4-Methylphenol(m&n Cresol)		ug/kg	557	220	1	03/17/21 16:20	03/18/21 09:44	15831-10-4	
2-Nitroaniline		ug/kg ug/kg	2790	456	1	03/17/21 16:29	03/18/21 09:44	88-74-4	
3-Nitroaniline	ND	ug/kg	2790	400	1	03/17/21 16:29	03/18/21 09:44	99-09-2	
4-Nitroaniline	ND	ug/kg	1110	424	1	03/17/21 16:29	03/18/21 09:44	100-01-6	
Nitrobenzene	ND	ug/kg ug/kg	557	258	1	03/17/21 16:29	03/18/21 09:44	98-95-3	
2-Nitrophenol	ND	ug/kg	557	241	1	03/17/21 16:29	03/18/21 09:44	88-75-5	
4-Nitrophenol	ND	ug/kg	2790	1080	1	03/17/21 16:29	03/18/21 09:44	100-02-7	
N-Nitrosodimethylamine	ND	ug/kg	557	187	1	03/17/21 16:29	03/18/21 09:44	62-75-9	
N-Nitroso-di-n-propylamine	ND	ug/kg	557	209	1	03/17/21 16:29	03/18/21 09:44	621-64-7	
N-Nitrosodiphenylamine	ND	ug/kg	557	197	1	03/17/21 16:29	03/18/21 09:44	86-30-6	
2.2'-Oxybis(1-chloropropane)	ND	ua/ka	557	265	1	03/17/21 16:29	03/18/21 09:44	108-60-1	
Pentachlorophenol	ND	ua/ka	1110	545	1	03/17/21 16:29	03/18/21 09:44	87-86-5	
Phenanthrene	219J	ua/ka	557	182	1	03/17/21 16:29	03/18/21 09:44	85-01-8	
Phenol	ND	ua/ka	557	248	1	03/17/21 16:29	03/18/21 09:44	108-95-2	
Pyrene	556J	ug/kg	557	226	1	03/17/21 16:29	03/18/21 09:44	129-00-0	
Pyridine	ND	ug/kg	557	176	1	03/17/21 16:29	03/18/21 09:44	110-86-1	
2,4,5-Trichlorophenol	ND	ug/kg	557	255	1	03/17/21 16:29	03/18/21 09:44	95-95-4	
2,4,6-Trichlorophenol	ND	ug/kg	557	230	1	03/17/21 16:29	03/18/21 09:44	88-06-2	
Surrogates									
Nitrobenzene-d5 (S)	66	%	21-130		1	03/17/21 16:29	03/18/21 09:44	4165-60-0	
2-Fluorobiphenyl (S)	54	%	19-130		1	03/17/21 16:29	03/18/21 09:44	321-60-8	
Terphenyl-d14 (S)	96	%	15-130		1	03/17/21 16:29	03/18/21 09:44	1718-51-0	
Phenol-d6 (S)	70	%	18-130		1	03/17/21 16:29	03/18/21 09:44	13127-88-3	
2-Fluorophenol (S)	66	%	18-130		1	03/17/21 16:29	03/18/21 09:44	367-12-4	
2,4,6-Tribromophenol (S)	84	%	18-130		1	03/17/21 16:29	03/18/21 09:44	118-79-6	
8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA	8260D Prepa	aration Met	hod: E	PA 5035A/5030B			
	Pace Anal	ytical Service	es - Charlotte						
Acetone	139J	ug/kg	386	124	1	03/17/21 16:07	03/17/21 22:35	67-64-1	
Benzene	ND	ug/kg	19.3	7.7	1	03/17/21 16:07	03/17/21 22:35	71-43-2	
Bromobenzene	ND	ug/kg	19.3	6.3	1	03/17/21 16:07	03/17/21 22:35	108-86-1	
Bromochloromethane	ND	ug/kg	19.3	5.7	1	03/17/21 16:07	03/17/21 22:35	74-97-5	
Bromodichloromethane	ND	ug/kg	19.3	7.5	1	03/17/21 16:07	03/17/21 22:35	75-27-4	
Bromoform	ND	ug/kg	19.3	6.8	1	03/17/21 16:07	03/17/21 22:35	75-25-2	
Bromomethane	ND	ug/kg	38.6	30.5	1	03/17/21 16:07	03/17/21 22:35	74-83-9	IH,IK,
2-Butanone (MEK)	07 5 1	ua/ka	286	02.7	1	03/17/21 16:07	03/17/21 22:25	78-03-3	L1,v1
n-Butylbanzana	97.33 ND	ug/kg ug/kg	10.2	92.1 Q 1	1	03/17/21 10.07	03/17/21 22.30	104 <b>-</b> 51-8	
sec-Butylbenzene		ug/kg	10.2	ש.ו סב	1	03/17/21 10.07	03/17/21 22.30	135-09 9	
tert-Butylbenzene		ug/kg ug/kg	10.3	0.0	1	03/17/21 10.07	03/17/21 22.33	98-06-6	v2
Carbon tetrachloride		ug/kg ug/kg	10.3	0.9 7 0	1	03/17/21 16:07	03/17/21 22.30	56-23-5	V Z
Chlorobenzene	11 Q I	ug/kg ug/kg	10.3	7.2 2.7	1	03/17/21 16:07	03/17/21 22:35	108-90-7	
Chloroethane		ug/kg	38.6	14 0	1	03/17/21 16:07	03/17/21 22:35	75-00-3	
		~9, ~9	00.0	14.0		30/ 11/ ET 10.01	20, 11, 21 22.00		



#### Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-13 (5.5-6.0)	Lab ID:	9252801100	2 Collected	: 03/15/21	1 10:35	Received: 03/	16/21 11:45 Ma	atrix: Solid		
Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.										
			Report							
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA	8260D Prepa	aration Met	thod: E	PA 5035A/5030B				
	Pace Anal	ytical Service	s - Charlotte							
Chloroform	ND	ua/ka	19.3	11.7	1	03/17/21 16:07	03/17/21 22:35	67-66-3		
Chloromethane	ND	ua/ka	38.6	16.2	1	03/17/21 16:07	03/17/21 22:35	74-87-3		
2-Chlorotoluene	ND	ua/ka	19.3	6.8	1	03/17/21 16:07	03/17/21 22:35	95-49-8		
4-Chlorotoluene	ND	ua/ka	19.3	3.4	1	03/17/21 16:07	03/17/21 22:35	106-43-4		
1.2-Dibromo-3-chloropropane	ND	ua/ka	19.3	7.5	1	03/17/21 16:07	03/17/21 22:35	96-12-8		
Dibromochloromethane	ND	ug/kg	19.3	10.9	1	03/17/21 16:07	03/17/21 22:35	124-48-1		
1,2-Dibromoethane (EDB)	ND	ug/kg	19.3	8.5	1	03/17/21 16:07	03/17/21 22:35	106-93-4		
Dibromomethane	ND	ug/kg	19.3	4.1	1	03/17/21 16:07	03/17/21 22:35	74-95-3		
1,2-Dichlorobenzene	ND	ug/kg	19.3	7.0	1	03/17/21 16:07	03/17/21 22:35	95-50-1		
1,3-Dichlorobenzene	ND	ug/kg	19.3	6.0	1	03/17/21 16:07	03/17/21 22:35	541-73-1		
1,4-Dichlorobenzene	ND	ug/kg	19.3	5.0	1	03/17/21 16:07	03/17/21 22:35	106-46-7		
Dichlorodifluoromethane	ND	ug/kg	38.6	8.4	1	03/17/21 16:07	03/17/21 22:35	75-71-8		
1,1-Dichloroethane	ND	ug/kg	19.3	8.0	1	03/17/21 16:07	03/17/21 22:35	75-34-3		
1,2-Dichloroethane	ND	ug/kg	19.3	12.8	1	03/17/21 16:07	03/17/21 22:35	107-06-2		
1,1-Dichloroethene	ND	ug/kg	19.3	8.0	1	03/17/21 16:07	03/17/21 22:35	75-35-4		
cis-1,2-Dichloroethene	ND	ug/kg	19.3	6.6	1	03/17/21 16:07	03/17/21 22:35	156-59-2		
trans-1,2-Dichloroethene	ND	ug/kg	19.3	6.8	1	03/17/21 16:07	03/17/21 22:35	156-60-5		
1,2-Dichloropropane	ND	ug/kg	19.3	5.8	1	03/17/21 16:07	03/17/21 22:35	78-87-5		
1,3-Dichloropropane	ND	ug/kg	19.3	6.0	1	03/17/21 16:07	03/17/21 22:35	142-28-9		
2,2-Dichloropropane	ND	ug/kg	19.3	6.3	1	03/17/21 16:07	03/17/21 22:35	594-20-7		
1,1-Dichloropropene	ND	ug/kg	19.3	9.3	1	03/17/21 16:07	03/17/21 22:35	563-58-6		
cis-1,3-Dichloropropene	ND	ug/kg	19.3	5.3	1	03/17/21 16:07	03/17/21 22:35	10061-01-5		
trans-1,3-Dichloropropene	ND	ug/kg	19.3	6.6	1	03/17/21 16:07	03/17/21 22:35	10061-02-6		
Diisopropyl ether	ND	ug/kg	19.3	5.2	1	03/17/21 16:07	03/17/21 22:35	108-20-3		
Ethylbenzene	40.6	ug/kg	19.3	9.0	1	03/17/21 16:07	03/17/21 22:35	100-41-4		
Hexachloro-1,3-butadiene	ND	ug/kg	38.6	31.6	1	03/17/21 16:07	03/17/21 22:35	87-68-3	IK	
2-Hexanone	ND	ug/kg	193	18.6	1	03/17/21 16:07	03/17/21 22:35	591-78-6		
Isopropylbenzene (Cumene)	95.2	ug/kg	19.3	6.6	1	03/17/21 16:07	03/17/21 22:35	98-82-8		
p-lsopropyltoluene	54.1	ug/kg	19.3	9.5	1	03/17/21 16:07	03/17/21 22:35	99-87-6		
Methylene Chloride	ND	ug/kg	77.3	52.9	1	03/17/21 16:07	03/17/21 22:35	75-09-2		
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	193	18.6	1	03/17/21 16:07	03/17/21 22:35	108-10-1		
Methyl-tert-butyl ether	ND	ug/kg	19.3	7.2	1	03/17/21 16:07	03/17/21 22:35	1634-04-4		
Naphthalene	315	ug/kg	19.3	10.2	1	03/17/21 16:07	03/17/21 22:35	91-20-3		
n-Propylbenzene	ND	ug/kg	19.3	6.9	1	03/17/21 16:07	03/17/21 22:35	103-65-1		
Styrene	ND	ug/kg	19.3	5.1	1	03/17/21 16:07	03/17/21 22:35	100-42-5		
1,1,1,2-Tetrachloroethane	ND	ug/kg	19.3	7.4	1	03/17/21 16:07	03/17/21 22:35	630-20-6		
1,1,2,2-Tetrachloroethane	ND	ug/kg	19.3	5.1	1	03/17/21 16:07	03/17/21 22:35	79-34-5		
Tetrachloroethene	ND	ug/kg	19.3	6.1	1	03/17/21 16:07	03/17/21 22:35	127-18-4		
Toluene	32.5	ug/kg	19.3	5.5	1	03/17/21 16:07	03/17/21 22:35	108-88-3		
1,2,3-Trichlorobenzene	ND	ug/kg	19.3	15.6	1	03/17/21 16:07	03/17/21 22:35	87-61-6		
1,2,4-Trichlorobenzene	ND	ug/kg	19.3	16.2	1	03/17/21 16:07	03/17/21 22:35	120-82-1		
1,1,1-Trichloroethane	ND	ug/kg	19.3	10.0	1	03/17/21 16:07	03/17/21 22:35	71-55-6		
1,1,2-Trichloroethane	ND	ug/kg	19.3	6.4	1	03/17/21 16:07	03/17/21 22:35	79-00-5		
Trichloroethene	ND	ug/kg	19.3	5.0	1	03/17/21 16:07	03/17/21 22:35	79-01-6		



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-13 (5.5-6.0)	Lab ID:	925280110	02 Collected	I: 03/15/21	10:35	Received: 03/	16/21 11:45 Ma	atrix: Solid			
Results reported on a "dry weight	" basis and are	e adjusted f	or percent mo	isture, sar	nple s	ize and any diluti	ons.				
			Report								
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual		
8260D/5035A/5030B SC Volatiles	Analytical	Analytical Method: EPA 8260D Preparation Method: EPA 5035A/5030B									
	Pace Analytical Services - Charlotte										
Trichlorofluoromethane	ND	ug/kg	19.3	10.6	1	03/17/21 16:07	03/17/21 22:35	75-69-4			
1,2,3-Trichloropropane	ND	ug/kg	19.3	9.8	1	03/17/21 16:07	03/17/21 22:35	96-18-4			
1,2,4-Trimethylbenzene	66.7	ug/kg	19.3	5.3	1	03/17/21 16:07	03/17/21 22:35	95-63-6			
1,3,5-Trimethylbenzene	24.9	ug/kg	19.3	6.5	1	03/17/21 16:07	03/17/21 22:35	108-67-8			
Vinyl acetate	ND	ug/kg	193	14.1	1	03/17/21 16:07	03/17/21 22:35	108-05-4			
Vinyl chloride	ND	ug/kg	38.6	9.8	1	03/17/21 16:07	03/17/21 22:35	75-01-4			
Xylene (Total)	153	ug/kg	38.6	11.0	1	03/17/21 16:07	03/17/21 22:35	1330-20-7			
m&p-Xylene	90.6	ug/kg	38.6	13.2	1	03/17/21 16:07	03/17/21 22:35	179601-23-1			
o-Xylene	62.3	ug/kg	19.3	8.5	1	03/17/21 16:07	03/17/21 22:35	95-47-6			
Surrogates											
Toluene-d8 (S)	99	%	70-130		1	03/17/21 16:07	03/17/21 22:35	2037-26-5			
4-Bromofluorobenzene (S)	95	%	69-134		1	03/17/21 16:07	03/17/21 22:35	460-00-4			
1,2-Dichloroethane-d4 (S)	108	%	70-130		1	03/17/21 16:07	03/17/21 22:35	17060-07-0			
Percent Moisture	Analytical	Method: SW	/-846								
	Pace Anal	ytical Servic	es - Charlotte								
Percent Moisture	41.1	%	0.10	0.10	1		03/17/21 14:11		N2		



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-14 (0.5-1.0)	Lab ID:	9252801100	3 Collected	l: 03/15/2′	1 10:40	Received: 03/	16/21 11:45 Ma	atrix: Solid	
Results reported on a "dry weig	ht" basis and ar	e adjusted fo	or percent mo	isture, sar	nple s	ize and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270E MSSV Microwave	Analytical	Method: EPA	A 8270E Prepa	aration Met	hod: E	PA 3546			
	Pace Anal	lytical Service	es - Charlotte						
Acenaphthene	ND	ua/ka	368	129	1	03/17/21 16:29	03/18/21 10:14	83-32-9	
Acenaphthylene	ND	ua/ka	368	129	1	03/17/21 16:29	03/18/21 10:14	208-96-8	
Aniline	ND	ua/ka	368	144	1	03/17/21 16:29	03/18/21 10:14	62-53-3	
Anthracene	ND	ug/kg	368	120	1	03/17/21 16:29	03/18/21 10:14	120-12-7	
Benzo(a)anthracene	ND	ug/kg	368	123	1	03/17/21 16:29	03/18/21 10:14	56-55-3	
Benzo(a)pyrene	ND	ug/kg	368	127	1	03/17/21 16:29	03/18/21 10:14	50-32-8	
Benzo(b)fluoranthene	ND	ug/kg	368	123	1	03/17/21 16:29	03/18/21 10:14	205-99-2	
Benzo(g,h,i)perylene	ND	ug/kg	368	143	1	03/17/21 16:29	03/18/21 10:14	191-24-2	
Benzo(k)fluoranthene	ND	ug/kg	368	129	1	03/17/21 16:29	03/18/21 10:14	207-08-9	
Benzoic Acid	ND	ug/kg	1840	790	1	03/17/21 16:29	03/18/21 10:14	65-85-0	
Benzyl alcohol	ND	ug/kg	736	279	1	03/17/21 16:29	03/18/21 10:14	100-51-6	
4-Bromophenylphenyl ether	ND	ug/kg	368	142	1	03/17/21 16:29	03/18/21 10:14	101-55-3	
Butylbenzylphthalate	ND	ug/kg	368	155	1	03/17/21 16:29	03/18/21 10:14	85-68-7	
4-Chloro-3-methylphenol	ND	ug/kg	736	259	1	03/17/21 16:29	03/18/21 10:14	59-50-7	
4-Chloroaniline	ND	ug/kg	736	289	1	03/17/21 16:29	03/18/21 10:14	106-47-8	
bis(2-Chloroethoxy)methane	ND	ug/kg	368	153	1	03/17/21 16:29	03/18/21 10:14	111-91-1	
bis(2-Chloroethyl) ether	ND	ug/kg	368	138	1	03/17/21 16:29	03/18/21 10:14	111-44-4	
2-Chloronaphthalene	ND	ug/kg	368	146	1	03/17/21 16:29	03/18/21 10:14	91-58-7	
2-Chlorophenol	ND	ug/kg	368	138	1	03/17/21 16:29	03/18/21 10:14	95-57-8	
4-Chlorophenylphenyl ether	ND	ug/kg	368	137	1	03/17/21 16:29	03/18/21 10:14	7005-72-3	
Chrysene	ND	ug/kg	368	134	1	03/17/21 16:29	03/18/21 10:14	218-01-9	
Dibenz(a,h)anthracene	ND	ug/kg	368	142	1	03/17/21 16:29	03/18/21 10:14	53-70-3	
Dibenzofuran	ND	ug/kg	368	133	1	03/17/21 16:29	03/18/21 10:14	132-64-9	
3,3'-Dichlorobenzidine	ND	ug/kg	736	249	1	03/17/21 16:29	03/18/21 10:14	91-94-1	IL
2,4-Dichlorophenol	ND	ug/kg	368	144	1	03/17/21 16:29	03/18/21 10:14	120-83-2	
Diethylphthalate	ND	ug/kg	368	135	1	03/17/21 16:29	03/18/21 10:14	84-66-2	
2,4-Dimethylphenol	ND	ug/kg	368	153	1	03/17/21 16:29	03/18/21 10:14	105-67-9	
Dimethylphthalate	ND	ug/kg	368	134	1	03/17/21 16:29	03/18/21 10:14	131-11-3	
Di-n-butylphthalate	ND	ug/kg	368	124	1	03/17/21 16:29	03/18/21 10:14	84-74-2	
4,6-Dinitro-2-methylphenol	ND	ug/kg	736	343	1	03/17/21 16:29	03/18/21 10:14	534-52-1	
2,4-Dinitrophenol	ND	ug/kg	1840	1140	1	03/17/21 16:29	03/18/21 10:14	51-28-5	
2,4-Dinitrotoluene	ND	ug/kg	368	142	1	03/17/21 16:29	03/18/21 10:14	121-14-2	
2,6-Dinitrotoluene	ND	ug/kg	368	135	1	03/17/21 16:29	03/18/21 10:14	606-20-2	
Di-n-octylphthalate	ND	ug/kg	368	145	1	03/17/21 16:29	03/18/21 10:14	117-84-0	
bis(2-Ethylhexyl)phthalate	ND	ug/kg	368	143	1	03/17/21 16:29	03/18/21 10:14	117-81-7	
Fluoranthene	ND	ug/kg	368	126	1	03/17/21 16:29	03/18/21 10:14	206-44-0	
Fluorene	ND	ug/kg	368	129	1	03/17/21 16:29	03/18/21 10:14	86-73-7	
Hexachlorobenzene	ND	ug/kg	368	144	1	03/17/21 16:29	03/18/21 10:14	118-74-1	
Hexachlorocyclopentadiene	ND	ug/kg	368	211	1	03/17/21 16:29	03/18/21 10:14	77-47-4	
Hexachloroethane	ND	ug/kg	368	140	1	03/17/21 16:29	03/18/21 10:14	67-72-1	
Indeno(1,2,3-cd)pyrene	ND	ug/kg	368	145	1	03/17/21 16:29	03/18/21 10:14	193-39-5	
Isophorone	ND	ug/kg	368	164	1	03/17/21 16:29	03/18/21 10:14	78-59-1	
1-Methylnaphthalene	ND	ug/kg	368	129	1	03/17/21 16:29	03/18/21 10:14	90-12-0	
2-Methylnaphthalene	ND	ug/kg	368	147	1	03/17/21 16:29	03/18/21 10:14	91-57-6	



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-14 (0.5-1.0)	Lab ID:	9252801100	3 Collected	d: 03/15/2 [,]	1 10:40	Received: 03/	16/21 11:45 Ma	atrix: Solid	
Results reported on a "dry weight	" basis and are	e adjusted fo	or percent mo	oisture, sai	nple s	ize and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270F MSSV Microwave	Analytical	Method: EPA	8270F Prep	aration Met	hod. E	PA 3546			-
	Pace Anal	vtical Service	es - Charlotte						
	T dee Anal		onanotic						
2-Methylphenol(o-Cresol)	ND	ug/kg	368	151	1	03/17/21 16:29	03/18/21 10:14	95-48-7	
3&4-Methylphenol(m&p Cresol)	ND	ug/kg	368	148	1	03/17/21 16:29	03/18/21 10:14	15831-10-4	
2-Nitroaniline	ND	ug/kg	1840	301	1	03/17/21 16:29	03/18/21 10:14	88-74-4	
3-Nitroaniline	ND	ug/kg	1840	289	1	03/17/21 16:29	03/18/21 10:14	99-09-2	
4-Nitroaniline	ND	ug/kg	736	280	1	03/17/21 16:29	03/18/21 10:14	100-01-6	
Nitrobenzene	ND	ug/kg	368	171	1	03/17/21 16:29	03/18/21 10:14	98-95-3	
2-Nitrophenol	ND	ug/kg	368	159	1	03/17/21 16:29	03/18/21 10:14	88-75-5	
4-Nitrophenol	ND	ug/kg	1840	711	1	03/17/21 16:29	03/18/21 10:14	100-02-7	
N-Nitrosodimethylamine	ND	ug/kg	368	124	1	03/17/21 16:29	03/18/21 10:14	62-75-9	
N-Nitroso-di-n-propylamine	ND	ug/kg	368	138	1	03/17/21 16:29	03/18/21 10:14	621-64-7	
N-Nitrosodiphenylamine	ND	ug/kg	368	130	1	03/17/21 16:29	03/18/21 10:14	86-30-6	
2,2'-Oxybis(1-chloropropane)	ND	ug/kg	368	175	1	03/17/21 16:29	03/18/21 10:14	108-60-1	
Pentachlorophenol	ND	ug/kg	736	360	1	03/17/21 16:29	03/18/21 10:14	87-86-5	
Phenanthrene	ND	ug/kg	368	120	1	03/17/21 16:29	03/18/21 10:14	85-01-8	
Phenol	ND	ug/kg	368	164	1	03/17/21 16:29	03/18/21 10:14	108-95-2	
Pyrene	ND	ug/kg	368	149	1	03/17/21 16:29	03/18/21 10:14	129-00-0	
Pyridine	ND	ug/kg	368	116	1	03/17/21 16:29	03/18/21 10:14	110-86-1	
2,4,5-Trichlorophenol	ND	ug/kg	368	168	1	03/17/21 16:29	03/18/21 10:14	95-95-4	
2,4,6-Trichlorophenol Surrogates	ND	ug/kg	368	152	1	03/17/21 16:29	03/18/21 10:14	88-06-2	
Nitrobenzene-d5 (S)	71	%	21-130		1	03/17/21 16:29	03/18/21 10:14	4165-60-0	
2-Fluorobiphenyl (S)	71	%	19-130		1	03/17/21 16:29	03/18/21 10:14	321-60-8	
Terphenyl-d14 (S)	101	%	15-130		1	03/17/21 16:29	03/18/21 10:14	1718-51-0	
Phenol-d6 (S)	68	%	18-130		1	03/17/21 16:29	03/18/21 10:14	13127-88-3	
2-Fluorophenol (S)	57	%	18-130		1	03/17/21 16:29	03/18/21 10:14	367-12-4	
2,4,6-Tribromophenol (S)	57	%	18-130		1	03/17/21 16:29	03/18/21 10:14	118-79-6	
8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA	8260D Prepa	aration Met	thod: E	PA 5035A/5030B			
	Pace Anal	ytical Service	es - Charlotte						
Acetone	ND	ug/kg	139	44.7	1	03/17/21 16:07	03/17/21 17:54	67-64-1	
Benzene	ND	ug/kg	7.0	2.8	1	03/17/21 16:07	03/17/21 17:54	71-43-2	
Bromobenzene	ND	ug/kg	7.0	2.3	1	03/17/21 16:07	03/17/21 17:54	108-86-1	
Bromochloromethane	ND	ug/kg	7.0	2.1	1	03/17/21 16:07	03/17/21 17:54	74-97-5	
Bromodichloromethane	ND	ug/kg	7.0	2.7	1	03/17/21 16:07	03/17/21 17:54	75-27-4	
Bromoform	ND	ug/kg	7.0	2.5	1	03/17/21 16:07	03/17/21 17:54	75-25-2	
Bromomethane	ND	ug/kg	13.9	11.0	1	03/17/21 16:07	03/17/21 17:54	74-83-9	IH,IK,
2-Butanone (MEK)		ua/ka	130	33 /	1	03/17/21 16:07	03/17/21 17.5/	78-03-3	L1,v1
		ug/kg	70	20	1	03/17/21 10.07	03/17/21 17.04	101-51 9	
		ug/kg	7.0	ن.ن ۲ ۱	1	03/17/21 10.07	03/17/21 17.54	125 09 9	
sec-DulyiDenzene		ug/kg	7.0	ン. I ファ	1	03/17/21 10.07	03/17/21 17.54	08-06 6	v2
Carbon tetrachlorido		ug/kg	7.0	2.0 2.6	1	03/17/21 10:07	03/17/21 17:54	30-00-0 56-23 5	٧Z
Chlorobenzene		ug/kg	7.0	2.U 1.D	1	03/17/21 10.07	03/17/21 17.54	108-00 7	
Chloroothana		ug/kg	12.0	1.3	1	03/17/21 10.07	03/17/21 17.54	75 00 2	
	ND	uy/ky	13.9	0.4	1	00/17/21 10.07	03/11/21 17.34	10-00-0	



#### Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-14 (0.5-1.0)	Lab ID:	9252801100	03 Collected	I: 03/15/21	10:40	Received: 03/	16/21 11:45 Ma	atrix: Solid	
Results reported on a "dry weight"	" basis and are	e adjusted fo	or percent mo	isture, sar	nple s	ize and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA	A 8260D Prepa	aration Met	hod: E	PA 5035A/5030B			
	Pace Anal	ytical Service	es - Charlotte						
Chloroform	ND	ua/ka	7.0	4.2	1	03/17/21 16:07	03/17/21 17:54	67-66-3	
Chloromethane	ND	ug/kg	13.9	5.9	1	03/17/21 16:07	03/17/21 17:54	74-87-3	
2-Chlorotoluene	ND	ug/kg	7.0	2.5	1	03/17/21 16:07	03/17/21 17:54	95-49-8	
4-Chlorotoluene	ND	ug/kg	7.0	1.2	1	03/17/21 16:07	03/17/21 17:54	106-43-4	
1,2-Dibromo-3-chloropropane	ND	ug/kg	7.0	2.7	1	03/17/21 16:07	03/17/21 17:54	96-12-8	
Dibromochloromethane	ND	ug/kg	7.0	3.9	1	03/17/21 16:07	03/17/21 17:54	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/kg	7.0	3.1	1	03/17/21 16:07	03/17/21 17:54	106-93-4	
Dibromomethane	ND	ug/kg	7.0	1.5	1	03/17/21 16:07	03/17/21 17:54	74-95-3	
1,2-Dichlorobenzene	ND	ug/kg	7.0	2.5	1	03/17/21 16:07	03/17/21 17:54	95-50-1	
1,3-Dichlorobenzene	ND	ug/kg	7.0	2.2	1	03/17/21 16:07	03/17/21 17:54	541-73-1	
1,4-Dichlorobenzene	ND	ug/kg	7.0	1.8	1	03/17/21 16:07	03/17/21 17:54	106-46-7	
Dichlorodifluoromethane	ND	ug/kg	13.9	3.0	1	03/17/21 16:07	03/17/21 17:54	75-71-8	
1,1-Dichloroethane	ND	ug/kg	7.0	2.9	1	03/17/21 16:07	03/17/21 17:54	75-34-3	
1,2-Dichloroethane	ND	ug/kg	7.0	4.6	1	03/17/21 16:07	03/17/21 17:54	107-06-2	
1,1-Dichloroethene	ND	ug/kg	7.0	2.9	1	03/17/21 16:07	03/17/21 17:54	75-35-4	
cis-1,2-Dichloroethene	ND	ug/kg	7.0	2.4	1	03/17/21 16:07	03/17/21 17:54	156-59-2	
trans-1,2-Dichloroethene	ND	ug/kg	7.0	2.4	1	03/17/21 16:07	03/17/21 17:54	156-60-5	
1,2-Dichloropropane	ND	ug/kg	7.0	2.1	1	03/17/21 16:07	03/17/21 17:54	78-87-5	
1,3-Dichloropropane	ND	ug/kg	7.0	2.2	1	03/17/21 16:07	03/17/21 17:54	142-28-9	
2,2-Dichloropropane	ND	ug/kg	7.0	2.3	1	03/17/21 16:07	03/17/21 17:54	594-20-7	
1,1-Dichloropropene	ND	ug/kg	7.0	3.3	1	03/17/21 16:07	03/17/21 17:54	563-58-6	
cis-1,3-Dichloropropene	ND	ug/kg	7.0	1.9	1	03/17/21 16:07	03/17/21 17:54	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/kg	7.0	2.4	1	03/17/21 16:07	03/17/21 17:54	10061-02-6	
Diisopropyl ether	ND	ug/kg	7.0	1.9	1	03/17/21 16:07	03/17/21 17:54	108-20-3	
Ethylbenzene	ND	ug/kg	7.0	3.2	1	03/17/21 16:07	03/17/21 17:54	100-41-4	
Hexachloro-1,3-butadiene	ND	ug/kg	13.9	11.4	1	03/17/21 16:07	03/17/21 17:54	87-68-3	IK
2-Hexanone	ND	ug/kg	69.6	6.7	1	03/17/21 16:07	03/17/21 17:54	591-78-6	
Isopropylbenzene (Cumene)	ND	ug/kg	7.0	2.4	1	03/17/21 16:07	03/17/21 17:54	98-82-8	
p-Isopropyltoluene	ND	ug/kg	7.0	3.4	1	03/17/21 16:07	03/17/21 17:54	99-87-6	
Methylene Chloride	ND	ug/kg	27.9	19.1	1	03/17/21 16:07	03/17/21 17:54	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	69.6	6.7	1	03/17/21 16:07	03/17/21 17:54	108-10-1	
Methyl-tert-butyl ether	ND	ug/kg	7.0	2.6	1	03/17/21 16:07	03/17/21 17:54	1634-04-4	
Naphthalene	29.7	ug/kg	7.0	3.7	1	03/17/21 16:07	03/17/21 17:54	91-20-3	
n-Propylbenzene	ND	ug/kg	7.0	2.5	1	03/17/21 16:07	03/17/21 17:54	103-65-1	
Styrene	ND	ug/kg	7.0	1.8	1	03/17/21 16:07	03/17/21 17:54	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/kg	7.0	2.7	1	03/17/21 16:07	03/17/21 17:54	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/kg	7.0	1.8	1	03/17/21 16:07	03/17/21 17:54	79-34-5	
Tetrachloroethene	ND	ug/kg	7.0	2.2	1	03/17/21 16:07	03/17/21 17:54	127-18-4	
Toluene	12.8	ug/kg	7.0	2.0	1	03/17/21 16:07	03/17/21 17:54	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/kg	7.0	5.6	1	03/17/21 16:07	03/17/21 17:54	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/kg	7.0	5.9	1	03/17/21 16:07	03/17/21 17:54	120-82-1	
1,1,1-Trichloroethane	ND	ug/kg	7.0	3.6	1	03/17/21 16:07	03/17/21 17:54	71-55-6	
1,1,2-Trichloroethane	ND	ug/kg	7.0	2.3	1	03/17/21 16:07	03/17/21 17:54	79-00-5	
Trichloroethene	ND	ug/kg	7.0	1.8	1	03/17/21 16:07	03/17/21 17:54	79-01-6	



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-14 (0.5-1.0)	Lab ID:	925280110	03 Collected	I: 03/15/21	10:40	Received: 03/	16/21 11:45 Ma	atrix: Solid	
Results reported on a "dry weight"	basis and are	e adjusted f	or percent mo	isture, sar	nple s	ize and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A/5030B SC Volatiles	Analytical	Method: EP	A 8260D Prepa	aration Met	hod: E	PA 5035A/5030B			
	Pace Anal	ytical Servic	es - Charlotte						
Trichlorofluoromethane	ND	ug/kg	7.0	3.8	1	03/17/21 16:07	03/17/21 17:54	75-69-4	
1,2,3-Trichloropropane	ND	ug/kg	7.0	3.5	1	03/17/21 16:07	03/17/21 17:54	96-18-4	
1,2,4-Trimethylbenzene	11.0	ug/kg	7.0	1.9	1	03/17/21 16:07	03/17/21 17:54	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/kg	7.0	2.3	1	03/17/21 16:07	03/17/21 17:54	108-67-8	
Vinyl acetate	ND	ug/kg	69.6	5.1	1	03/17/21 16:07	03/17/21 17:54	108-05-4	
Vinyl chloride	ND	ug/kg	13.9	3.5	1	03/17/21 16:07	03/17/21 17:54	75-01-4	
Xylene (Total)	32.5	ug/kg	13.9	4.0	1	03/17/21 16:07	03/17/21 17:54	1330-20-7	
m&p-Xylene	20.5	ug/kg	13.9	4.8	1	03/17/21 16:07	03/17/21 17:54	179601-23-1	
o-Xylene	12.0	ug/kg	7.0	3.1	1	03/17/21 16:07	03/17/21 17:54	95-47-6	
Surrogates									
Toluene-d8 (S)	99	%	70-130		1	03/17/21 16:07	03/17/21 17:54	2037-26-5	
4-Bromofluorobenzene (S)	95	%	69-134		1	03/17/21 16:07	03/17/21 17:54	460-00-4	
1,2-Dichloroethane-d4 (S)	107	%	70-130		1	03/17/21 16:07	03/17/21 17:54	17060-07-0	
Percent Moisture	Analytical	Method: SW	/-846						
	Pace Anal	ytical Servic	es - Charlotte						
Percent Moisture	11.8	%	0.10	0.10	1		03/17/21 14:11		N2



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-14 (5.5-6.0)	Lab ID:	9252801100	4 Collected	d: 03/15/2	1 10:40	Received: 03/	16/21 11:45 Ma	atrix: Solid	
Results reported on a "dry weig	ght" basis and are	e adjusted fo	or percent mo	oisture, sar	nple s	ize and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270E MSSV Microwave	Analytical	Method: EPA	8270E Prepa	aration Met	hod: E	PA 3546			
	Pace Anal	ytical Service	es - Charlotte						
Acenaphthene	ND	ua/ka	493	173	1	03/17/21 16:29	03/18/21 11:15	83-32-9	
Acenaphthylene	ND	ua/ka	493	173	1	03/17/21 16:29	03/18/21 11:15	208-96-8	
Aniline	ND	ug/kg	493	193	1	03/17/21 16:29	03/18/21 11:15	62-53-3	
Anthracene	ND	ug/kg	493	161	1	03/17/21 16:29	03/18/21 11:15	120-12-7	
Benzo(a)anthracene	269J	ug/kg	493	164	1	03/17/21 16:29	03/18/21 11:15	56-55-3	
Benzo(a)pyrene	231J	ug/kg	493	170	1	03/17/21 16:29	03/18/21 11:15	50-32-8	
Benzo(b)fluoranthene	333J	ug/kg	493	164	1	03/17/21 16:29	03/18/21 11:15	205-99-2	
Benzo(g,h,i)perylene	ND	ug/kg	493	191	1	03/17/21 16:29	03/18/21 11:15	191-24-2	
Benzo(k)fluoranthene	ND	ug/kg	493	173	1	03/17/21 16:29	03/18/21 11:15	207-08-9	
Benzoic Acid	ND	ug/kg	2470	1060	1	03/17/21 16:29	03/18/21 11:15	65-85-0	
Benzyl alcohol	ND	ug/kg	986	374	1	03/17/21 16:29	03/18/21 11:15	100-51-6	
4-Bromophenylphenyl ether	ND	ug/kg	493	190	1	03/17/21 16:29	03/18/21 11:15	101-55-3	
Butylbenzylphthalate	ND	ug/kg	493	208	1	03/17/21 16:29	03/18/21 11:15	85-68-7	
4-Chloro-3-methylphenol	ND	ug/kg	986	347	1	03/17/21 16:29	03/18/21 11:15	59-50-7	
4-Chloroaniline	ND	ug/kg	986	387	1	03/17/21 16:29	03/18/21 11:15	106-47-8	
bis(2-Chloroethoxy)methane	ND	ug/kg	493	205	1	03/17/21 16:29	03/18/21 11:15	111-91-1	
bis(2-Chloroethyl) ether	ND	ug/kg	493	185	1	03/17/21 16:29	03/18/21 11:15	111-44-4	
2-Chloronaphthalene	ND	ug/kg	493	196	1	03/17/21 16:29	03/18/21 11:15	91-58-7	
2-Chlorophenol	ND	ug/kg	493	185	1	03/17/21 16:29	03/18/21 11:15	95-57-8	
4-Chlorophenylphenyl ether	ND	ug/kg	493	184	1	03/17/21 16:29	03/18/21 11:15	7005-72-3	
Chrysene	255J	ug/kg	493	179	1	03/17/21 16:29	03/18/21 11:15	218-01-9	
Dibenz(a,h)anthracene	ND	ug/kg	493	190	1	03/17/21 16:29	03/18/21 11:15	53-70-3	
Dibenzofuran	ND	ug/kg	493	178	1	03/17/21 16:29	03/18/21 11:15	132-64-9	
3,3'-Dichlorobenzidine	ND	ug/kg	986	333	1	03/17/21 16:29	03/18/21 11:15	91-94-1	IL
2,4-Dichlorophenol	ND	ug/kg	493	193	1	03/17/21 16:29	03/18/21 11:15	120-83-2	
Diethylphthalate	ND	ug/kg	493	181	1	03/17/21 16:29	03/18/21 11:15	84-66-2	
2,4-Dimethylphenol	ND	ug/kg	493	205	1	03/17/21 16:29	03/18/21 11:15	105-67-9	
Dimethylphthalate	ND	ug/kg	493	179	1	03/17/21 16:29	03/18/21 11:15	131-11-3	
Di-n-butylphthalate	ND	ug/kg	493	166	1	03/17/21 16:29	03/18/21 11:15	84-74-2	
4,6-Dinitro-2-methylphenol	ND	ug/kg	986	460	1	03/17/21 16:29	03/18/21 11:15	534-52-1	
2,4-Dinitrophenol	ND	ug/kg	2470	1520	1	03/17/21 16:29	03/18/21 11:15	51-28-5	
2,4-Dinitrotoluene	ND	ug/kg	493	190	1	03/17/21 16:29	03/18/21 11:15	121-14-2	
2,6-Dinitrotoluene	ND	ug/kg	493	181	1	03/17/21 16:29	03/18/21 11:15	606-20-2	
Di-n-octylphthalate	ND	ug/kg	493	194	1	03/17/21 16:29	03/18/21 11:15	117-84-0	
bis(2-Ethylhexyl)phthalate	ND	ug/kg	493	191	1	03/17/21 16:29	03/18/21 11:15	117-81-7	
Fluoranthene	598	ug/kg	493	169	1	03/17/21 16:29	03/18/21 11:15	206-44-0	
Fluorene	ND	ug/kg	493	173	1	03/17/21 16:29	03/18/21 11:15	86-73-7	
Hexachlorobenzene	ND	ug/kg	493	193	1	03/17/21 16:29	03/18/21 11:15	118-74-1	
Hexachlorocyclopentadiene	ND	ug/kg	493	282	1	03/17/21 16:29	03/18/21 11:15	77-47-4	
Hexachloroethane	ND	ug/kg	493	188	1	03/17/21 16:29	03/18/21 11:15	67-72-1	
Indeno(1,2,3-cd)pyrene	ND	ug/kg	493	194	1	03/17/21 16:29	03/18/21 11:15	193-39-5	
Isophorone	ND	ug/kg	493	220	1	03/17/21 16:29	03/18/21 11:15	78-59-1	
1-Methylnaphthalene	ND	ug/kg	493	173	1	03/17/21 16:29	03/18/21 11:15	90-12-0	
2-Methylnaphthalene	ND	ug/kg	493	197	1	03/17/21 16:29	03/18/21 11:15	91-57-6	



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-14 (5.5-6.0)	Lab ID:	9252801100	4 Collected	d: 03/15/2 ⁻	1 10:40	Received: 03/	16/21 11:45 Ma	atrix: Solid	
Results reported on a "dry weight	" basis and are	e adjusted fo	r percent mo	oisture, sar	nple s	ize and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270E MSSV Microwave	Analytical	Method: EPA	8270E Prepa	aration Met	hod: E	PA 3546			
	Pace Anal	vtical Service	s - Charlotte						
2 Mothylphonol/a Crocal)			400	202	4	02/17/21 16:20	02/10/21 11.15	05 49 7	
2-Methylphenol(o-Cresol)		ug/kg	493	202	1	03/17/21 16:29	03/18/21 11:15	95-48-7	
2 Nitroaniling		ug/kg	493	199	1	03/17/21 16:29	03/16/21 11:15	15631-10-4	
2-Nitroaniline		ug/kg	2470	403	1	03/17/21 10:29	03/16/21 11:15	00 00 2	
		ug/kg	2470	307	1	03/17/21 10.29	03/16/21 11.15	99-09-2 100 01 6	
4-INITIOALIIIIITE Nitrobonzono		ug/kg	900	220	1	03/17/21 10.29	03/10/21 11.15	08 05 3	
2-Nitrophenol		ug/kg	493	229	1	03/17/21 10:29	03/18/21 11:15	90-95-5 88-75-5	
		ug/kg	2470	053	1	03/17/21 10:29	03/18/21 11:15	100-02-7	
NI-Nitrosodimethylamine		ug/kg	2470	166	1	03/17/21 10:29	03/18/21 11:15	62-75-0	
N-Nitroso-di-n-propylamine		ug/kg	403	185	1	03/17/21 16:20	03/18/21 11:15	621-64-7	
N-Nitrosodinbenylamine		ug/kg	493	175	1	03/17/21 10:29	03/18/21 11:15	86-30-6	
2 2'-Oxybis(1-chloropropage)		ug/kg	493	235	1	03/17/21 16:29	03/18/21 11:15	108-60-1	
Pentachlorophenol		ug/kg	986	483	1	03/17/21 16:29	03/18/21 11:15	87-86-5	
Phenanthrene	406.1	ug/kg	493	161	1	03/17/21 16:29	03/18/21 11:15	85-01-8	
Phenol		ug/kg	493	220	1	03/17/21 16:29	03/18/21 11:15	108-95-2	
Pyrene	505	ug/kg	493	200	1	03/17/21 16:29	03/18/21 11:15	129-00-0	
Pyridine		ug/kg	493	155	1	03/17/21 16:29	03/18/21 11:15	110-86-1	
2.4.5-Trichlorophenol	ND	ug/kg	493	226	1	03/17/21 16:29	03/18/21 11:15	95-95-4	
2.4.6-Trichlorophenol	ND	ua/ka	493	203	1	03/17/21 16:29	03/18/21 11:15	88-06-2	
Surrogates		-9.19			-				
Nitrobenzene-d5 (S)	53	%	21-130		1	03/17/21 16:29	03/18/21 11:15	4165-60-0	
2-Fluorobiphenyl (S)	43	%	19-130		1	03/17/21 16:29	03/18/21 11:15	321-60-8	
Terphenyl-d14 (S)	70	%	15-130		1	03/17/21 16:29	03/18/21 11:15	1718-51-0	
Phenol-d6 (S)	60	%	18-130		1	03/17/21 16:29	03/18/21 11:15	13127-88-3	
2-Fluorophenol (S)	56	%	18-130		1	03/17/21 16:29	03/18/21 11:15	367-12-4	
2,4,6-Tribromophenol (S)	69	%	18-130		1	03/17/21 16:29	03/18/21 11:15	118-79-6	
8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA	8260D Prepa	aration Met	thod: E	PA 5035A/5030B			
	Pace Anal	ytical Service	s - Charlotte						
Acetone	164J	ug/kg	256	82.1	1	03/17/21 16:07	03/17/21 22:53	67-64-1	
Benzene	ND	ug/kg	12.8	5.1	1	03/17/21 16:07	03/17/21 22:53	71-43-2	
Bromobenzene	ND	ug/kg	12.8	4.2	1	03/17/21 16:07	03/17/21 22:53	108-86-1	
Bromochloromethane	ND	ug/kg	12.8	3.8	1	03/17/21 16:07	03/17/21 22:53	74-97-5	
Bromodichloromethane	ND	ug/kg	12.8	4.9	1	03/17/21 16:07	03/17/21 22:53	75-27-4	
Bromoform	ND	ug/kg	12.8	4.5	1	03/17/21 16:07	03/17/21 22:53	75-25-2	
Bromomethane	ND	ug/kg	25.6	20.2	1	03/17/21 16:07	03/17/21 22:53	74-83-9	IH,IK,
2-Butanone (MEK)	81.0J	ua/ka	256	61.4	1	03/17/21 16:07	03/17/21 22:53	78-93-3	L1,v1
n-Butvlbenzene	ND	ug/ka	12.8	6.0	1	03/17/21 16:07	03/17/21 22:53	104-51-8	
sec-Butylbenzene	ND	ug/ka	12.8	5.6	1	03/17/21 16:07	03/17/21 22:53	135-98-8	
tert-Butvlbenzene	ND	ug/ka	12.8	4.6	1	03/17/21 16:07	03/17/21 22:53	98-06-6	v2
Carbon tetrachloride	ND	ug/ka	12.8	4.8	1	03/17/21 16:07	03/17/21 22:53	56-23-5	
Chlorobenzene	20.8	ug/ka	12.8	2.5	1	03/17/21 16:07	03/17/21 22:53	108-90-7	
Chloroethane	ND	ug/kg	25.6	9.9	1	03/17/21 16:07	03/17/21 22:53	75-00-3	



#### Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-14 (5.5-6.0)	Lab ID:	9252801100	04 Collected	1: 03/15/21	1 10:40	Received: 03/	16/21 11:45 Ma	atrix: Solid	
Results reported on a "dry weight"	" basis and are	e adjusted fo	or percent mo	isture, sar	nple s	ize and any diluti	ons.		
			Report						
Parameters	Results	Units		MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA	A 8260D Prepa	aration Met	thod: E	PA 5035A/5030B			
	Pace Anal	ytical Service	es - Charlotte						
Chloroform	ND	ua/ka	12.8	7.8	1	03/17/21 16:07	03/17/21 22:53	67-66-3	
Chloromethane	ND	ua/ka	25.6	10.7	1	03/17/21 16:07	03/17/21 22:53	74-87-3	
2-Chlorotoluene	ND	ua/ka	12.8	4.5	1	03/17/21 16:07	03/17/21 22:53	95-49-8	
4-Chlorotoluene	ND	ug/kg	12.8	2.3	1	03/17/21 16:07	03/17/21 22:53	106-43-4	
1,2-Dibromo-3-chloropropane	ND	ug/kg	12.8	5.0	1	03/17/21 16:07	03/17/21 22:53	96-12-8	
Dibromochloromethane	ND	ug/kg	12.8	7.2	1	03/17/21 16:07	03/17/21 22:53	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/kg	12.8	5.6	1	03/17/21 16:07	03/17/21 22:53	106-93-4	
Dibromomethane	ND	ug/kg	12.8	2.7	1	03/17/21 16:07	03/17/21 22:53	74-95-3	
1,2-Dichlorobenzene	ND	ug/kg	12.8	4.6	1	03/17/21 16:07	03/17/21 22:53	95-50-1	
1,3-Dichlorobenzene	ND	ug/kg	12.8	4.0	1	03/17/21 16:07	03/17/21 22:53	541-73-1	
1,4-Dichlorobenzene	6.5J	ug/kg	12.8	3.3	1	03/17/21 16:07	03/17/21 22:53	106-46-7	
Dichlorodifluoromethane	ND	ug/kg	25.6	5.6	1	03/17/21 16:07	03/17/21 22:53	75-71-8	
1,1-Dichloroethane	ND	ug/kg	12.8	5.3	1	03/17/21 16:07	03/17/21 22:53	75-34-3	
1,2-Dichloroethane	ND	ug/kg	12.8	8.5	1	03/17/21 16:07	03/17/21 22:53	107-06-2	
1,1-Dichloroethene	ND	ug/kg	12.8	5.3	1	03/17/21 16:07	03/17/21 22:53	75-35-4	
cis-1,2-Dichloroethene	ND	ug/kg	12.8	4.4	1	03/17/21 16:07	03/17/21 22:53	156-59-2	
trans-1,2-Dichloroethene	ND	ug/kg	12.8	4.5	1	03/17/21 16:07	03/17/21 22:53	156-60-5	
1,2-Dichloropropane	ND	ug/kg	12.8	3.8	1	03/17/21 16:07	03/17/21 22:53	78-87-5	
1,3-Dichloropropane	ND	ug/kg	12.8	4.0	1	03/17/21 16:07	03/17/21 22:53	142-28-9	
2,2-Dichloropropane	ND	ug/kg	12.8	4.2	1	03/17/21 16:07	03/17/21 22:53	594-20-7	
1,1-Dichloropropene	ND	ug/kg	12.8	6.1	1	03/17/21 16:07	03/17/21 22:53	563-58-6	
cis-1,3-Dichloropropene	ND	ug/kg	12.8	3.5	1	03/17/21 16:07	03/17/21 22:53	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/kg	12.8	4.4	1	03/17/21 16:07	03/17/21 22:53	10061-02-6	
Diisopropyl ether	ND	ug/kg	12.8	3.5	1	03/17/21 16:07	03/17/21 22:53	108-20-3	
Ethylbenzene	32.8	ug/kg	12.8	6.0	1	03/17/21 16:07	03/17/21 22:53	100-41-4	
Hexachloro-1,3-butadiene	ND	ug/kg	25.6	20.9	1	03/17/21 16:07	03/17/21 22:53	87-68-3	IK
2-Hexanone	ND	ug/kg	128	12.3	1	03/17/21 16:07	03/17/21 22:53	591-78-6	
Isopropylbenzene (Cumene)	97.8	ug/kg	12.8	4.3	1	03/17/21 16:07	03/17/21 22:53	98-82-8	
p-Isopropyltoluene	70.4	ug/kg	12.8	6.3	1	03/17/21 16:07	03/17/21 22:53	99-87-6	
Methylene Chloride	ND	ug/kg	51.2	35.0	1	03/17/21 16:07	03/17/21 22:53	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	128	12.3	1	03/17/21 16:07	03/17/21 22:53	108-10-1	
Methyl-tert-butyl ether	ND	ug/kg	12.8	4.8	1	03/17/21 16:07	03/17/21 22:53	1634-04-4	
Naphthalene	203	ug/kg	12.8	6.7	1	03/17/21 16:07	03/17/21 22:53	91-20-3	
n-Propylbenzene	ND	ug/kg	12.8	4.6	1	03/17/21 16:07	03/17/21 22:53	103-65-1	
Styrene	ND	ug/kg	12.8	3.4	1	03/17/21 16:07	03/17/21 22:53	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/kg	12.8	4.9	1	03/17/21 16:07	03/17/21 22:53	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/kg	12.8	3.4	1	03/17/21 16:07	03/17/21 22:53	79-34-5	
Tetrachloroethene	ND	ug/kg	12.8	4.0	1	03/17/21 16:07	03/17/21 22:53	127-18-4	
Toluene	20.0	ug/kg	12.8	3.6	1	03/17/21 16:07	03/17/21 22:53	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/kg	12.8	10.3	1	03/17/21 16:07	03/17/21 22:53	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/kg	12.8	10.7	1	03/17/21 16:07	03/17/21 22:53	120-82-1	
1,1,1-Trichloroethane	ND	ug/kg	12.8	6.7	1	03/17/21 16:07	03/17/21 22:53	71-55-6	
1,1,2-Trichloroethane	ND	ug/kg	12.8	4.2	1	03/17/21 16:07	03/17/21 22:53	79-00-5	
Trichloroethene	ND	ug/kg	12.8	3.3	1	03/17/21 16:07	03/17/21 22:53	79-01-6	



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-14 (5.5-6.0)	Lab ID:	9252801100	04 Collected	d: 03/15/21	10:40	Received: 03/	16/21 11:45 Ma	atrix: Solid	
Results reported on a "dry weight"	basis and are	e adjusted f	or percent mo	isture, san	nple s	ize and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A/5030B SC Volatiles	Analytical	Method: EP/	A 8260D Prepa	aration Met	hod: E	PA 5035A/5030B			
	Pace Anal	ytical Servic	es - Charlotte						
Trichlorofluoromethane	ND	ug/kg	12.8	7.0	1	03/17/21 16:07	03/17/21 22:53	75-69-4	
1,2,3-Trichloropropane	ND	ug/kg	12.8	6.5	1	03/17/21 16:07	03/17/21 22:53	96-18-4	
1,2,4-Trimethylbenzene	33.4	ug/kg	12.8	3.5	1	03/17/21 16:07	03/17/21 22:53	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/kg	12.8	4.3	1	03/17/21 16:07	03/17/21 22:53	108-67-8	
Vinyl acetate	ND	ug/kg	128	9.3	1	03/17/21 16:07	03/17/21 22:53	108-05-4	
Vinyl chloride	ND	ug/kg	25.6	6.5	1	03/17/21 16:07	03/17/21 22:53	75-01-4	
Xylene (Total)	74.1	ug/kg	25.6	7.3	1	03/17/21 16:07	03/17/21 22:53	1330-20-7	
m&p-Xylene	43.7	ug/kg	25.6	8.7	1	03/17/21 16:07	03/17/21 22:53	179601-23-1	
o-Xylene	30.4	ug/kg	12.8	5.7	1	03/17/21 16:07	03/17/21 22:53	95-47-6	
Surrogates									
Toluene-d8 (S)	100	%	70-130		1	03/17/21 16:07	03/17/21 22:53	2037-26-5	
4-Bromofluorobenzene (S)	94	%	69-134		1	03/17/21 16:07	03/17/21 22:53	460-00-4	
1,2-Dichloroethane-d4 (S)	112	%	70-130		1	03/17/21 16:07	03/17/21 22:53	17060-07-0	
Percent Moisture	Analytical	Method: SW	-846						
	Pace Anal	ytical Servic	es - Charlotte						
Percent Moisture	33.1	%	0.10	0.10	1		03/17/21 14:12		N2



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-15 (0.5-1.0)	Lab ID:	9252801100	05 Collected	I: 03/15/21	1 11:30	Received: 03/	16/21 11:45 Ma	atrix: Solid	
Results reported on a "dry weig	ght" basis and are	e adjusted fo	or percent mo	isture, sar	nple s	ize and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270E MSSV Microwave	Analytical	Method: EPA	A 8270E Prepa	aration Met	hod: E	PA 3546			
	Pace Anal	ytical Service	es - Charlotte						
Acenaphthene	214.1	ua/ka	372	131	1	03/17/21 16:29	03/18/21 11.46	83-32-9	
Acenaphthylene	169.1	ug/kg	372	131	1	03/17/21 16:29	03/18/21 11:46	208-96-8	
Aniline	ND	ug/kg	372	145	1	03/17/21 16:29	03/18/21 11:46	62-53-3	
Anthracene	376	ug/kg	372	122	1	03/17/21 16:29	03/18/21 11:46	120-12-7	
Benzo(a)anthracene	801	ua/ka	372	124	1	03/17/21 16:29	03/18/21 11:46	56-55-3	
Benzo(a)pyrene	693	ug/kg	372	128	1	03/17/21 16:29	03/18/21 11:46	50-32-8	
Benzo(b)fluoranthene	944	ua/ka	372	124	1	03/17/21 16:29	03/18/21 11:46	205-99-2	
Benzo(a.h.i)pervlene	436	ua/ka	372	144	1	03/17/21 16:29	03/18/21 11:46	191-24-2	
Benzo(k)fluoranthene	398	ug/kg	372	131	1	03/17/21 16:29	03/18/21 11:46	207-08-9	
Benzoic Acid	ND	ug/kg	1860	799	1	03/17/21 16:29	03/18/21 11:46	65-85-0	
Benzyl alcohol	ND	ug/kg	744	282	1	03/17/21 16:29	03/18/21 11:46	100-51-6	
4-Bromophenylphenyl ether	ND	ug/kg	372	143	1	03/17/21 16:29	03/18/21 11:46	101-55-3	
Butylbenzylphthalate	ND	ug/kg	372	157	1	03/17/21 16:29	03/18/21 11:46	85-68-7	
4-Chloro-3-methylphenol	ND	ug/kg	744	261	1	03/17/21 16:29	03/18/21 11:46	59-50-7	
4-Chloroaniline	ND	ug/kg	744	292	1	03/17/21 16:29	03/18/21 11:46	106-47-8	
bis(2-Chloroethoxy)methane	ND	ug/kg	372	154	1	03/17/21 16:29	03/18/21 11:46	111-91-1	
bis(2-Chloroethyl) ether	ND	ug/kg	372	140	1	03/17/21 16:29	03/18/21 11:46	111-44-4	
2-Chloronaphthalene	ND	ug/kg	372	148	1	03/17/21 16:29	03/18/21 11:46	91-58-7	
2-Chlorophenol	ND	ug/kg	372	140	1	03/17/21 16:29	03/18/21 11:46	95-57-8	
4-Chlorophenylphenyl ether	ND	ug/kg	372	139	1	03/17/21 16:29	03/18/21 11:46	7005-72-3	
Chrysene	822	ug/kg	372	135	1	03/17/21 16:29	03/18/21 11:46	218-01-9	
Dibenz(a,h)anthracene	ND	ug/kg	372	143	1	03/17/21 16:29	03/18/21 11:46	53-70-3	
Dibenzofuran	260J	ug/kg	372	134	1	03/17/21 16:29	03/18/21 11:46	132-64-9	
3,3'-Dichlorobenzidine	ND	ug/kg	744	251	1	03/17/21 16:29	03/18/21 11:46	91-94-1	IL
2,4-Dichlorophenol	ND	ug/kg	372	145	1	03/17/21 16:29	03/18/21 11:46	120-83-2	
Diethylphthalate	ND	ug/kg	372	136	1	03/17/21 16:29	03/18/21 11:46	84-66-2	
2,4-Dimethylphenol	ND	ug/kg	372	154	1	03/17/21 16:29	03/18/21 11:46	105-67-9	
Dimethylphthalate	ND	ug/kg	372	135	1	03/17/21 16:29	03/18/21 11:46	131-11-3	
Di-n-butylphthalate	ND	ug/kg	372	125	1	03/17/21 16:29	03/18/21 11:46	84-74-2	
4,6-Dinitro-2-methylphenol	ND	ug/kg	744	347	1	03/17/21 16:29	03/18/21 11:46	534-52-1	
2,4-Dinitrophenol	ND	ug/kg	1860	1150	1	03/17/21 16:29	03/18/21 11:46	51-28-5	
2,4-Dinitrotoluene	ND	ug/kg	372	143	1	03/17/21 16:29	03/18/21 11:46	121-14-2	
2,6-Dinitrotoluene	ND	ug/kg	372	136	1	03/17/21 16:29	03/18/21 11:46	606-20-2	
Di-n-octylphthalate	ND	ug/kg	372	147	1	03/17/21 16:29	03/18/21 11:46	117-84-0	
bis(2-Ethylhexyl)phthalate	ND	ug/kg	372	144	1	03/17/21 16:29	03/18/21 11:46	117-81-7	
Fluoranthene	1370	ug/kg	372	127	1	03/17/21 16:29	03/18/21 11:46	206-44-0	
Fluorene	289J	ug/kg	372	131	1	03/17/21 16:29	03/18/21 11:46	86-73-7	
Hexachlorobenzene	ND	ug/kg	372	145	1	03/17/21 16:29	03/18/21 11:46	118-74-1	
Hexachlorocyclopentadiene	ND	ug/kg	372	213	1	03/17/21 16:29	03/18/21 11:46	77-47-4	
Hexachloroethane	ND	ug/kg	372	142	1	03/17/21 16:29	03/18/21 11:46	67-72-1	
Indeno(1,2,3-cd)pyrene	370J	ug/kg	372	147	1	03/17/21 16:29	03/18/21 11:46	193-39-5	
Isophorone	ND	ug/kg	372	166	1	03/17/21 16:29	03/18/21 11:46	78-59-1	
1-Methylnaphthalene	458	ug/kg	372	131	1	03/17/21 16:29	03/18/21 11:46	90-12-0	
2-Methylnaphthalene	520	ug/kg	372	149	1	03/17/21 16:29	03/18/21 11:46	91-57-6	



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-15 (0.5-1.0)	Lab ID:	9252801100	5 Collected	d: 03/15/21	1 11:30	Received: 03/	16/21 11:45 Ma	atrix: Solid				
Results reported on a "dry weight	" basis and are	e adjusted fo	r percent mo	oisture, sar	nple s	ize and any diluti	ions.					
Report												
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual			
8270F MSSV Microwave	Analytical	Method: FPA	8270E Prep	aration Met	hod [.] F	PA 3546						
	Pace Anal	vtical Service	s - Charlotte									
	i ace Anai		S - Onanotic									
2-Methylphenol(o-Cresol)	ND	ug/kg	372	152	1	03/17/21 16:29	03/18/21 11:46	95-48-7				
3&4-Methylphenol(m&p Cresol)	ND	ug/kg	372	150	1	03/17/21 16:29	03/18/21 11:46	15831-10-4				
2-Nitroaniline	ND	ug/kg	1860	304	1	03/17/21 16:29	03/18/21 11:46	88-74-4				
3-Nitroaniline	ND	ug/kg	1860	292	1	03/17/21 16:29	03/18/21 11:46	99-09-2				
4-Nitroaniline	ND	ug/kg	744	283	1	03/17/21 16:29	03/18/21 11:46	100-01-6				
Nitrobenzene	ND	ug/kg	372	172	1	03/17/21 16:29	03/18/21 11:46	98-95-3				
2-Nitrophenol	ND	ug/kg	372	161	1	03/17/21 16:29	03/18/21 11:46	88-75-5				
4-Nitrophenol	ND	ug/kg	1860	/19	1	03/17/21 16:29	03/18/21 11:46	100-02-7				
N-Nitrosodimethylamine	ND	ug/kg	372	125	1	03/17/21 16:29	03/18/21 11:46	62-75-9				
N-Nitroso-di-n-propylamine	ND	ug/kg	372	140	1	03/17/21 16:29	03/18/21 11:46	621-64-7				
N-Nitrosodiphenylamine	ND	ug/kg	372	132	1	03/17/21 16:29	03/18/21 11:46	86-30-6				
2,2'-Oxybis(1-chloropropane)	ND	ug/kg	372	177	1	03/17/21 16:29	03/18/21 11:46	108-60-1				
Pentachlorophenol	ND	ug/kg	744	364	1	03/17/21 16:29	03/18/21 11:46	87-86-5				
Phenanthrene	1470	ug/kg	372	122	1	03/17/21 16:29	03/18/21 11:46	85-01-8				
Phenol	ND	ug/kg	372	166	1	03/17/21 16:29	03/18/21 11:46	108-95-2				
Pyrene	1400	ug/kg	372	151	1	03/17/21 16:29	03/18/21 11:46	129-00-0				
Pyridine	ND	ug/kg	372	117	1	03/17/21 16:29	03/18/21 11:46	110-86-1				
2,4,5-Trichlorophenol	ND	ug/kg	372	170	1	03/17/21 16:29	03/18/21 11:46	95-95-4				
2,4,6-Trichlorophenol Surrogates	ND	ug/kg	372	153	1	03/17/21 16:29	03/18/21 11:46	88-06-2				
Nitrobenzene-d5 (S)	72	%	21-130		1	03/17/21 16:29	03/18/21 11:46	4165-60-0				
2-Fluorobiphenyl (S)	71	%	19-130		1	03/17/21 16:29	03/18/21 11:46	321-60-8				
Terphenyl-d14 (S)	102	%	15-130		1	03/17/21 16:29	03/18/21 11:46	1718-51-0				
Phenol-d6 (S)	69	%	18-130		1	03/17/21 16:29	03/18/21 11:46	13127-88-3				
2-Fluorophenol (S)	65	%	18-130		1	03/17/21 16:29	03/18/21 11:46	367-12-4				
2,4,6-Tribromophenol (S)	77	%	18-130		1	03/17/21 16:29	03/18/21 11:46	118-79-6				
8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA	8260D Prepa	aration Met	hod: E	PA 5035A/5030B						
	Pace Anal	ytical Service	s - Charlotte									
Acetone	ND	ug/kg	125	40.3	1	03/17/21 16:07	03/17/21 18:11	67-64-1				
Benzene	41.8	ug/kg	6.3	2.5	1	03/17/21 16:07	03/17/21 18:11	71-43-2				
Bromobenzene	ND	ug/kg	6.3	2.0	1	03/17/21 16:07	03/17/21 18:11	108-86-1				
Bromochloromethane	ND	ug/kg	6.3	1.9	1	03/17/21 16:07	03/17/21 18:11	74-97-5				
Bromodichloromethane	ND	ug/kg	6.3	2.4	1	03/17/21 16:07	03/17/21 18:11	75-27-4				
Bromoform	ND	ug/kg	6.3	2.2	1	03/17/21 16:07	03/17/21 18:11	75-25-2				
Bromomethane	ND	ug/kg	12.5	9.9	1	03/17/21 16:07	03/17/21 18:11	74-83-9	IH,IK,			
2-Butanone (MEK)	ND	ug/ka	125	30.1	1	03/17/21 16:07	03/17/21 18:11	78-93-3	L1,V1			
n-Butvlbenzene	ND	ua/ka	6.3	3.0	1	03/17/21 16:07	03/17/21 18:11	104-51-8				
sec-Butvlbenzene	ND	ua/ka	6.3	2.8	1	03/17/21 16:07	03/17/21 18:11	135-98-8				
tert-Butylbenzene	ND	ua/ka	6.3	2.2	1	03/17/21 16:07	03/17/21 18:11	98-06-6	v2			
Carbon tetrachloride	ND	ug/ka	6.3	2.3	1	03/17/21 16:07	03/17/21 18:11	56-23-5	-			
Chlorobenzene	7.0	ug/ka	6.3	1.2	1	03/17/21 16:07	03/17/21 18:11	108-90-7				
Chloroethane	ND	ug/kg	12.5	4.8	1	03/17/21 16:07	03/17/21 18:11	75-00-3				



#### Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-15 (0.5-1.0)	Lab ID:	9252801100	5 Collected	d: 03/15/21	1 11:30	Received: 03/	16/21 11:45 M	atrix: Solid					
Results reported on a "dry weight"	" basis and are	e adjusted fo	r percent mo	oisture, sar	nple s	ize and any diluti	ions.						
	Report												
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual				
8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA	8260D Prep	aration Met	thod: E	PA 5035A/5030B							
	Pace Anal	ytical Service	s - Charlotte										
Chloroform	ND	ua/ka	6.3	3.8	1	03/17/21 16:07	03/17/21 18:11	67-66-3					
Chloromethane	ND	ua/ka	12.5	5.3	1	03/17/21 16:07	03/17/21 18:11	74-87-3					
2-Chlorotoluene	ND	ua/ka	6.3	2.2	1	03/17/21 16:07	03/17/21 18:11	95-49-8					
4-Chlorotoluene	ND	ug/kg	6.3	1.1	1	03/17/21 16:07	03/17/21 18:11	106-43-4					
1,2-Dibromo-3-chloropropane	ND	ug/kg	6.3	2.4	1	03/17/21 16:07	03/17/21 18:11	96-12-8					
Dibromochloromethane	ND	ug/kg	6.3	3.5	1	03/17/21 16:07	03/17/21 18:11	124-48-1					
1,2-Dibromoethane (EDB)	ND	ug/kg	6.3	2.8	1	03/17/21 16:07	03/17/21 18:11	106-93-4					
Dibromomethane	ND	ug/kg	6.3	1.3	1	03/17/21 16:07	03/17/21 18:11	74-95-3					
1,2-Dichlorobenzene	ND	ug/kg	6.3	2.3	1	03/17/21 16:07	03/17/21 18:11	95-50-1					
1,3-Dichlorobenzene	ND	ug/kg	6.3	1.9	1	03/17/21 16:07	03/17/21 18:11	541-73-1					
1,4-Dichlorobenzene	ND	ug/kg	6.3	1.6	1	03/17/21 16:07	03/17/21 18:11	106-46-7					
Dichlorodifluoromethane	ND	ug/kg	12.5	2.7	1	03/17/21 16:07	03/17/21 18:11	75-71-8					
1,1-Dichloroethane	ND	ug/kg	6.3	2.6	1	03/17/21 16:07	03/17/21 18:11	75-34-3					
1,2-Dichloroethane	ND	ug/kg	6.3	4.2	1	03/17/21 16:07	03/17/21 18:11	107-06-2					
1,1-Dichloroethene	ND	ug/kg	6.3	2.6	1	03/17/21 16:07	03/17/21 18:11	75-35-4					
cis-1,2-Dichloroethene	ND	ug/kg	6.3	2.1	1	03/17/21 16:07	03/17/21 18:11	156-59-2					
trans-1,2-Dichloroethene	ND	ug/kg	6.3	2.2	1	03/17/21 16:07	03/17/21 18:11	156-60-5					
1,2-Dichloropropane	ND	ug/kg	6.3	1.9	1	03/17/21 16:07	03/17/21 18:11	78-87-5					
1,3-Dichloropropane	ND	ug/kg	6.3	2.0	1	03/17/21 16:07	03/17/21 18:11	142-28-9					
2,2-Dichloropropane	ND	ug/kg	6.3	2.0	1	03/17/21 16:07	03/17/21 18:11	594-20-7					
1,1-Dichloropropene	ND	ug/kg	6.3	3.0	1	03/17/21 16:07	03/17/21 18:11	563-58-6					
cis-1,3-Dichloropropene	ND	ug/kg	6.3	1.7	1	03/17/21 16:07	03/17/21 18:11	10061-01-5					
trans-1,3-Dichloropropene	ND	ug/kg	6.3	2.2	1	03/17/21 16:07	03/17/21 18:11	10061-02-6					
Diisopropyl ether	ND	ug/kg	6.3	1.7	1	03/17/21 16:07	03/17/21 18:11	108-20-3					
Ethylbenzene	23.4	ug/kg	6.3	2.9	1	03/17/21 16:07	03/17/21 18:11	100-41-4					
Hexachloro-1,3-butadiene	ND	ug/kg	12.5	10.3	1	03/17/21 16:07	03/17/21 18:11	87-68-3	IK				
2-Hexanone	ND	ug/kg	62.7	6.0	1	03/17/21 16:07	03/17/21 18:11	591-78-6					
Isopropylbenzene (Cumene)	5.7J	ug/kg	6.3	2.1	1	03/17/21 16:07	03/17/21 18:11	98-82-8					
p-Isopropyltoluene	9.6	ug/kg	6.3	3.1	1	03/17/21 16:07	03/17/21 18:11	99-87-6					
Methylene Chloride	ND	ug/kg	25.1	17.2	1	03/17/21 16:07	03/17/21 18:11	75-09-2					
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	62.7	6.0	1	03/17/21 16:07	03/17/21 18:11	108-10-1					
Methyl-tert-butyl ether	ND	ug/kg	6.3	2.3	1	03/17/21 16:07	03/17/21 18:11	1634-04-4					
Naphthalene	372	ug/kg	6.3	3.3	1	03/17/21 16:07	03/17/21 18:11	91-20-3					
n-Propylbenzene	ND	ug/kg	6.3	2.2	1	03/17/21 16:07	03/17/21 18:11	103-65-1					
Styrene	3.8J	ug/kg	6.3	1.7	1	03/17/21 16:07	03/17/21 18:11	100-42-5					
1,1,1,2-Tetrachloroethane	ND	ug/kg	6.3	2.4	1	03/17/21 16:07	03/17/21 18:11	630-20-6					
1,1,2,2-Tetrachloroethane	ND	ug/kg	6.3	1.7	1	03/17/21 16:07	03/17/21 18:11	79-34-5					
Tetrachloroethene	ND	ug/kg	6.3	2.0	1	03/17/21 16:07	03/17/21 18:11	127-18-4					
Toluene	64.6	ug/kg	6.3	1.8	1	03/17/21 16:07	03/17/21 18:11	108-88-3					
1,2,3-Trichlorobenzene	ND	ug/kg	6.3	5.1	1	03/17/21 16:07	03/17/21 18:11	87-61-6					
1,2,4-Trichlorobenzene	ND	ug/kg	6.3	5.3	1	03/17/21 16:07	03/17/21 18:11	120-82-1					
1,1,1-Trichloroethane	ND	ug/kg	6.3	3.3	1	03/17/21 16:07	03/17/21 18:11	71-55-6					
1,1,2-Trichloroethane	ND	ug/kg	6.3	2.1	1	03/17/21 16:07	03/17/21 18:11	79-00-5					
Trichloroethene	ND	ug/kg	6.3	1.6	1	03/17/21 16:07	03/17/21 18:11	79-01-6					



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-15 (0.5-1.0)	Lab ID:	9252801100	05 Collected	I: 03/15/21	11:30	Received: 03/	16/21 11:45 Ma	atrix: Solid	
Results reported on a "dry weight"	' basis and are	e adjusted f	or percent mo	isture, sar	nple s	ize and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A/5030B SC Volatiles	Analytical	Method: EP/	A 8260D Prepa	aration Met	hod: E	PA 5035A/5030B			
	Pace Anal	ytical Servic	es - Charlotte						
Trichlorofluoromethane	ND	ug/kg	6.3	3.4	1	03/17/21 16:07	03/17/21 18:11	75-69-4	
1,2,3-Trichloropropane	ND	ug/kg	6.3	3.2	1	03/17/21 16:07	03/17/21 18:11	96-18-4	
1,2,4-Trimethylbenzene	19.2	ug/kg	6.3	1.7	1	03/17/21 16:07	03/17/21 18:11	95-63-6	
1,3,5-Trimethylbenzene	6.8	ug/kg	6.3	2.1	1	03/17/21 16:07	03/17/21 18:11	108-67-8	
Vinyl acetate	ND	ug/kg	62.7	4.6	1	03/17/21 16:07	03/17/21 18:11	108-05-4	
Vinyl chloride	ND	ug/kg	12.5	3.2	1	03/17/21 16:07	03/17/21 18:11	75-01-4	
Xylene (Total)	70.4	ug/kg	12.5	3.6	1	03/17/21 16:07	03/17/21 18:11	1330-20-7	
m&p-Xylene	49.8	ug/kg	12.5	4.3	1	03/17/21 16:07	03/17/21 18:11	179601-23-1	
o-Xylene	20.6	ug/kg	6.3	2.8	1	03/17/21 16:07	03/17/21 18:11	95-47-6	
Surrogates									
Toluene-d8 (S)	100	%	70-130		1	03/17/21 16:07	03/17/21 18:11	2037-26-5	
4-Bromofluorobenzene (S)	93	%	69-134		1	03/17/21 16:07	03/17/21 18:11	460-00-4	
1,2-Dichloroethane-d4 (S)	107	%	70-130		1	03/17/21 16:07	03/17/21 18:11	17060-07-0	
Percent Moisture	Analytical	Method: SW	/-846						
	Pace Anal	ytical Servic	es - Charlotte						
Percent Moisture	11.9	%	0.10	0.10	1		03/17/21 14:12		N2



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-15 (5.5-6.0)	Lab ID:	9252801100	6 Collected	I: 03/15/21	1 11:35	Received: 03/	16/21 11:45 Ma	atrix: Solid	
Results reported on a "dry weig	ght" basis and are	e adjusted fo	or percent mo	isture, sar	nple s	ize and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270E MSSV Microwave	Analytical	Method: EPA	A 8270E Prepa	aration Met	hod: E	PA 3546			
	Pace Anal	ytical Service	es - Charlotte						
Acenaphthene	269J	ua/ka	517	182	1	03/17/21 16:29	03/18/21 12:47	83-32-9	
Acenaphthylene	185J	ua/ka	517	182	1	03/17/21 16:29	03/18/21 12:47	208-96-8	
Aniline	ND	ua/ka	517	202	1	03/17/21 16:29	03/18/21 12:47	62-53-3	
Anthracene	716	ug/kg	517	169	1	03/17/21 16:29	03/18/21 12:47	120-12-7	
Benzo(a)anthracene	1640	ug/kg	517	172	1	03/17/21 16:29	03/18/21 12:47	56-55-3	
Benzo(a)pyrene	1440	ug/kg	517	179	1	03/17/21 16:29	03/18/21 12:47	50-32-8	
Benzo(b)fluoranthene	2020	ug/kg	517	172	1	03/17/21 16:29	03/18/21 12:47	205-99-2	
Benzo(g,h,i)perylene	975	ug/kg	517	201	1	03/17/21 16:29	03/18/21 12:47	191-24-2	
Benzo(k)fluoranthene	791	ug/kg	517	182	1	03/17/21 16:29	03/18/21 12:47	207-08-9	
Benzoic Acid	ND	ug/kg	2580	1110	1	03/17/21 16:29	03/18/21 12:47	65-85-0	
Benzyl alcohol	ND	ug/kg	1030	392	1	03/17/21 16:29	03/18/21 12:47	100-51-6	
4-Bromophenylphenyl ether	ND	ug/kg	517	199	1	03/17/21 16:29	03/18/21 12:47	101-55-3	
Butylbenzylphthalate	ND	ug/kg	517	218	1	03/17/21 16:29	03/18/21 12:47	85-68-7	
4-Chloro-3-methylphenol	ND	ug/kg	1030	363	1	03/17/21 16:29	03/18/21 12:47	59-50-7	
4-Chloroaniline	ND	ug/kg	1030	406	1	03/17/21 16:29	03/18/21 12:47	106-47-8	
bis(2-Chloroethoxy)methane	ND	ug/kg	517	215	1	03/17/21 16:29	03/18/21 12:47	111-91-1	
bis(2-Chloroethyl) ether	ND	ug/kg	517	194	1	03/17/21 16:29	03/18/21 12:47	111-44-4	
2-Chloronaphthalene	ND	ug/kg	517	205	1	03/17/21 16:29	03/18/21 12:47	91-58-7	
2-Chlorophenol	ND	ug/kg	517	194	1	03/17/21 16:29	03/18/21 12:47	95-57-8	
4-Chlorophenylphenyl ether	ND	ug/kg	517	193	1	03/17/21 16:29	03/18/21 12:47	7005-72-3	
Chrysene	1530	ug/kg	517	188	1	03/17/21 16:29	03/18/21 12:47	218-01-9	
Dibenz(a,h)anthracene	ND	ug/kg	517	199	1	03/17/21 16:29	03/18/21 12:47	53-70-3	
Dibenzofuran	ND	ug/kg	517	186	1	03/17/21 16:29	03/18/21 12:47	132-64-9	
3,3'-Dichlorobenzidine	ND	ug/kg	1030	349	1	03/17/21 16:29	03/18/21 12:47	91-94-1	IL
2,4-Dichlorophenol	ND	ug/kg	517	202	1	03/17/21 16:29	03/18/21 12:47	120-83-2	
Diethylphthalate	ND	ug/kg	517	190	1	03/17/21 16:29	03/18/21 12:47	84-66-2	
2,4-Dimethylphenol	ND	ug/kg	517	215	1	03/17/21 16:29	03/18/21 12:47	105-67-9	
Dimethylphthalate	ND	ug/kg	517	188	1	03/17/21 16:29	03/18/21 12:47	131-11-3	
Di-n-butylphthalate	ND	ug/kg	517	174	1	03/17/21 16:29	03/18/21 12:47	84-74-2	
4,6-Dinitro-2-methylphenol	ND	ug/kg	1030	482	1	03/17/21 16:29	03/18/21 12:47	534-52-1	
2,4-Dinitrophenol	ND	ug/kg	2580	1600	1	03/17/21 16:29	03/18/21 12:47	51-28-5	
2,4-Dinitrotoluene	ND	ug/kg	517	199	1	03/17/21 16:29	03/18/21 12:47	121-14-2	
2,6-Dinitrotoluene	ND	ug/kg	517	190	1	03/17/21 16:29	03/18/21 12:47	606-20-2	
Di-n-octylphthalate	ND	ug/kg	517	204	1	03/17/21 16:29	03/18/21 12:47	117-84-0	
bis(2-Ethylhexyl)phthalate	ND	ug/kg	517	201	1	03/17/21 16:29	03/18/21 12:47	117-81-7	
Fluoranthene	3920	ug/kg	517	177	1	03/17/21 16:29	03/18/21 12:47	206-44-0	
Fluorene	329J	ug/kg	517	182	1	03/17/21 16:29	03/18/21 12:47	86-73-7	
Hexachlorobenzene	ND	ug/kg	517	202	1	03/17/21 16:29	03/18/21 12:47	118-74-1	
Hexachlorocyclopentadiene	ND	ug/kg	517	296	1	03/17/21 16:29	03/18/21 12:47	77-47-4	
Hexachloroethane	ND	ug/kg	517	197	1	03/17/21 16:29	03/18/21 12:47	67-72-1	
Indeno(1,2,3-cd)pyrene	800	ug/kg	517	204	1	03/17/21 16:29	03/18/21 12:47	193-39-5	
Isophorone	ND	ug/kg	517	230	1	03/17/21 16:29	03/18/21 12:47	78-59-1	
1-Methylnaphthalene	ND	ug/kg	517	182	1	03/17/21 16:29	03/18/21 12:47	90-12-0	
2-Methylnaphthalene	ND	ug/kg	517	207	1	03/17/21 16:29	03/18/21 12:47	91-57-6	



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-15 (5.5-6.0)	Lab ID:	9252801100	6 Collected	: 03/15/2 ⁻	1 11:35	Received: 03/	16/21 11:45 Ma	atrix: Solid				
Results reported on a "dry weight	" basis and are	e adjusted fo	or percent mo	oisture, sar	nple s	ize and any diluti	ions.					
Report												
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual			
8270F MSSV Microwave	Analytical	Method: EPA	8270F Prep	aration Met	hod [.] F	PA 3546		_	-			
	Pace Anal	vtical Service	es - Charlotte		nou. E							
	i ace Anai		onanotic									
2-Methylphenol(o-Cresol)	ND	ug/kg	517	211	1	03/17/21 16:29	03/18/21 12:47	95-48-7				
3&4-Methylphenol(m&p Cresol)	ND	ug/kg	517	208	1	03/17/21 16:29	03/18/21 12:47	15831-10-4				
2-Nitroaniline	ND	ug/kg	2580	423	1	03/17/21 16:29	03/18/21 12:47	88-74-4				
3-Nitroaniline	ND	ug/kg	2580	406	1	03/17/21 16:29	03/18/21 12:47	99-09-2				
4-Nitroaniline	ND	ug/kg	1030	393	1	03/17/21 16:29	03/18/21 12:47	100-01-6				
Nitrobenzene	ND	ug/kg	517	240	1	03/17/21 16:29	03/18/21 12:47	98-95-3				
2-Nitrophenol	ND	ug/kg	517	224	1	03/17/21 16:29	03/18/21 12:47	88-75-5				
4-Nitrophenol	ND	ug/kg	2580	999	1	03/17/21 16:29	03/18/21 12:47	100-02-7				
N-Nitrosodimethylamine	ND	ug/kg	517	174	1	03/17/21 16:29	03/18/21 12:47	62-75-9				
N-Nitroso-di-n-propylamine	ND	ug/kg	517	194	1	03/17/21 16:29	03/18/21 12:47	621-64-7				
N-Nitrosodiphenylamine	ND	ug/kg	517	183	1	03/17/21 16:29	03/18/21 12:47	86-30-6				
2,2'-Oxybis(1-chloropropane)	ND	ug/kg	517	246	1	03/17/21 16:29	03/18/21 12:47	108-60-1				
Pentachlorophenol	ND	ug/kg	1030	506	1	03/17/21 16:29	03/18/21 12:47	87-86-5				
Phenanthrene	2730	ug/kg	517	169	1	03/17/21 16:29	03/18/21 12:47	85-01-8				
Phenol	ND	ug/kg	517	230	1	03/17/21 16:29	03/18/21 12:47	108-95-2				
Pyrene	3540	ug/kg	517	210	1	03/17/21 16:29	03/18/21 12:47	129-00-0				
Pyridine	ND	ug/kg	517	163	1	03/17/21 16:29	03/18/21 12:47	110-86-1				
2,4,5-Trichlorophenol	ND	ug/kg	517	237	1	03/17/21 16:29	03/18/21 12:47	95-95-4				
2,4,6-Trichlorophenol Surrogates	ND	ug/kg	517	213	1	03/17/21 16:29	03/18/21 12:47	88-06-2				
Nitrobenzene-d5 (S)	52	%	21-130		1	03/17/21 16:29	03/18/21 12:47	4165-60-0				
2-Fluorobiphenyl (S)	49	%	19-130		1	03/17/21 16:29	03/18/21 12:47	321-60-8				
Terphenyl-d14 (S)	66	%	15-130		1	03/17/21 16:29	03/18/21 12:47	1718-51-0				
Phenol-d6 (S)	50	%	18-130		1	03/17/21 16:29	03/18/21 12:47	13127-88-3				
2-Fluorophenol (S)	48	%	18-130		1	03/17/21 16:29	03/18/21 12:47	367-12-4				
2,4,6-Tribromophenol (S)	62	%	18-130		1	03/17/21 16:29	03/18/21 12:47	118-79-6				
8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA	8260D Prepa	aration Met	hod: E	PA 5035A/5030B						
	Pace Anal	ytical Service	es - Charlotte									
Acetone	ND	ug/kg	199	64.0	1	03/17/21 16:07	03/17/21 18:29	67-64-1				
Benzene	ND	ug/kg	10	4.0	1	03/17/21 16:07	03/17/21 18:29	71-43-2				
Bromobenzene	ND	ug/kg	10	3.3	1	03/17/21 16:07	03/17/21 18:29	108-86-1				
Bromochloromethane	ND	ug/kg	10	3.0	1	03/17/21 16:07	03/17/21 18:29	74-97-5				
Bromodichloromethane	ND	ug/kg	10	3.9	1	03/17/21 16:07	03/17/21 18:29	75-27-4				
Bromoform	ND	ug/kg	10	3.5	1	03/17/21 16:07	03/17/21 18:29	75-25-2				
Bromomethane	ND	ug/kg	19.9	15.8	1	03/17/21 16:07	03/17/21 18:29	74-83-9	IH,IK,			
2-Butanone (MEK)	ND	ug/kg	199	47.9	1	03/17/21 16:07	03/17/21 18:29	78-93-3	L1,V1			
n-Butylbenzene	ND	ug/kg	10	4.7	1	03/17/21 16:07	03/17/21 18:29	104-51-8				
sec-Butylbenzene	ND	ug/kg	10	4.4	1	03/17/21 16:07	03/17/21 18:29	135-98-8				
tert-Butylbenzene	ND	ug/kg	10	3.6	1	03/17/21 16:07	03/17/21 18:29	98-06-6	v2			
Carbon tetrachloride	ND	ug/kg	10	3.7	1	03/17/21 16:07	03/17/21 18:29	56-23-5				
Chlorobenzene	6.8J	ug/kg	10	1.9	1	03/17/21 16:07	03/17/21 18:29	108-90-7				
Chloroethane	ND	ug/kg	19.9	7.7	1	03/17/21 16:07	03/17/21 18:29	75-00-3				



#### Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-15 (5.5-6.0)	Lab ID:	9252801100	6 Collected	d: 03/15/21	1 11:35	Received: 03/	16/21 11:45 Ma	atrix: Solid			
Results reported on a "dry weight"	" basis and are	e adjusted fo	r percent mo	isture, sar	nple s	ize and any diluti	ons.				
Report											
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual		
8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA	8260D Prepa	aration Met	hod: E	PA 5035A/5030B					
	Pace Anal	ytical Service	s - Charlotte								
Chloroform	ND	ua/ka	10	6.1	1	03/17/21 16:07	03/17/21 18:29	67-66-3			
Chloromethane	ND	ug/kg	19.9	8.4	1	03/17/21 16:07	03/17/21 18:29	74-87-3			
2-Chlorotoluene	ND	ug/kg	10	3.5	1	03/17/21 16:07	03/17/21 18:29	95-49-8			
4-Chlorotoluene	ND	ug/kg	10	1.8	1	03/17/21 16:07	03/17/21 18:29	106-43-4			
1,2-Dibromo-3-chloropropane	ND	ug/kg	10	3.9	1	03/17/21 16:07	03/17/21 18:29	96-12-8			
Dibromochloromethane	ND	ug/kg	10	5.6	1	03/17/21 16:07	03/17/21 18:29	124-48-1			
1,2-Dibromoethane (EDB)	ND	ug/kg	10	4.4	1	03/17/21 16:07	03/17/21 18:29	106-93-4			
Dibromomethane	ND	ug/kg	10	2.1	1	03/17/21 16:07	03/17/21 18:29	74-95-3			
1,2-Dichlorobenzene	ND	ug/kg	10	3.6	1	03/17/21 16:07	03/17/21 18:29	95-50-1			
1,3-Dichlorobenzene	ND	ug/kg	10	3.1	1	03/17/21 16:07	03/17/21 18:29	541-73-1			
1,4-Dichlorobenzene	ND	ug/kg	10	2.6	1	03/17/21 16:07	03/17/21 18:29	106-46-7			
Dichlorodifluoromethane	ND	ug/kg	19.9	4.3	1	03/17/21 16:07	03/17/21 18:29	75-71-8			
1,1-Dichloroethane	ND	ug/kg	10	4.1	1	03/17/21 16:07	03/17/21 18:29	75-34-3			
1,2-Dichloroethane	ND	ug/kg	10	6.6	1	03/17/21 16:07	03/17/21 18:29	107-06-2			
1,1-Dichloroethene	ND	ug/kg	10	4.1	1	03/17/21 16:07	03/17/21 18:29	75-35-4			
cis-1,2-Dichloroethene	ND	ug/kg	10	3.4	1	03/17/21 16:07	03/17/21 18:29	156-59-2			
trans-1,2-Dichloroethene	ND	ug/kg	10	3.5	1	03/17/21 16:07	03/17/21 18:29	156-60-5			
1,2-Dichloropropane	ND	ug/kg	10	3.0	1	03/17/21 16:07	03/17/21 18:29	78-87-5			
1,3-Dichloropropane	ND	ug/kg	10	3.1	1	03/17/21 16:07	03/17/21 18:29	142-28-9			
2,2-Dichloropropane	ND	ug/kg	10	3.3	1	03/17/21 16:07	03/17/21 18:29	594-20-7			
1,1-Dichloropropene	ND	ug/kg	10	4.8	1	03/17/21 16:07	03/17/21 18:29	563-58-6			
cis-1,3-Dichloropropene	ND	ug/kg	10	2.7	1	03/17/21 16:07	03/17/21 18:29	10061-01-5			
trans-1,3-Dichloropropene	ND	ug/kg	10	3.4	1	03/17/21 16:07	03/17/21 18:29	10061-02-6			
Diisopropyl ether	ND	ug/kg	10	2.7	1	03/17/21 16:07	03/17/21 18:29	108-20-3			
Ethylbenzene	ND	ug/kg	10	4.6	1	03/17/21 16:07	03/17/21 18:29	100-41-4			
Hexachloro-1,3-butadiene	ND	ug/kg	19.9	16.3	1	03/17/21 16:07	03/17/21 18:29	87-68-3	IK		
2-Hexanone	ND	ug/kg	99.7	9.6	1	03/17/21 16:07	03/17/21 18:29	591-78-6			
Isopropylbenzene (Cumene)	20.6	ug/kg	10	3.4	1	03/17/21 16:07	03/17/21 18:29	98-82-8			
p-Isopropyltoluene	34.3	ug/kg	10	4.9	1	03/17/21 16:07	03/17/21 18:29	99-87-6			
Methylene Chloride	ND	ug/kg	39.9	27.3	1	03/17/21 16:07	03/17/21 18:29	75-09-2			
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	99.7	9.6	1	03/17/21 16:07	03/17/21 18:29	108-10-1			
Methyl-tert-butyl ether	ND	ug/kg	10	3.7	1	03/17/21 16:07	03/17/21 18:29	1634-04-4			
Naphthalene	60.0	ug/kg	10	5.2	1	03/17/21 16:07	03/17/21 18:29	91-20-3			
n-Propylbenzene	ND	ug/kg	10	3.6	1	03/17/21 16:07	03/17/21 18:29	103-65-1			
Styrene	ND	ug/kg	10	2.6	1	03/17/21 16:07	03/17/21 18:29	100-42-5			
1,1,1,2-Tetrachloroethane	ND	ug/kg	10	3.8	1	03/17/21 16:07	03/17/21 18:29	630-20-6			
1,1,2,2-Tetrachloroethane	ND	ug/kg	10	2.6	1	03/17/21 16:07	03/17/21 18:29	79-34-5			
Tetrachloroethene	ND	ug/kg	10	3.2	1	03/17/21 16:07	03/17/21 18:29	127-18-4			
Toluene	5.1J	ug/kg	10	2.8	1	03/17/21 16:07	03/17/21 18:29	108-88-3			
1,2,3-Trichlorobenzene	ND	ug/kg	10	8.1	1	03/17/21 16:07	03/17/21 18:29	87-61-6			
1,2,4-Trichlorobenzene	ND	ug/kg	10	8.4	1	03/17/21 16:07	03/17/21 18:29	120-82-1			
1,1,1-Trichloroethane	ND	ug/kg	10	5.2	1	03/17/21 16:07	03/17/21 18:29	71-55-6			
1,1,2-Trichloroethane	ND	ug/kg	10	3.3	1	03/17/21 16:07	03/17/21 18:29	79-00-5			
Trichloroethene	ND	ug/kg	10	2.6	1	03/17/21 16:07	03/17/21 18:29	79-01-6			



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-15 (5.5-6.0)	Lab ID:	9252801100	6 Collected	d: 03/15/21	11:35	Received: 03/	16/21 11:45 Ma	atrix: Solid	
Results reported on a "dry weight"	basis and are	e adjusted fo	or percent mo	oisture, san	nple s	ize and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA	A 8260D Prepa	aration Met	hod: E	PA 5035A/5030B			
	Pace Anal	ytical Service	es - Charlotte						
Trichlorofluoromethane	ND	ug/kg	10	5.5	1	03/17/21 16:07	03/17/21 18:29	75-69-4	
1,2,3-Trichloropropane	ND	ug/kg	10	5.0	1	03/17/21 16:07	03/17/21 18:29	96-18-4	
1,2,4-Trimethylbenzene	13.0	ug/kg	10	2.7	1	03/17/21 16:07	03/17/21 18:29	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/kg	10	3.4	1	03/17/21 16:07	03/17/21 18:29	108-67-8	
Vinyl acetate	ND	ug/kg	99.7	7.3	1	03/17/21 16:07	03/17/21 18:29	108-05-4	
Vinyl chloride	ND	ug/kg	19.9	5.1	1	03/17/21 16:07	03/17/21 18:29	75-01-4	
Xylene (Total)	15.7J	ug/kg	19.9	5.7	1	03/17/21 16:07	03/17/21 18:29	1330-20-7	
m&p-Xylene	15.7J	ug/kg	19.9	6.8	1	03/17/21 16:07	03/17/21 18:29	179601-23-1	
o-Xylene	ND	ug/kg	10	4.4	1	03/17/21 16:07	03/17/21 18:29	95-47-6	
Surrogates									
Toluene-d8 (S)	98	%	70-130		1	03/17/21 16:07	03/17/21 18:29	2037-26-5	
4-Bromofluorobenzene (S)	95	%	69-134		1	03/17/21 16:07	03/17/21 18:29	460-00-4	
1,2-Dichloroethane-d4 (S)	111	%	70-130		1	03/17/21 16:07	03/17/21 18:29	17060-07-0	
Percent Moisture	Analytical	Method: SW	-846						
	Pace Anal	ytical Service	es - Charlotte						
Percent Moisture	36.8	%	0.10	0.10	1		03/17/21 14:12		N2



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-16 (0.5-1.0)	Lab ID:	9252801100	07 Collected	l: 03/15/21	1 11:45	Received: 03/	16/21 11:45 Ma	atrix: Solid	
Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.									
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270E MSSV Microwave	Analytical	Method: EPA	A 8270E Prepa	aration Met	hod: E	PA 3546			
	Pace Anal	ytical Service	es - Charlotte						
Acenaphthene	ND	ua/ka	389	137	1	03/17/21 16:29	03/18/21 13:19	83-32-9	
Acenaphthylene	ND	ua/ka	389	137	1	03/17/21 16:29	03/18/21 13:19	208-96-8	
Aniline	ND	ua/ka	389	152	1	03/17/21 16:29	03/18/21 13:19	62-53-3	
Anthracene	ND	ug/kg	389	127	1	03/17/21 16:29	03/18/21 13:19	120-12-7	
Benzo(a)anthracene	ND	ug/kg	389	130	1	03/17/21 16:29	03/18/21 13:19	56-55-3	
Benzo(a)pyrene	ND	ug/kg	389	134	1	03/17/21 16:29	03/18/21 13:19	50-32-8	
Benzo(b)fluoranthene	ND	ug/kg	389	130	1	03/17/21 16:29	03/18/21 13:19	205-99-2	
Benzo(g,h,i)perylene	ND	ug/kg	389	151	1	03/17/21 16:29	03/18/21 13:19	191-24-2	
Benzo(k)fluoranthene	ND	ug/kg	389	137	1	03/17/21 16:29	03/18/21 13:19	207-08-9	
Benzoic Acid	ND	ug/kg	1940	835	1	03/17/21 16:29	03/18/21 13:19	65-85-0	
Benzyl alcohol	ND	ug/kg	777	294	1	03/17/21 16:29	03/18/21 13:19	100-51-6	
4-Bromophenylphenyl ether	ND	ug/kg	389	150	1	03/17/21 16:29	03/18/21 13:19	101-55-3	
Butylbenzylphthalate	ND	ug/kg	389	164	1	03/17/21 16:29	03/18/21 13:19	85-68-7	
4-Chloro-3-methylphenol	ND	ug/kg	777	273	1	03/17/21 16:29	03/18/21 13:19	59-50-7	
4-Chloroaniline	ND	ug/kg	777	305	1	03/17/21 16:29	03/18/21 13:19	106-47-8	
bis(2-Chloroethoxy)methane	ND	ug/kg	389	161	1	03/17/21 16:29	03/18/21 13:19	111-91-1	
bis(2-Chloroethyl) ether	ND	ug/kg	389	146	1	03/17/21 16:29	03/18/21 13:19	111-44-4	
2-Chloronaphthalene	ND	ug/kg	389	154	1	03/17/21 16:29	03/18/21 13:19	91-58-7	
2-Chlorophenol	ND	ug/kg	389	146	1	03/17/21 16:29	03/18/21 13:19	95-57-8	
4-Chlorophenylphenyl ether	ND	ug/kg	389	145	1	03/17/21 16:29	03/18/21 13:19	7005-72-3	
Chrysene	ND	ug/kg	389	141	1	03/17/21 16:29	03/18/21 13:19	218-01-9	
Dibenz(a,h)anthracene	ND	ug/kg	389	150	1	03/17/21 16:29	03/18/21 13:19	53-70-3	
Dibenzofuran	ND	ug/kg	389	140	1	03/17/21 16:29	03/18/21 13:19	132-64-9	
3,3'-Dichlorobenzidine	ND	ug/kg	777	263	1	03/17/21 16:29	03/18/21 13:19	91-94-1	IL
2,4-Dichlorophenol	ND	ug/kg	389	152	1	03/17/21 16:29	03/18/21 13:19	120-83-2	
Diethylphthalate	ND	ug/kg	389	143	1	03/17/21 16:29	03/18/21 13:19	84-66-2	
2,4-Dimethylphenol	ND	ug/kg	389	161	1	03/17/21 16:29	03/18/21 13:19	105-67-9	
Dimethylphthalate	ND	ug/kg	389	141	1	03/17/21 16:29	03/18/21 13:19	131-11-3	
Di-n-butylphthalate	ND	ug/kg	389	131	1	03/17/21 16:29	03/18/21 13:19	84-74-2	
4,6-Dinitro-2-methylphenol	ND	ug/kg	777	363	1	03/17/21 16:29	03/18/21 13:19	534-52-1	
2,4-Dinitrophenol	ND	ug/kg	1940	1200	1	03/17/21 16:29	03/18/21 13:19	51-28-5	
2,4-Dinitrotoluene	ND	ug/kg	389	150	1	03/17/21 16:29	03/18/21 13:19	121-14-2	
2,6-Dinitrotoluene	ND	ug/kg	389	143	1	03/17/21 16:29	03/18/21 13:19	606-20-2	
Di-n-octylphthalate	ND	ug/kg	389	153	1	03/17/21 16:29	03/18/21 13:19	117-84-0	
bis(2-Ethylhexyl)phthalate	ND	ug/kg	389	151	1	03/17/21 16:29	03/18/21 13:19	117-81-7	
Fluoranthene	ND	ug/kg	389	133	1	03/17/21 16:29	03/18/21 13:19	206-44-0	
Fluorene	ND	ug/kg	389	137	1	03/17/21 16:29	03/18/21 13:19	86-73-7	
Hexachlorobenzene	ND	ug/kg	389	152	1	03/17/21 16:29	03/18/21 13:19	118-74-1	
Hexachlorocyclopentadiene	ND	ug/kg	389	223	1	03/17/21 16:29	03/18/21 13:19	77-47-4	
Hexachloroethane	ND	ug/kg	389	148	1	03/17/21 16:29	03/18/21 13:19	67-72-1	
Indeno(1,2,3-cd)pyrene	ND	ug/kg	389	153	1	03/17/21 16:29	03/18/21 13:19	193-39-5	
Isophorone	ND	ug/kg	389	173	1	03/17/21 16:29	03/18/21 13:19	78-59-1	
1-Methylnaphthalene	ND	ug/kg	389	137	1	03/17/21 16:29	03/18/21 13:19	90-12-0	
2-Methylnaphthalene	ND	ug/kg	389	155	1	03/17/21 16:29	03/18/21 13:19	91-57-6	



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-16 (0.5-1.0)	Lab ID:	92528011007	Collected	1: 03/15/2 ⁻	1 11:45	Received: 03/	16/21 11:45 Ma	atrix: Solid	
Results reported on a "dry weight	" basis and are	e adjusted for	percent mo	oisture, sar	nple s	ize and any diluti	ons.		
		-	Report		-	-			
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270F MSSV Microwave	Analytical	Method: FPA 8	8270F Prepa	aration Met	hod: F	PA 3546			
	Pace Anal	vtical Services	- Charlotte						
2-Methylphenol(o-Cresol)		ua/ka	380	150	1	03/17/21 16:20	03/18/21 13.10	05-48-7	
384-Methylphenol(m&n Cresol)		ug/kg	380	155	1	03/17/21 10:29	03/18/21 13:19	15831-10- <i>1</i>	
2-Nitroaniline		ug/kg ug/ka	1940	318	1	03/17/21 10:29	03/18/21 13:19	88-74-4	
3-Nitroaniline		ug/kg ug/kg	1940	305	1	03/17/21 16:20	03/18/21 13:19	99-09-2	
4-Nitroaniline	ND	ug/kg ug/kg	777	296	1	03/17/21 16:29	03/18/21 13:19	100-01-6	
Nitrobenzene	ND	ug/kg ug/kg	389	180	1	03/17/21 16:29	03/18/21 13:19	98-95-3	
2-Nitrophenol	ND	ug/kg ug/kg	389	168	1	03/17/21 16:29	03/18/21 13:19	88-75-5	
4-Nitrophenol	ND	ug/kg ug/kg	1940	751	1	03/17/21 16:29	03/18/21 13:19	100-02-7	
N-Nitrosodimethylamine	ND	ug/kg ug/kg	389	131	1	03/17/21 16:29	03/18/21 13:19	62-75-9	
N-Nitroso-di-n-propylamine	ND	ug/kg ug/kg	389	146	1	03/17/21 16:29	03/18/21 13:19	621-64-7	
N-Nitrosodiphenvlamine	ND	ua/ka	389	138	1	03/17/21 16:29	03/18/21 13:19	86-30-6	
2.2'-Oxybis(1-chloropropane)	ND	ua/ka	389	185	1	03/17/21 16:29	03/18/21 13:19	108-60-1	
Pentachlorophenol	ND	ua/ka	777	380	1	03/17/21 16:29	03/18/21 13:19	87-86-5	
Phenanthrene	ND	ua/ka	389	127	1	03/17/21 16:29	03/18/21 13:19	85-01-8	
Phenol	ND	ua/ka	389	173	1	03/17/21 16:29	03/18/21 13:19	108-95-2	
Pyrene	ND	ua/ka	389	158	1	03/17/21 16:29	03/18/21 13:19	129-00-0	
Pvridine	ND	ua/ka	389	122	1	03/17/21 16:29	03/18/21 13:19	110-86-1	
2.4.5-Trichlorophenol	ND	ug/kg	389	178	1	03/17/21 16:29	03/18/21 13:19	95-95-4	
2,4,6-Trichlorophenol	ND	ug/kg	389	160	1	03/17/21 16:29	03/18/21 13:19	88-06-2	
Surrogates	<u> </u>	0/	04 400		4	00/47/04 40:00	02/40/04 40:40	1105 00 0	
Nitrobenzene-d5 (S)	69	%	21-130		1	03/17/21 16:29	03/18/21 13:19	4165-60-0	
Z-Fluorobiphenyi (S)	68	%	19-130		1	03/17/21 16:29	03/18/21 13:19	321-60-8	
Phanal dC (C)	98	%	15-130		1	03/17/21 16:29	03/18/21 13:19	1718-51-0	
Phenol-db (S)	70	% 0/	18-130		1	03/17/21 16:29	03/18/21 13:19	13127-88-3	
2-Fluorophenol (S)	00 91	70 0/	10-130		1	03/17/21 10:29	03/16/21 13:19	307-12-4	
2,4,0-11010110011001(3)	01	/0	10-130		I	03/17/21 10.29	03/10/21 13.19	110-79-0	
8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA 8	8260D Prepa	aration Met	hod: E	PA 5035A/5030B			
	Pace Anal	ytical Services	s - Charlotte						
Acetone	ND	ug/kg	124	39.8	1	03/18/21 12:56	03/19/21 00:27	67-64-1	
Benzene	ND	ug/kg	6.2	2.5	1	03/18/21 12:56	03/19/21 00:27	71-43-2	
Bromobenzene	ND	ug/kg	6.2	2.0	1	03/18/21 12:56	03/19/21 00:27	108-86-1	
Bromochloromethane	ND	ug/kg	6.2	1.8	1	03/18/21 12:56	03/19/21 00:27	74-97-5	
Bromodichloromethane	ND	ug/kg	6.2	2.4	1	03/18/21 12:56	03/19/21 00:27	75-27-4	
Bromoform	ND	ug/kg	6.2	2.2	1	03/18/21 12:56	03/19/21 00:27	75-25-2	
Bromomethane	ND	ug/kg	12.4	9.8	1	03/18/21 12:56	03/19/21 00:27	74-83-9	IH,IK, L1 v1
2-Butanone (MEK)	ND	ug/kg	124	29.7	1	03/18/21 12:56	03/19/21 00:27	78-93-3	L 1, V 1
n-Butylbenzene	ND	ug/kg	6.2	2.9	1	03/18/21 12:56	03/19/21 00:27	104-51-8	
sec-Butylbenzene	ND	ug/kg	6.2	2.7	1	03/18/21 12:56	03/19/21 00:27	135-98-8	
tert-Butylbenzene	ND	ug/kg	6.2	2.2	1	03/18/21 12:56	03/19/21 00:27	98-06-6	v2
Carbon tetrachloride	ND	ug/kg	6.2	2.3	1	03/18/21 12:56	03/19/21 00:27	56-23-5	
Chlorobenzene	ND	ug/kg	6.2	1.2	1	03/18/21 12:56	03/19/21 00:27	108-90-7	
Chloroethane	ND	ug/kg	12.4	4.8	1	03/18/21 12:56	03/19/21 00:27	75-00-3	



#### Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-16 (0.5-1.0)	Lab ID:	9252801100	7 Collected	I: 03/15/21	1 11:45	Received: 03/	16/21 11:45 Ma	atrix: Solid	
Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.									
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA	8260D Prepa	aration Met	thod: E	PA 5035A/5030B			
	Pace Anal	ytical Service	es - Charlotte						
Chloroform	ND	ua/ka	6.2	3.8	1	03/18/21 12 56	03/19/21 00.27	67-66-3	
Chloromethane	ND	ug/kg	12 4	5.2	1	03/18/21 12:56	03/19/21 00:27	74-87-3	
2-Chlorotoluene	ND	ug/kg	6.2	22	1	03/18/21 12:56	03/19/21 00:27	95-49-8	
4-Chlorotoluene	ND	ug/kg	6.2	1 1	1	03/18/21 12:56	03/19/21 00:27	106-43-4	
1 2-Dibromo-3-chloropropane	ND	ug/kg	6.2	24	1	03/18/21 12:56	03/19/21 00:27	96-12-8	
Dibromochloromethane	ND	ua/ka	6.2	3.5	1	03/18/21 12:56	03/19/21 00:27	124-48-1	
1.2-Dibromoethane (EDB)	ND	ua/ka	6.2	2.7	1	03/18/21 12:56	03/19/21 00:27	106-93-4	
Dibromomethane	ND	ua/ka	6.2	1.3	1	03/18/21 12:56	03/19/21 00:27	74-95-3	
1.2-Dichlorobenzene	ND	ua/ka	6.2	2.2	1	03/18/21 12:56	03/19/21 00:27	95-50-1	
1.3-Dichlorobenzene	ND	ua/ka	6.2	19	1	03/18/21 12:56	03/19/21 00:27	541-73-1	
1.4-Dichlorobenzene	ND	ua/ka	6.2	1.6	1	03/18/21 12:56	03/19/21 00:27	106-46-7	
Dichlorodifluoromethane	ND	ua/ka	12.4	2.7	1	03/18/21 12:56	03/19/21 00:27	75-71-8	
1.1-Dichloroethane	ND	ua/ka	6.2	2.6	1	03/18/21 12:56	03/19/21 00:27	75-34-3	
1.2-Dichloroethane	ND	ua/ka	6.2	4.1	1	03/18/21 12:56	03/19/21 00:27	107-06-2	
1.1-Dichloroethene	ND	ua/ka	6.2	2.6	1	03/18/21 12:56	03/19/21 00:27	75-35-4	
cis-1.2-Dichloroethene	ND	ua/ka	6.2	2.1	1	03/18/21 12:56	03/19/21 00:27	156-59-2	
trans-1.2-Dichloroethene	ND	ua/ka	6.2	2.2	1	03/18/21 12:56	03/19/21 00:27	156-60-5	
1.2-Dichloropropane	ND	ua/ka	6.2	1.9	1	03/18/21 12:56	03/19/21 00:27	78-87-5	
1.3-Dichloropropane	ND	ua/ka	6.2	1.9	1	03/18/21 12:56	03/19/21 00:27	142-28-9	
2.2-Dichloropropane	ND	ua/ka	6.2	2.0	1	03/18/21 12:56	03/19/21 00:27	594-20-7	
1.1-Dichloropropene	ND	ua/ka	6.2	3.0	1	03/18/21 12:56	03/19/21 00:27	563-58-6	
cis-1.3-Dichloropropene	ND	ua/ka	6.2	1.7	1	03/18/21 12:56	03/19/21 00:27	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/kg	6.2	2.1	1	03/18/21 12:56	03/19/21 00:27	10061-02-6	
Diisopropyl ether	ND	ua/ka	6.2	1.7	1	03/18/21 12:56	03/19/21 00:27	108-20-3	
Ethylbenzene	ND	ua/ka	6.2	2.9	1	03/18/21 12:56	03/19/21 00:27	100-41-4	
Hexachloro-1,3-butadiene	ND	ug/kg	12.4	10.1	1	03/18/21 12:56	03/19/21 00:27	87-68-3	IK
2-Hexanone	ND	ug/kg	61.9	6.0	1	03/18/21 12:56	03/19/21 00:27	591-78-6	
Isopropylbenzene (Cumene)	ND	ug/kg	6.2	2.1	1	03/18/21 12:56	03/19/21 00:27	98-82-8	
p-Isopropyltoluene	ND	ug/kg	6.2	3.0	1	03/18/21 12:56	03/19/21 00:27	99-87-6	
Methylene Chloride	ND	ug/kg	24.8	17.0	1	03/18/21 12:56	03/19/21 00:27	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	61.9	6.0	1	03/18/21 12:56	03/19/21 00:27	108-10-1	
Methyl-tert-butyl ether	ND	ug/kg	6.2	2.3	1	03/18/21 12:56	03/19/21 00:27	1634-04-4	
Naphthalene	7.8	ug/kg	6.2	3.3	1	03/18/21 12:56	03/19/21 00:27	91-20-3	
n-Propylbenzene	ND	ug/kg	6.2	2.2	1	03/18/21 12:56	03/19/21 00:27	103-65-1	
Styrene	ND	ug/kg	6.2	1.6	1	03/18/21 12:56	03/19/21 00:27	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/kg	6.2	2.4	1	03/18/21 12:56	03/19/21 00:27	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/kg	6.2	1.6	1	03/18/21 12:56	03/19/21 00:27	79-34-5	
Tetrachloroethene	ND	ug/kg	6.2	2.0	1	03/18/21 12:56	03/19/21 00:27	127-18-4	
Toluene	9.7	ug/kg	6.2	1.8	1	03/18/21 12:56	03/19/21 00:27	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/kg	6.2	5.0	1	03/18/21 12:56	03/19/21 00:27	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/kg	6.2	5.2	1	03/18/21 12:56	03/19/21 00:27	120-82-1	
1,1,1-Trichloroethane	ND	ug/kg	6.2	3.2	1	03/18/21 12:56	03/19/21 00:27	71-55-6	
1,1,2-Trichloroethane	ND	ug/kg	6.2	2.1	1	03/18/21 12:56	03/19/21 00:27	79-00-5	
Trichloroethene	ND	ug/kg	6.2	1.6	1	03/18/21 12:56	03/19/21 00:27	79-01-6	



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-16 (0.5-1.0)	Lab ID:	9252801100	7 Collected	1: 03/15/21	11:45	Received: 03/	16/21 11:45 Ma	atrix: Solid	
Results reported on a "dry weight"	basis and are	e adjusted fo	or percent mo	isture, san	nple s	ize and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA	8260D Prepa	aration Met	hod: E	PA 5035A/5030B			
	Pace Anal	ytical Service	es - Charlotte						
Trichlorofluoromethane	ND	ug/kg	6.2	3.4	1	03/18/21 12:56	03/19/21 00:27	75-69-4	
1,2,3-Trichloropropane	ND	ug/kg	6.2	3.1	1	03/18/21 12:56	03/19/21 00:27	96-18-4	
1,2,4-Trimethylbenzene	3.4J	ug/kg	6.2	1.7	1	03/18/21 12:56	03/19/21 00:27	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/kg	6.2	2.1	1	03/18/21 12:56	03/19/21 00:27	108-67-8	
Vinyl acetate	ND	ug/kg	61.9	4.5	1	03/18/21 12:56	03/19/21 00:27	108-05-4	
Vinyl chloride	ND	ug/kg	12.4	3.1	1	03/18/21 12:56	03/19/21 00:27	75-01-4	
Xylene (Total)	10.5J	ug/kg	12.4	3.5	1	03/18/21 12:56	03/19/21 00:27	1330-20-7	
m&p-Xylene	10.5J	ug/kg	12.4	4.2	1	03/18/21 12:56	03/19/21 00:27	179601-23-1	
o-Xylene	ND	ug/kg	6.2	2.7	1	03/18/21 12:56	03/19/21 00:27	95-47-6	
Surrogates									
Toluene-d8 (S)	102	%	70-130		1	03/18/21 12:56	03/19/21 00:27	2037-26-5	
4-Bromofluorobenzene (S)	91	%	69-134		1	03/18/21 12:56	03/19/21 00:27	460-00-4	
1,2-Dichloroethane-d4 (S)	108	%	70-130		1	03/18/21 12:56	03/19/21 00:27	17060-07-0	
Percent Moisture	Analytical	Method: SW	-846						
	Pace Anal	ytical Service	es - Charlotte						
Percent Moisture	14.2	%	0.10	0.10	1		03/17/21 14:12		N2



#### Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-16 (5.5-6.0)	Lab ID:	9252801100	8 Collecte	d: 03/15/2	1 11:50	Received: 03/	16/21 11:45 Ma	atrix: Solid	
Results reported on a "dry weig	ght" basis and are	e adjusted fo	or percent mo	oisture, sar	mple s	ize and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270E MSSV Microwave	Analytical	Method: EPA	8270E Prep	aration Met	thod: E	PA 3546			
	Pace Anal	ytical Service	es - Charlotte						
Acenaphthene	7710	ug/kg	516	181	1	03/17/21 16:29	03/18/21 13:49	83-32-9	Е
Acenaphthylene	ND	ug/kg	516	181	1	03/17/21 16:29	03/18/21 13:49	208-96-8	
Aniline	ND	ug/kg	516	202	1	03/17/21 16:29	03/18/21 13:49	62-53-3	
Anthracene	17300	ug/kg	10300	3380	20	03/17/21 16:29	03/18/21 22:41	120-12-7	
Benzo(a)anthracene	23800	ug/kg	10300	3440	20	03/17/21 16:29	03/18/21 22:41	56-55-3	
Benzo(a)pyrene	15900	ug/kg	10300	3570	20	03/17/21 16:29	03/18/21 22:41	50-32-8	
Benzo(b)fluoranthene	21300	ug/kg	10300	3440	20	03/17/21 16:29	03/18/21 22:41	205-99-2	
Benzo(g,h,i)perylene	9630	ug/kg	516	200	1	03/17/21 16:29	03/18/21 13:49	191-24-2	
Benzo(k)fluoranthene	8160	ug/kg	516	181	1	03/17/21 16:29	03/18/21 13:49	207-08-9	
Benzoic Acid	ND	ug/kg	2580	1110	1	03/17/21 16:29	03/18/21 13:49	65-85-0	
Benzyl alcohol	ND	ug/kg	1030	391	1	03/17/21 16:29	03/18/21 13:49	100-51-6	
4-Bromophenylphenyl ether	ND	ug/kg	516	199	1	03/17/21 16:29	03/18/21 13:49	101-55-3	
Butylbenzylphthalate	ND	ug/kg	516	217	1	03/17/21 16:29	03/18/21 13:49	85-68-7	
4-Chloro-3-methylphenol	ND	ug/kg	1030	363	1	03/17/21 16:29	03/18/21 13:49	59-50-7	
4-Chloroaniline	ND	ug/kg	1030	405	1	03/17/21 16:29	03/18/21 13:49	106-47-8	
bis(2-Chloroethoxy)methane	ND	ug/kg	516	214	1	03/17/21 16:29	03/18/21 13:49	111-91-1	
bis(2-Chloroethyl) ether	ND	ug/kg	516	194	1	03/17/21 16:29	03/18/21 13:49	111-44-4	
2-Chloronaphthalene	ND	ug/kg	516	205	1	03/17/21 16:29	03/18/21 13:49	91-58-7	
2-Chlorophenol	ND	ua/ka	516	194	1	03/17/21 16:29	03/18/21 13:49	95-57-8	
4-Chlorophenvlphenvl ether	ND	ua/ka	516	192	1	03/17/21 16:29	03/18/21 13:49	7005-72-3	
Chrvsene	23000	ua/ka	10300	3760	20	03/17/21 16:29	03/18/21 22:41	218-01-9	
Dibenz(a.h)anthracene	2920	ua/ka	516	199	1	03/17/21 16:29	03/18/21 13:49	53-70-3	
Dibenzofuran	4160	ua/ka	516	186	1	03/17/21 16:29	03/18/21 13:49	132-64-9	
3.3'-Dichlorobenzidine	ND	ua/ka	1030	349	1	03/17/21 16:29	03/18/21 13:49	91-94-1	IL
2.4-Dichlorophenol	ND	ua/ka	516	202	1	03/17/21 16:29	03/18/21 13:49	120-83-2	
Diethylphthalate	ND	ua/ka	516	189	1	03/17/21 16:29	03/18/21 13:49	84-66-2	
2.4-Dimethylphenol	ND	ua/ka	516	214	1	03/17/21 16:29	03/18/21 13:49	105-67-9	
Dimethylphthalate	ND	ua/ka	516	188	1	03/17/21 16:29	03/18/21 13:49	131-11-3	
Di-n-butylphthalate	ND	ua/ka	516	174	1	03/17/21 16:29	03/18/21 13:49	84-74-2	
4.6-Dinitro-2-methylphenol	ND	ua/ka	1030	482	1	03/17/21 16:29	03/18/21 13:49	534-52-1	
2.4-Dinitrophenol	ND	ua/ka	2580	1600	1	03/17/21 16:29	03/18/21 13:49	51-28-5	
2.4-Dinitrotoluene	ND	ua/ka	516	199	1	03/17/21 16:29	03/18/21 13:49	121-14-2	
2.6-Dinitrotoluene	ND	ug/kg	516	189	1	03/17/21 16:29	03/18/21 13:49	606-20-2	
Di-n-octylphthalate	ND	ug/kg	516	203	1	03/17/21 16:29	03/18/21 13:49	117-84-0	
bis(2-Ethylhexyl)phthalate	ND	ug/kg	516	200	1	03/17/21 16:29	03/18/21 13:49	117-81-7	
Fluoranthene	58500	ug/kg	10300	3540	20	03/17/21 16:29	03/18/21 22:41	206-44-0	
Fluorene	10200	ug/kg	516	181	1	03/17/21 16:29	03/18/21 13:49	86-73-7	F
Hexachlorobenzene		ug/kg	516	202	1	03/17/21 16:29	03/18/21 13:49	118-74-1	-
Hexachlorocyclopentadiene	ND	ua/ka	516	296	1	03/17/21 16:29	03/18/21 13:40	77-47-4	
Hexachloroethane		ug/kg	516	197	1	03/17/21 16:20	03/18/21 13:40	67-72-1	
Indeno(1,2,3-cd)pyrene	9200	ug/ka	516	203	1	03/17/21 16:29	03/18/21 13:49	193-39-5	
Isophorone		ug/kg	516	230	1	03/17/21 16:20	03/18/21 13:40	78-59-1	
1-Methylnaphthalene	1490	ug/kg	516	181	1	03/17/21 16:20	03/18/21 13:40	90-12-0	
2-Methylnaphthalene	605	ug/kg	516	207	1	03/17/21 16:20	03/18/21 13:40	91-57-6	
	033	uying	510	201	1	55/17/21 10.29	55/10/21 15.49	01-01-0	



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-16 (5.5-6.0)	Lab ID:	92528011008	B Collected	d: 03/15/2 ⁻	1 11:50	Received: 03/	16/21 11:45 Ma	atrix: Solid	
Results reported on a "dry weight	" basis and are	e adjusted for	r percent mo	oisture, sar	mple s	ize and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270E MSSV Microwave	Analytical	Method: EPA	8270E Prepa	aration Met	thod: E	PA 3546			
	Pace Anal	ytical Services	s - Charlotte						
2-Methylphenol(o-Cresol)	ND	ua/ka	516	211	1	03/17/21 16:29	03/18/21 13:49	95-48-7	
3&4-Methylphenol(m&p Cresol)	ND	ug/kg	516	208	1	03/17/21 16:29	03/18/21 13:49	15831-10-4	
2-Nitroaniline	ND	ug/kg	2580	422	1	03/17/21 16:29	03/18/21 13:49	88-74-4	
3-Nitroaniline	ND	ua/ka	2580	405	1	03/17/21 16:29	03/18/21 13:49	99-09-2	
4-Nitroaniline	ND	ua/ka	1030	393	1	03/17/21 16:29	03/18/21 13:49	100-01-6	
Nitrobenzene	ND	ua/ka	516	239	1	03/17/21 16:29	03/18/21 13:49	98-95-3	
2-Nitrophenol	ND	ua/ka	516	224	1	03/17/21 16:29	03/18/21 13:49	88-75-5	
4-Nitrophenol	ND	ua/ka	2580	998	1	03/17/21 16:29	03/18/21 13:49	100-02-7	
N-Nitrosodimethylamine	ND	ua/ka	516	174	1	03/17/21 16:29	03/18/21 13:49	62-75-9	
N-Nitroso-di-n-propylamine	ND	ua/ka	516	194	1	03/17/21 16:29	03/18/21 13:49	621-64-7	
N-Nitrosodiphenvlamine	ND	ua/ka	516	183	1	03/17/21 16:29	03/18/21 13:49	86-30-6	
2.2'-Oxvbis(1-chloropropane)	ND	ua/ka	516	246	1	03/17/21 16:29	03/18/21 13:49	108-60-1	
Pentachlorophenol	ND	ua/ka	1030	505	1	03/17/21 16:29	03/18/21 13:49	87-86-5	
Phenanthrene	55400	ua/ka	10300	3380	20	03/17/21 16:29	03/18/21 22:41	85-01-8	
Phenol	ND	ua/ka	516	230	1	03/17/21 16:29	03/18/21 13:49	108-95-2	
Pyrene	48100	ug/kg	10300	4190	20	03/17/21 16:29	03/18/21 22:41	129-00-0	
Pvridine	ND	ua/ka	516	163	1	03/17/21 16:29	03/18/21 13:49	110-86-1	
2.4.5-Trichlorophenol	ND	ug/kg	516	236	1	03/17/21 16:29	03/18/21 13:49	95-95-4	
2,4,6-Trichlorophenol	ND	ug/kg	516	213	1	03/17/21 16:29	03/18/21 13:49	88-06-2	
Nitrobanzana dE (S)	10	0/	21 120		1	02/17/21 16:20	02/19/21 12:40	4165 60 0	
2 Elucrobioboovd (S)	42	70 0/	21-130		1	03/17/21 10.29	03/10/21 13:49	4100-00-0	
Z-Fluorobiphenyi (3)	50	70 0/	19-130		1	03/17/21 10.29	03/10/21 13:49	321-00-0	
Phonol df (S)	33	70 0/	10-130		1	03/17/21 10.29	03/10/21 13:49	1710-01-0	
2 Elucrophonol (S)	42	70 0/	18 130		1	03/17/21 10.29	03/10/21 13:49	13127-00-3	
2.4.6-Tribromophenol (S)	55	%	18-130		1	03/17/21 16:29	03/18/21 13:49	118-79-6	
_, .,o							00, 10, 21 10110		
8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA	8260D Prepa	aration Met	thod: E	PA 5035A/5030B			
	Pace Anal	ytical Services	s - Charlotte						
Acetone	83.5J	ug/kg	215	68.9	1	03/17/21 16:07	03/17/21 23:11	67-64-1	
Benzene	ND	ug/kg	10.7	4.3	1	03/17/21 16:07	03/17/21 23:11	71-43-2	
Bromobenzene	ND	ug/kg	10.7	3.5	1	03/17/21 16:07	03/17/21 23:11	108-86-1	
Bromochloromethane	ND	ug/kg	10.7	3.2	1	03/17/21 16:07	03/17/21 23:11	74-97-5	
Bromodichloromethane	ND	ug/kg	10.7	4.1	1	03/17/21 16:07	03/17/21 23:11	75-27-4	
Bromoform	ND	ug/kg	10.7	3.8	1	03/17/21 16:07	03/17/21 23:11	75-25-2	
Bromomethane	ND	ug/kg	21.5	17.0	1	03/17/21 16:07	03/17/21 23:11	74-83-9	IH,IK, I 1 v1
2-Butanone (MEK)	74.6J	ug/kg	215	51.5	1	03/17/21 16:07	03/17/21 23:11	78-93-3	∟ı, <b>v</b> ı
n-Butylbenzene	ND	ug/kg	10.7	5.1	1	03/17/21 16:07	03/17/21 23:11	104-51-8	
sec-Butylbenzene	ND	ug/kg	10.7	4.7	1	03/17/21 16:07	03/17/21 23:11	135-98-8	
tert-Butylbenzene	ND	ug/kg	10.7	3.8	1	03/17/21 16:07	03/17/21 23:11	98-06-6	v2
Carbon tetrachloride	ND	ug/kg	10.7	4.0	1	03/17/21 16:07	03/17/21 23:11	56-23-5	
Chlorobenzene	40.2	ug/kg	10.7	2.1	1	03/17/21 16:07	03/17/21 23:11	108-90-7	
Chloroethane	ND	ug/kg	21.5	8.3	1	03/17/21 16:07	03/17/21 23:11	75-00-3	



#### Project: BRAMLETTE J21030497

----

Pace Project No.: 92528011

-

		-							
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A/5030B SC Volatiles	Analytical	Method: EP/	A 8260D Prep	aration Met	thod: E	PA 5035A/5030B			
	Pace Anal	lytical Service	es - Charlotte						
Chloroform	ND	ua/ka	10.7	6.5	1	03/17/21 16:07	03/17/21 23:11	67-66-3	
Chloromethane	ND	ua/ka	21.5	9.0	1	03/17/21 16:07	03/17/21 23:11	74-87-3	
2-Chlorotoluene	ND	ua/ka	10.7	3.8	1	03/17/21 16:07	03/17/21 23:11	95-49-8	
4-Chlorotoluene	ND	ug/kg	10.7	1.9	1	03/17/21 16:07	03/17/21 23:11	106-43-4	
1,2-Dibromo-3-chloropropane	ND	ug/kg	10.7	4.2	1	03/17/21 16:07	03/17/21 23:11	96-12-8	
Dibromochloromethane	ND	ug/kg	10.7	6.0	1	03/17/21 16:07	03/17/21 23:11	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/kg	10.7	4.7	1	03/17/21 16:07	03/17/21 23:11	106-93-4	
Dibromomethane	ND	ug/kg	10.7	2.3	1	03/17/21 16:07	03/17/21 23:11	74-95-3	
1,2-Dichlorobenzene	ND	ug/kg	10.7	3.9	1	03/17/21 16:07	03/17/21 23:11	95-50-1	
1,3-Dichlorobenzene	ND	ug/kg	10.7	3.3	1	03/17/21 16:07	03/17/21 23:11	541-73-1	
1,4-Dichlorobenzene	12.2	ug/kg	10.7	2.8	1	03/17/21 16:07	03/17/21 23:11	106-46-7	
Dichlorodifluoromethane	ND	ug/kg	21.5	4.7	1	03/17/21 16:07	03/17/21 23:11	75-71-8	
1,1-Dichloroethane	ND	ug/kg	10.7	4.4	1	03/17/21 16:07	03/17/21 23:11	75-34-3	
1,2-Dichloroethane	ND	ug/kg	10.7	7.1	1	03/17/21 16:07	03/17/21 23:11	107-06-2	
1,1-Dichloroethene	ND	ug/kg	10.7	4.4	1	03/17/21 16:07	03/17/21 23:11	75-35-4	
cis-1,2-Dichloroethene	ND	ug/kg	10.7	3.7	1	03/17/21 16:07	03/17/21 23:11	156-59-2	
trans-1,2-Dichloroethene	ND	ug/kg	10.7	3.8	1	03/17/21 16:07	03/17/21 23:11	156-60-5	
1,2-Dichloropropane	ND	ug/kg	10.7	3.2	1	03/17/21 16:07	03/17/21 23:11	78-87-5	
1,3-Dichloropropane	ND	ug/kg	10.7	3.3	1	03/17/21 16:07	03/17/21 23:11	142-28-9	
2,2-Dichloropropane	ND	ug/kg	10.7	3.5	1	03/17/21 16:07	03/17/21 23:11	594-20-7	
1,1-Dichloropropene	ND	ug/kg	10.7	5.2	1	03/17/21 16:07	03/17/21 23:11	563-58-6	
cis-1,3-Dichloropropene	ND	ug/kg	10.7	2.9	1	03/17/21 16:07	03/17/21 23:11	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/kg	10.7	3.7	1	03/17/21 16:07	03/17/21 23:11	10061-02-6	
Diisopropyl ether	ND	ug/kg	10.7	2.9	1	03/17/21 16:07	03/17/21 23:11	108-20-3	
Ethylbenzene	10.8	ug/kg	10.7	5.0	1	03/17/21 16:07	03/17/21 23:11	100-41-4	
Hexachloro-1,3-butadiene	ND	ug/kg	21.5	17.6	1	03/17/21 16:07	03/17/21 23:11	87-68-3	IK
2-Hexanone	ND	ug/kg	107	10.4	1	03/17/21 16:07	03/17/21 23:11	591-78-6	
Isopropylbenzene (Cumene)	173	ug/kg	10.7	3.7	1	03/17/21 16:07	03/17/21 23:11	98-82-8	
p-Isopropyltoluene	56.9	ug/kg	10.7	5.3	1	03/17/21 16:07	03/17/21 23:11	99-87-6	
Methylene Chloride	ND	ug/kg	42.9	29.4	1	03/17/21 16:07	03/17/21 23:11	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	107	10.4	1	03/17/21 16:07	03/17/21 23:11	108-10-1	
Methyl-tert-butyl ether	ND	ug/kg	10.7	4.0	1	03/17/21 16:07	03/17/21 23:11	1634-04-4	
Naphthalene	1410	ug/kg	10.7	5.6	1	03/17/21 16:07	03/17/21 23:11	91-20-3	
n-Propylbenzene	ND	ug/kg	10.7	3.8	1	03/17/21 16:07	03/17/21 23:11	103-65-1	
Styrene	5.8J	ug/kg	10.7	2.8	1	03/17/21 16:07	03/17/21 23:11	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/kg	10.7	4.1	1	03/17/21 16:07	03/17/21 23:11	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/kg	10.7	2.8	1	03/17/21 16:07	03/17/21 23:11	79-34-5	
Tetrachloroethene	ND	ug/kg	10.7	3.4	1	03/17/21 16:07	03/17/21 23:11	127-18-4	
Toluene	17.2	ug/kg	10.7	3.0	1	03/17/21 16:07	03/17/21 23:11	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/kg	10.7	8.7	1	03/17/21 16:07	03/17/21 23:11	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/kg	10.7	9.0	1	03/17/21 16:07	03/17/21 23:11	120-82-1	
1,1,1-Trichloroethane	ND	ug/kg	10.7	5.6	1	03/17/21 16:07	03/17/21 23:11	71-55-6	
1,1,2-Trichloroethane	ND	ug/kg	10.7	3.6	1	03/17/21 16:07	03/17/21 23:11	79-00-5	
Trichloroethene	ND	ug/kg	10.7	2.8	1	03/17/21 16:07	03/17/21 23:11	79-01-6	


Project: BRAMLETTE J21030497

----

Pace Project No.: 92528011

Sample: RI-SB-16 (5.5-6.0)	Lab ID:	9252801100	8 Collected	d: 03/15/21	11:50	Received: 03/	16/21 11:45 Ma	atrix: Solid	
Results reported on a "dry weight"	basis and are	e adjusted fo	or percent mo	isture, san	nple s	ize and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA	A 8260D Prepa	aration Met	hod: E	PA 5035A/5030B			
	Pace Anal	ytical Service	es - Charlotte						
Trichlorofluoromethane	ND	ug/kg	10.7	5.9	1	03/17/21 16:07	03/17/21 23:11	75-69-4	
1,2,3-Trichloropropane	ND	ug/kg	10.7	5.4	1	03/17/21 16:07	03/17/21 23:11	96-18-4	
1,2,4-Trimethylbenzene	107	ug/kg	10.7	2.9	1	03/17/21 16:07	03/17/21 23:11	95-63-6	
1,3,5-Trimethylbenzene	43.0	ug/kg	10.7	3.6	1	03/17/21 16:07	03/17/21 23:11	108-67-8	
Vinyl acetate	ND	ug/kg	107	7.8	1	03/17/21 16:07	03/17/21 23:11	108-05-4	
Vinyl chloride	ND	ug/kg	21.5	5.5	1	03/17/21 16:07	03/17/21 23:11	75-01-4	
Xylene (Total)	131	ug/kg	21.5	6.1	1	03/17/21 16:07	03/17/21 23:11	1330-20-7	
m&p-Xylene	69.5	ug/kg	21.5	7.3	1	03/17/21 16:07	03/17/21 23:11	179601-23-1	
o-Xylene	61.1	ug/kg	10.7	4.7	1	03/17/21 16:07	03/17/21 23:11	95-47-6	
Surrogates									
Toluene-d8 (S)	99	%	70-130		1	03/17/21 16:07	03/17/21 23:11	2037-26-5	
4-Bromofluorobenzene (S)	95	%	69-134		1	03/17/21 16:07	03/17/21 23:11	460-00-4	
1,2-Dichloroethane-d4 (S)	108	%	70-130		1	03/17/21 16:07	03/17/21 23:11	17060-07-0	
Percent Moisture	Analytical	Method: SW	-846						
	Pace Anal	ytical Service	es - Charlotte						
Percent Moisture	35.9	%	0.10	0.10	1		03/17/21 14:12		N2



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-17 (0.5-1.0)	Lab ID:	9252801100	9 Collected	I: 03/15/21	1 13:30	Received: 03/	16/21 11:45 Ma	atrix: Solid		
Results reported on a "dry weig	ght" basis and are	e adjusted fo	or percent mo	isture, sar	nple s	ize and any diluti	ons.			
Report										
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
8270E MSSV Microwave	Analytical	Method: EPA	A 8270E Prepa	aration Met	hod: E	PA 3546				
	Pace Anal	ytical Service	es - Charlotte							
Acenaphthene	ND	ua/ka	414	146	1	03/17/21 16:29	03/18/21 14:20	83-32-9		
Acenaphthylene	ND	ua/ka	414	146	1	03/17/21 16:29	03/18/21 14:20	208-96-8		
Aniline	ND	ua/ka	414	162	1	03/17/21 16:29	03/18/21 14:20	62-53-3		
Anthracene	ND	ua/ka	414	136	1	03/17/21 16:29	03/18/21 14:20	120-12-7		
Benzo(a)anthracene	ND	ug/kg	414	138	1	03/17/21 16:29	03/18/21 14:20	56-55-3		
Benzo(a)pyrene	ND	ug/kg	414	143	1	03/17/21 16:29	03/18/21 14:20	50-32-8		
Benzo(b)fluoranthene	ND	ug/kg	414	138	1	03/17/21 16:29	03/18/21 14:20	205-99-2		
Benzo(g,h,i)perylene	ND	ug/kg	414	161	1	03/17/21 16:29	03/18/21 14:20	191-24-2		
Benzo(k)fluoranthene	ND	ug/kg	414	146	1	03/17/21 16:29	03/18/21 14:20	207-08-9		
Benzoic Acid	ND	ug/kg	2070	890	1	03/17/21 16:29	03/18/21 14:20	65-85-0		
Benzyl alcohol	ND	ug/kg	828	314	1	03/17/21 16:29	03/18/21 14:20	100-51-6		
4-Bromophenylphenyl ether	ND	ug/kg	414	159	1	03/17/21 16:29	03/18/21 14:20	101-55-3		
Butylbenzylphthalate	ND	ug/kg	414	174	1	03/17/21 16:29	03/18/21 14:20	85-68-7		
4-Chloro-3-methylphenol	ND	ug/kg	828	291	1	03/17/21 16:29	03/18/21 14:20	59-50-7		
4-Chloroaniline	ND	ug/kg	828	325	1	03/17/21 16:29	03/18/21 14:20	106-47-8		
bis(2-Chloroethoxy)methane	ND	ug/kg	414	172	1	03/17/21 16:29	03/18/21 14:20	111-91-1		
bis(2-Chloroethyl) ether	ND	ug/kg	414	156	1	03/17/21 16:29	03/18/21 14:20	111-44-4		
2-Chloronaphthalene	ND	ug/kg	414	164	1	03/17/21 16:29	03/18/21 14:20	91-58-7		
2-Chlorophenol	ND	ug/kg	414	156	1	03/17/21 16:29	03/18/21 14:20	95-57-8		
4-Chlorophenylphenyl ether	ND	ug/kg	414	154	1	03/17/21 16:29	03/18/21 14:20	7005-72-3		
Chrysene	ND	ug/kg	414	151	1	03/17/21 16:29	03/18/21 14:20	218-01-9		
Dibenz(a,h)anthracene	ND	ug/kg	414	159	1	03/17/21 16:29	03/18/21 14:20	53-70-3		
Dibenzofuran	ND	ug/kg	414	149	1	03/17/21 16:29	03/18/21 14:20	132-64-9		
3,3'-Dichlorobenzidine	ND	ug/kg	828	280	1	03/17/21 16:29	03/18/21 14:20	91-94-1	IL	
2,4-Dichlorophenol	ND	ug/kg	414	162	1	03/17/21 16:29	03/18/21 14:20	120-83-2		
Diethylphthalate	ND	ug/kg	414	152	1	03/17/21 16:29	03/18/21 14:20	84-66-2		
2,4-Dimethylphenol	ND	ug/kg	414	172	1	03/17/21 16:29	03/18/21 14:20	105-67-9		
Dimethylphthalate	ND	ug/kg	414	151	1	03/17/21 16:29	03/18/21 14:20	131-11-3		
Di-n-butylphthalate	ND	ug/kg	414	139	1	03/17/21 16:29	03/18/21 14:20	84-74-2		
4,6-Dinitro-2-methylphenol	ND	ug/kg	828	387	1	03/17/21 16:29	03/18/21 14:20	534-52-1		
2,4-Dinitrophenol	ND	ug/kg	2070	1280	1	03/17/21 16:29	03/18/21 14:20	51-28-5		
2,4-Dinitrotoluene	ND	ug/kg	414	159	1	03/17/21 16:29	03/18/21 14:20	121-14-2		
2,6-Dinitrotoluene	ND	ug/kg	414	152	1	03/17/21 16:29	03/18/21 14:20	606-20-2		
Di-n-octylphthalate	ND	ug/kg	414	163	1	03/17/21 16:29	03/18/21 14:20	117-84-0		
bis(2-Ethylhexyl)phthalate	ND	ug/kg	414	161	1	03/17/21 16:29	03/18/21 14:20	117-81-7		
Fluoranthene	ND	ug/kg	414	142	1	03/17/21 16:29	03/18/21 14:20	206-44-0		
Fluorene	ND	ug/kg	414	146	1	03/17/21 16:29	03/18/21 14:20	86-73-7		
Hexachlorobenzene	ND	ug/kg	414	162	1	03/17/21 16:29	03/18/21 14:20	118-74-1		
Hexachlorocyclopentadiene	ND	ug/kg	414	237	1	03/17/21 16:29	03/18/21 14:20	(7-47-4		
Hexachloroethane	ND	ug/kg	414	158	1	03/17/21 16:29	03/18/21 14:20	6/-/2-1		
indeno(1,2,3-ca)pyrene	ND	ug/kg	414	163	1	03/17/21 16:29	03/18/21 14:20	193-39-5		
Isophorone	ND	ug/kg	414	185	1	03/17/21 16:29	03/18/21 14:20	18-59-1		
1-iviethylnaphthalene	ND	ug/kg	414	146	1	03/17/21 16:29	03/18/21 14:20	90-12-0		
2-wethylnaphthalene	ND	ug/kg	414	166	1	03/17/21 16:29	03/18/21 14:20	91-57-6		



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Results reported on a "dry weight" basis and are adjusted for percent molecure, sample size and any dilutions.           Parameters         Result         Units         Emotit         MDL         DF         Prepared         Analyzed         CAS No.         Qual           8270E MSSV Microwave         Analytical Method: EPA 8270E         Prepared         0.31/12/1 16.29         03/162/1 14.20         85-48-7           38.4 Methylphenol(m5, Dresol)         ND         ug/kg         414         169         1         0.31/12/1 16.29         03/162/1 14.20         85-48-7           3.4 Methylphenol(m6, Dresol)         ND         ug/kg         414         169         1         0.31/12/1 16.29         03/162/1 14.20         85-44           3.Nitronalline         ND         ug/kg         2070         325         1         0.31/12/1 16.29         03/162/1 14.20         89-63           A.Nitronalline         ND         ug/kg         2070         801         1         0.31/12/1 16.29         03/162/1 14.20         89-63           A.Nitronallinethylemine         ND         ug/kg         414         169         0.31/12/1 16.29         03/162/1 14.20         89-63           A.Nitronallinethylemine         ND         ug/kg         414         169         0.31/12/1 16.29	Sample: RI-SB-17 (0.5-1.0)	Lab ID:	9252801100	9 Collected	d: 03/15/2 [,]	1 13:30	Received: 03/	16/21 11:45 Ma	atrix: Solid	
Parameters         Results         Limit         MDL         DF         Prepared         Analyzed         CAS No.         Qual           8270E MSSV Microwave         Analytical Method: EPA 8270E Preparation Method: EPA 3546 Pace Analytical Services - Charlotte         93/16/21 14.20         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73         95/48-73	Results reported on a "dry weight	" basis and are	e adjusted fo	or percent mo	oisture, sai	nple s	ize and any diluti	ons.		
Parameters         Results         Units         Limit         MDL         DF         Prepared         Analyzed         CAS No.         Qual           8270E MSSV Microwave         Analytical Mathod: EPA 8270E         Preparation Mathod:         EPA 3546         Pase Analytical Services - Charlotte           2-Methylphenol(m& Cresol)         ND         ug/kg         414         169         1         03/17/21 16:29         03/18/21 14:20         85-46-7           3-Microaniline         ND         ug/kg         2070         325         1         03/17/21 16:29         03/18/21 14:20         89-46-7           -Almoraniline         ND         ug/kg         287         03/18/21 14:20         89-61-6         NItrobanzone         03/18/21 14:20         89-61-6         NItrobanzone         03/18/21 14:20         87-55         -         41/16/16         03/17/21 16:29         03/18/21 14:20         87-55         -         -         NItrobanzone         ND         ug/kg         414         139         1         03/18/21 14:20         87-55         -         -         NNItrobanzone         ND         ug/kg         414         139         1         03/18/21 14:20         87-56         -         ND         ND         ug/kg         414         147         1				Report						
B3270E MSSV Microwave         Analytical Method: EPA 8270E         Preparation Method: EPA 3546           24.Methylphenol(nsp Cresol)         ND         ug/kg         414         167         1         0.317/21         16.29         0.318/21         14.20         95.48.7           24.Methylphenol(msp Cresol)         ND         ug/kg         2070         3.39         1         0.317/21         16.29         0.318/21         14.20         16.83.1-10-4           2-Nitroaniline         ND         ug/kg         2070         3.39         1         0.317/21         16.29         0.318/21         14.20         19.69-2           3-Nitroaniline         ND         ug/kg         2070         3.39         1         0.317/21         16.29         0.318/21         14.20         16.03.17/21         16.29         0.318/21         14.20         16.03.17/21         16.29         0.318/21         14.20         16.03.17/21         16.29         0.318/21         14.20         16.03.17/21         16.29         0.318/21         14.20         16.03.17/21         16.29         0.318/21         14.20         16.03.17/21         16.29         0.318/21         14.20         16.03.17/21         16.29         0.318/21         14.20         16.03.17/21         16.29         0.318/21<	Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Pace Analytical Services - Charlotte           2:Methylphenol(e-Cresol)         ND         ug/kg         414         169         1         0.3/17/21 16:29         0.3/18/21 14:20         96-48-7           2:Microaniline         ND         ug/kg         2070         339         1         0.3/17/21 16:29         0.3/18/21 14:20         98-48-7           2:Niroaniline         ND         ug/kg         2070         339         1         0.3/17/21 16:29         0.3/18/21 14:20         98-96-2           4:Niroaniline         ND         ug/kg         2070         325         1         0.3/17/21 16:29         0.3/18/21 14:20         98-96-3           2:Nirophenol         ND         ug/kg         414         192         1         0.3/17/21 16:29         0.3/18/21 14:20         16:3-5-5           N:Nirosodimethylamine         ND         ug/kg         414         156         1         0.3/17/21 16:29         0.3/18/21 14:20         16:3-0-6           2:2'Oxybis(1-chiloropropane)         ND         ug/kg         414         156         1         0.3/17/21 16:29         0.3/18/21 14:20         16:3-0-6           2:2'Oxybis(1-chiloropropane)         ND         ug/kg         414         158         1         0.3/17/21 16:29	8270E MSSV Microwave	Analvtical	Method: EPA	8270E Prepa	aration Met	hod: E	PA 3546			
2.4.Methylphenol(n-Cresol)         ND         ug/kg         414         169         1         0.3/17/21         16.29         0.3/18/21         14.20         95-48-7           3.8.4.Methylphenol(m6, Cresol)         ND         ug/kg         2070         332         1         0.3/17/21         16.29         0.3/18/21         14.20         18.74-4           3.Niroaniline         ND         ug/kg         2070         325         1         0.3/17/21         16.29         0.3/18/21         14.20         99-09-2           A.Niroaniline         ND         ug/kg         214         129         0.3/17/21         16.29         0.3/18/21         14.20         99-09-2           A.Nirosonilon         ND         ug/kg         214         129         0.3/17/21         16.29         0.3/18/21         14.20         98-53           A.Nirosoni-r-propylamine         ND         ug/kg         414         158         1         0.3/17/21         16.29         0.3/18/21         14.20         82-55           A.Nirosoni-r-propylamine         ND         ug/kg         414         147         1         0.3/17/21         16.29         0.3/18/21         14.20         82-65           Pontanibrophonol         ND         ug/kg<		Pace Anal	ytical Service	es - Charlotte						
ant.mp. brito.box operation         ND         ug/kg         141         167         1         031721         16.20         031821         14.20         18331-10-4           2-Nitroaniline         ND         ug/kg         2070         339         1         031721         16.29         031821         14.20         18331-10-4           2-Nitroaniline         ND         ug/kg         2070         339         1         031721         16.29         031821         14.20         18331-10-4           2-Nitroaniline         ND         ug/kg         288         315         1         031721         16.29         031821         14.20         18.831-10-4           4-Nitrophenol         ND         ug/kg         414         192         1         031721         16.29         031821         14.20         88-35         1           4-Nitrobenol         ND         ug/kg         414         170         1         031721         16.29         031821         14.20         88-36         1         031721         16.29         031821         14.20         88-36         1         031721         16.29         031821         14.20         88-36         1         031721         16.29         031821	2-Methylphenol(o-Cresol)		ua/ka	414	169	1	03/17/21 16:29	03/18/21 14.20	95-48-7	
Date Manual Plantanging Decision         ND         ug/kg         2070         328         1         03/17/21         16.20         03/17/21         16.20         03/17/21         16.20         03/17/21         16.20         03/17/21         16.20         03/17/21         16.20         03/17/21         16.20         03/17/21         16.20         03/17/21         16.20         03/17/21         16.20         03/17/21         16.20         03/17/21         16.20         03/17/21         16.20         03/17/21         16.20         03/17/21         16.20         03/16/21         14.20         88-74-4           Alvitronhine         ND         ug/kg         414         192         1         03/17/21         16.20         03/18/21         42.20         68-75-5           V-Nitroscidin-trypendiarine         ND         ug/kg         414         16         03/17/21         16.20         03/18/21         42.00         68-75-5           N-Nitroscidin-trypendiarine         ND         ug/kg         414         147         1         03/17/21         16.20         03/18/21         42.00         88-30-6           2/-Cox/sit/Chitorophenol         ND         ug/kg         414         185         1         03/17/21         16.20         03/18/2	3&4-Methylphenol(m&n Cresol)		ug/kg	414	167	1	03/17/21 16:20	03/18/21 14:20	15831-10-4	
ANtroaniline         ND         ug/kg         207         325         1         03/1721         16.20         03/1821         14.20         99-09-2           4-Nitroaniline         ND         ug/kg         828         315         1         03/1721         16.20         03/1821         14.20         100-01-6           A-Nitroaniline         ND         ug/kg         414         179         1         03/1721         16.20         03/1821         14.20         89-95.3           2-Nitrophenol         ND         ug/kg         414         179         1         03/1721         16.20         03/1821         42.00         82-75-9           N-Nitroscolin-propylamine         ND         ug/kg         414         147         1         03/1721         16.20         03/1821         42.00         82-76-9           N-Nitroscolin-propylamine         ND         ug/kg         414         147         1         03/1721         16.20         03/1821         42.00         83-06         1         03/1721         16.20         03/1821         42.00         1         03/1721         16.20         03/1821         42.00         83-06         1         03/1721         16.20         03/1821         42.00	2-Nitroaniline	ND	ug/kg	2070	330	1	03/17/21 16:29	03/18/21 14:20	88-74-4	
Altiroaniline         ND         ugkg         120         1         03/1721         16.20         03/18/21         14.20         100-01-6           Nitrobenzene         ND         ugkg         414         192         1         03/17/21         16.20         03/18/21         14.20         98-95-3           -Nitrobenol         ND         ug/kg         414         179         1         03/17/21         16.20         03/18/21         42.20         98-75-5           -Nitrosodimethylamine         ND         ug/kg         414         179         1         03/17/21         16.29         03/18/21         42.20         62-75-9           N-Nitrosodimethylamine         ND         ug/kg         414         197         1         03/17/21         62.9         03/18/21         42.0         68-30-6           2/-0xylsi(-hioroprepane)         ND         ug/kg         414         197         1         03/17/21         62.9         03/18/21         42.0         88-65           Phenol         ND         ug/kg         414         136         1         03/17/21         16.29         03/18/21         42.0         10-66-1           Pyrene         ND         ug/kg         414         136	3-Nitroaniline	ND	ug/kg	2070	325	1	03/17/21 16:29	03/18/21 14:20	99-09-2	
Nitrobenzene         ND         ug/kg         414         192         1         03/17/21         16:29         03/18/21         14:20         98-95-3           2-Nitrophenol         ND         ug/kg         414         179         1         03/17/21         16:29         03/18/21         14:20         88-75-5           N-Nitrosodimethylamine         ND         ug/kg         414         139         1         03/17/21         16:29         03/18/21         42:0         62:75-9           N-Nitrosodimethylamine         ND         ug/kg         414         147         1         03/17/21         16:29         03/18/21         42:0         62:6-5           Phenathitropenpol         ND         ug/kg         414         147         1         03/17/21         16:29         03/18/21         42:0         68-60-1           Phenathitropenpol         ND         ug/kg         414         185         1         03/17/21         16:29         03/18/21         42:0         18-66-5           Phenol         ND         ug/kg         414         185         1         03/17/21         16:29         03/18/21         42:0         16-66-0           2,4.5-Trichlorophenol         ND         ug/kg	4-Nitroaniline	ND	ug/kg	828	315	1	03/17/21 16:29	03/18/21 14:20	100-01-6	
2-Nitrophenol         ND         ug/kg         414         179         1         03/17/21         16:29         03/18/21         14:20         88-75-5           4-Nitrophenol         ND         ug/kg         414         139         1         03/17/21         16:29         03/18/21         14:20         62-75-9           N-Nitrosodimethylamine         ND         ug/kg         414         156         1         03/17/21         16:29         03/18/21         14:20         62-76-9           N-Nitrosodiphenylamine         ND         ug/kg         414         197         1         03/17/21         16:29         03/18/21         14:20         168-60-1           Pentachlorophenol         ND         ug/kg         414         197         1         03/17/21         16:29         03/18/21         14:20         168-60-1           Phenol         ND         ug/kg         414         185         1         03/17/21         16:29         03/18/21         14:20         108-62           Pyrane         ND         ug/kg         414         171         1         03/17/21         16:29         03/18/21         14:20         18-66-0           2.4.6-Trichorophenol         ND         ug/kg	Nitrobenzene	ND	ug/kg	414	192	1	03/17/21 16:29	03/18/21 14:20	98-95-3	
4-Nitrophenol         ND         ug/kg         2070         801         1         03/17/21         16:29         03/18/21         14:20         100-02-7           N-Nitrosodinethylamine         ND         ug/kg         414         138         1         03/17/21         16:29         03/18/21         14:20         62-75-9           N-Nitrosodin-propplamine         ND         ug/kg         414         1         1         03/17/21         62:9         03/18/21         14:20         63-06-1           22-Oxybis/I-chloropropane)         ND         ug/kg         414         1         1         03/17/21         62:9         03/18/21         14:20         85-01-8           Phenalthrene         ND         ug/kg         414         186         1         03/17/21         16:29         03/18/21         14:20         18:0-1           Pyrene         ND         ug/kg         414         186         1         03/17/21         16:29         03/18/21         14:20         18:0-6:1           2,4,5-Trichlorophenol         ND         ug/kg         414         190         1         03/17/21         16:29         03/18/21         14:20         18:0-0:1           2,4,6-Trichlorophenol         ND	2-Nitrophenol	ND	ug/kg	414	179	1	03/17/21 16:29	03/18/21 14:20	88-75-5	
N-Nitrosodimethylamine         ND         ugkg         414         139         1         03/17/21         16:29         03/18/21         14:20         62:75-9           N-Nitrosodin-propanine         ND         ugkg         414         156         1         03/17/21         16:29         03/18/21         14:20         62:164-7           N-Nitrosodinenylamine         ND         ugkg         414         197         1         03/17/21         62:9         03/18/21         14:20         85:0-6           2.2'-Oxybis(1-chloropropane)         ND         ugkg         414         136         1         03/17/21         62:9         03/18/21         14:20         85:0-18           Pentachlorophenol         ND         ugkg         414         185         1         03/17/21         62:9         03/18/21         14:20         18:0-0           Pyrene         ND         ugkg         414         185         1         03/17/21         62:9         03/18/21         14:20         18:0-0           Pyrene         ND         ugkg         414         190         1         03/17/21         62:9         03/18/21         14:20         14:20         14:20         14:20         14:20         14:20	4-Nitrophenol	ND	ug/kg	2070	801	1	03/17/21 16:29	03/18/21 14:20	100-02-7	
N-Nitroso-di-n-propylamine         ND         ug/kg         414         156         1         03/17/21         16:29         03/18/21         14:20         621-64-7           N-Nitrosodiphenylamine         ND         ug/kg         414         147         1         03/17/21         16:29         03/18/21         14:20         86-50-6           2:-Oxybic/to-Ichloropropane)         ND         ug/kg         414         136         1         03/17/21         16:29         03/18/21         14:20         87-86-5           Phenal         ND         ug/kg         414         136         1         03/17/21         16:29         03/18/21         14:20         87-86-5           Phenol         ND         ug/kg         414         136         1         03/17/21         16:29         03/18/21         14:20         129-00-           Pyrene         ND         ug/kg         414         131         0         03/17/21         16:29         03/18/21         14:20         14:50         14:82         14:20         14:20         14:50         14:20         14:20         14:50         14:20         14:20         14:20         14:20         14:20         14:20         14:20         14:20         14:20         <	N-Nitrosodimethylamine	ND	ug/kg	414	139	1	03/17/21 16:29	03/18/21 14:20	62-75-9	
N-Nitrosodiphenylamine         ND         ug/kg         414         147         1         03/17/21         16:29         03/18/21         14:20         86-30-6           2,2'-Oxybis(1-chloropropane)         ND         ug/kg         414         197         1         03/17/21         16:29         03/18/21         14:20         108-60-1           Pentachlorophenol         ND         ug/kg         414         136         1         03/17/21         16:29         03/18/21         14:20         85-01-8           Phenol         ND         ug/kg         414         185         1         03/17/21         16:29         03/18/21         14:20         129-00-0           Pyriene         ND         ug/kg         414         131         1         03/17/21         16:29         03/18/21         14:20         10-86-1           2,4,5-Trichlorophenol         ND         ug/kg         414         171         1         03/17/21         16:29         03/18/21         14:20         11-0-86-1           2,4,5-Trichlorophenol         ND         ug/kg         414         171         1         03/17/21         16:29         03/18/21         14:20         11-0-86-1           2,4,5-Trichlorophenol (S)         66 </td <td>N-Nitroso-di-n-propylamine</td> <td>ND</td> <td>ug/kg</td> <td>414</td> <td>156</td> <td>1</td> <td>03/17/21 16:29</td> <td>03/18/21 14:20</td> <td>621-64-7</td> <td></td>	N-Nitroso-di-n-propylamine	ND	ug/kg	414	156	1	03/17/21 16:29	03/18/21 14:20	621-64-7	
2.2: Oxybis(1-chloropropane)       ND       ug/kg       414       197       1       03/17/21       16:29       03/18/21       14:20       108-60-1         Pentachlorophenol       ND       ug/kg       414       136       1       03/17/21       16:29       03/18/21       14:20       87-86-5         Phenon       ND       ug/kg       414       136       1       03/17/21       16:29       03/18/21       14:20       108-95-2         Pyrene       ND       ug/kg       414       136       1       03/17/21       16:29       03/18/21       14:20       108-95-2         Pyrene       ND       ug/kg       414       131       1       03/17/21       16:29       03/18/21       14:20       19-85-1         2,4.6-Trichlorophenol       ND       ug/kg       414       190       1       03/17/21       16:29       03/18/21       14:20       18-85-6         2,4.6-Trichlorophenol       ND       ug/kg       414       190       1       03/17/21       16:29       03/18/21       14:20       18-56       14:45       18:45       14:45       18:45       16:45       14:45       14:45       18:45       14:45       16:45       14:45       16:	N-Nitrosodiphenylamine	ND	ua/ka	414	147	1	03/17/21 16:29	03/18/21 14:20	86-30-6	
Pentachlorophenol         ND         ug/kg         828         405         1         03/17/21 16:29         03/18/21 14:20         87-86-5           Phenanthrene         ND         ug/kg         414         136         1         03/17/21 16:29         03/18/21 14:20         85-01-8           Phenol         ND         ug/kg         414         168         1         03/17/21 16:29         03/18/21 14:20         108-95-2           Pyrene         ND         ug/kg         414         168         1         03/17/21 16:29         03/18/21 14:20         108-95-2           2,4,5-Trichlorophenol         ND         ug/kg         414         131         1         03/17/21 16:29         03/18/21 14:20         88-06-2           Surrogates         ND         ug/kg         414         171         1         03/17/21 16:29         03/18/21 14:20         81-51-0           Phenol-d6 (S)         81         %         15-130         1         03/17/21 16:29         03/18/21 14:20         13127-88-3           2-Fluorophenol (S)         70         %         18-130         1         03/17/21 16:29         03/18/21 14:20         13127-88-3           2-Fluorophenol (S)         70         %         18-130         1 <t< td=""><td>2.2'-Oxybis(1-chloropropane)</td><td>ND</td><td>ug/kg</td><td>414</td><td>197</td><td>1</td><td>03/17/21 16:29</td><td>03/18/21 14:20</td><td>108-60-1</td><td></td></t<>	2.2'-Oxybis(1-chloropropane)	ND	ug/kg	414	197	1	03/17/21 16:29	03/18/21 14:20	108-60-1	
Phenanthrene         ND         ug/kg         414         136         1         03/17/21         16:29         03/18/21         14:20         85-01-8           Phenol         ND         ug/kg         414         185         1         03/17/21         16:29         03/18/21         14:20         108-95-2           Pyrene         ND         ug/kg         414         131         1         03/17/21         16:29         03/18/21         14:20         120-00-0           Pyridine         ND         ug/kg         414         190         1         03/17/21         16:29         03/18/21         14:20         18-6-6-0           2,4,6-Trichlorophenol         ND         ug/kg         414         171         1         03/17/21         16:29         03/18/21         14:20         176-6-0           Strozogates         ND         ug/kg         414         15-130         1         03/17/21         16:29         03/18/21         14:20         178-51-0           Phenol-d6 (S)         77         %         18-130         1         03/17/21         16:29         03/18/21         14:20         178-51-0           Phenol-d6 (S)         70         %         18-130         1 <td< td=""><td>Pentachlorophenol</td><td>ND</td><td>ug/kg</td><td>828</td><td>405</td><td>1</td><td>03/17/21 16:29</td><td>03/18/21 14:20</td><td>87-86-5</td><td></td></td<>	Pentachlorophenol	ND	ug/kg	828	405	1	03/17/21 16:29	03/18/21 14:20	87-86-5	
Phenol         ND         ug/kg         414         185         1         03/17/21         16:29         03/18/21         14:20         108-95-2           Pyrene         ND         ug/kg         414         168         1         03/17/21         16:29         03/18/21         14:20         109-06-1           Pyrene         ND         ug/kg         414         131         1         03/17/21         16:29         03/18/21         4:20         10-86-1           2,4,5-Trichlorophenol         ND         ug/kg         414         171         1         03/17/21         16:29         03/18/21         4:20         10-86-1           2,4,6-Trichlorophenol         ND         ug/kg         414         171         1         03/17/21         16:29         03/18/21         4:20         178-51-0           Stroopates         Stroopates         1         03/17/21         16:29         03/18/21         4:20         178-51-0           Phenol-d6 (S)         77         %         18-130         1         03/17/21         16:29         03/18/21         4:20         178-78-3           2-florophenol (S)         70         %         18-130         1         03/17/21         16:29         03/18	Phenanthrene	ND	ug/kg	414	136	1	03/17/21 16:29	03/18/21 14:20	85-01-8	
Pyrene         ND         ug/kg         414         168         1         03/17/21         16:29         03/18/21         14:20         129-00-0           Pyridine         ND         ug/kg         414         131         1         03/17/21         16:29         03/18/21         14:20         10-86-1           2,4,6-Trichlorophenol         ND         ug/kg         414         190         1         03/17/21         16:29         03/18/21         14:20         826-2           Surrogates	Phenol	ND	ug/kg	414	185	1	03/17/21 16:29	03/18/21 14:20	108-95-2	
Pyridine         ND         ug/kg         414         131         1         03/17/21         16:29         03/18/21         14:20         95-95-4           2,4,6-Trichlorophenol         ND         ug/kg         414         190         1         03/17/21         16:29         03/18/21         14:20         95-95-4           2,4,6-Trichlorophenol         ND         ug/kg         414         170         1         03/17/21         16:29         03/18/21         14:20         86-6-2           Surrogates         NItrobenzene-d5 (S)         81         %         21-130         1         03/17/21         16:29         03/18/21         14:20         21-60-8           Terphenyl-d14 (S)         81         %         15-130         1         03/17/21         16:29         03/18/21         14:20         13127-88-3           2-Fluorophenol (S)         70         %         18-130         1         03/17/21         16:29         03/18/21         14:20         13127-88-3           2-Fluorophenol (S)         64         %         18-130         1         03/17/21         16:29         03/18/21         14:20         187-78-8           Statophysical Services - Charlotte         ND         ug/kg         8.7	Pyrene	ND	ug/kg	414	168	1	03/17/21 16:29	03/18/21 14:20	129-00-0	
2,4,5-Trichlorophenol       ND       ug/kg       414       190       1       03/17/21       16:29       03/18/21       14:20       95-95-4         2,4,6-Trichlorophenol       ND       ug/kg       414       171       1       03/17/21       16:29       03/18/21       14:20       88-06-2         Surrogates       ND       ug/kg       414       171       1       03/17/21       16:29       03/18/21       14:20       24-6-7         Surrogates       81       %       21-130       1       03/17/21       16:29       03/18/21       14:20       21-6-8         Carphonyl-614 (S)       81       %       15-130       1       03/17/21       16:29       03/18/21       14:20       3127-88-3         2-Fluorophenol (S)       70       %       18-130       1       03/17/21       16:29       03/18/21       14:20       3127-88-3         8260D/5035A/5030B SC Volatiles       Analytical Method: EPA 8260D       Preparator       0       03/17/21       16:29       03/17/21       19:04       67-64-1         Benzene       ND       ug/kg       8.7       3.5       1       03/17/21       16:07       03/17/21       19:04       74-45-5         Bromochoro	Pyridine	ND	ug/kg	414	131	1	03/17/21 16:29	03/18/21 14:20	110-86-1	
2.4,6-Trichlorophenol         ND         ug/kg         414         171         1         03/17/21 16:29         03/18/21 14:20         88-06-2           Surrogates         Nitrobenzene-d5 (S)         81         %         21-130         1         03/17/21 16:29         03/18/21 14:20         4165-60-0           Serrogates         03/17/21 16:29         03/18/21 14:20         14:55-0         03/18/21 14:20         14:55-0           Terphenyl-d14 (S)         81         %         15-130         1         03/17/21 16:29         03/18/21 14:20         1718-51-0           Phenol-d6 (S)         77         %         18-130         1         03/17/21 16:29         03/18/21 14:20         1367-88-3           2-Fluorophenol (S)         64         %         18-130         1         03/17/21 16:29         03/18/21 14:20         1367-88-3           2-Fluorophenol (S)         64         %         18-130         1         03/17/21 16:27         03/18/21 14:20         1367-4           8260D/5035A/5030B SC Volatiles         Analytical Method: EPA 8260D         Preparation Method: EPA 5035A/5030B         76-64-1         74-35-2           Bromobenzene         ND         ug/kg         8.7         3.5         1         03/17/21 16:07         03/17/21 19:04         74-32	2,4,5-Trichlorophenol	ND	ug/kg	414	190	1	03/17/21 16:29	03/18/21 14:20	95-95-4	
Surrogates         Vitrobenzene-d5 (S)         81         %         21-130         1         03/17/21 16:29         03/18/21 14:20         4165-60-0           2-Fluorobiphenyl (S)         66         %         19-130         1         03/17/21 16:29         03/18/21 14:20         321-60-8           Terphenyl-d14 (S)         81         %         15-130         1         03/17/21 16:29         03/18/21 14:20         1718-51-0           Phenol-d6 (S)         77         %         18-130         1         03/17/21 16:29         03/18/21 14:20         13127-88-3           2-Fluorobiphonol (S)         64         %         18-130         1         03/17/21 16:29         03/18/21 14:20         118-79-6           8260D/5035A/5030B SC Volatiles         Analytical Method: EPA 8260D         reparation Method: EPA 5035A/5030B         reparation Method: EPA 5035A/5030B         reparation Method: EPA 5035A/5030B           8260D/5035A/5030B SC Volatiles         Analytical Services - Charlotte         ND         ug/kg         8.7         3.5         1         03/17/21 16:07         03/17/21 19:04         76-4-1           Benzene         ND         ug/kg         8.7         3.4         1         03/17/21 19:04         74-5-2           Bromochloromethane         ND         ug/kg         <	2,4,6-Trichlorophenol	ND	ug/kg	414	171	1	03/17/21 16:29	03/18/21 14:20	88-06-2	
Nitrobenzene-d5 (S)       81       %       21-130       1       03/17/21       16:29       03/18/21       14:20       4165-60-0         2-Fluorobiphenyl (S)       66       %       19-130       1       03/17/21       16:29       03/18/21       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       14:20       <	Surrogates		0 0							
2-Fluorobiphenyl (S)       66       %       19-130       1       03/17/21 16:29       03/18/21 14:20       321-60-8         Terphenyl-d14 (S)       81       %       15-130       1       03/17/21 16:29       03/18/21 14:20       1718-51-0         Phenol-d6 (S)       77       %       18-130       1       03/17/21 16:29       03/18/21 14:20       13127-88-3         2.Fluorophenol (S)       64       %       18-130       1       03/17/21 16:29       03/18/21 14:20       118-79-6         8260D/5035A/5030B SC Volatiles       Analytical Method: EPA 8260D Preparation Method: EPA 5035A/5030B       reservices - Charlotte         Acetone       ND       ug/kg       174       56.0       1       03/17/21 16:07       03/17/21 19:04       76-6-1         Benzene       ND       ug/kg       8.7       3.5       1       03/17/21 19:04       71-43-2         Bromochloromethane       ND       ug/kg       8.7       3.6       1       03/17/21 19:04       74-97-5         Bromochloromethane       ND       ug/kg       8.7       3.4       1       03/17/21 19:04       74-97-5         Bromochloromethane       ND       ug/kg       8.7       3.4       1       03/17/21 19:04       75-27-4	Nitrobenzene-d5 (S)	81	%	21-130		1	03/17/21 16:29	03/18/21 14:20	4165-60-0	
Terphenyl-d14 (S)       81       %       15-130       1       03/17/21 16:29       03/18/21 14:20       1718-51-0         Phenol-d6 (S)       77       %       18-130       1       03/17/21 16:29       03/18/21 14:20       13127-88-3         2-Fluorophenol (S)       70       %       18-130       1       03/17/21 16:29       03/18/21 14:20       367-12-4         2,4,6-Tribromophenol (S)       64       %       18-130       1       03/17/21 16:29       03/18/21 14:20       118-79-6         8260D/5035A/5030B SC Volatiles       Analytical Method: EPA 8260D Preparation Method: EPA 5035A/5030B       2////////////////////////////////////	2-Fluorobiphenyl (S)	66	%	19-130		1	03/17/21 16:29	03/18/21 14:20	321-60-8	
Phenol-d6 (S)       77       %       18-130       1       03/17/21 16:29       03/18/21 14:20       13127-88-3         2-Fluorophenol (S)       64       %       18-130       1       03/17/21 16:29       03/18/21 14:20       367-12-4         2,4,6-Tribromophenol (S)       64       %       18-130       1       03/17/21 16:29       03/18/21 14:20       18-79-6         Bacomophenol (S)       64       %       18-130       1       03/17/21 16:29       03/17/21 14:29       18-79-6         Bacomophenol (S)       64       %       18-130       1       03/17/21 16:29       03/17/21 14:29       18-79-6         Bacomophenol (S)       Analytical Method: EPA 8260D       Preparation Method: EPA 5035A/5030B         Pace Analytical Services - Charlotte         Acetone       ND       ug/kg       8.7       3.5       1       03/17/21 16:07       03/17/21 19:04       71-43-2         Bromobenzene       ND       ug/kg       8.7       2.8       1       03/17/21 16:07       03/17/21 19:04       76-27-4         Bromochloromethane       ND       ug/kg       8.7       3.4       1       03/17/21 16:07       03/17/21 19:04       75-25-2         Bromoform	Terphenyl-d14 (S)	81	%	15-130		1	03/17/21 16:29	03/18/21 14:20	1718-51-0	
2-Fluorophenol (S)       70       %       18-130       1       03/17/21 16:29       03/18/21 14:20       367-12-4         2,4,6-Tribromophenol (S)       64       %       18-130       1       03/17/21 16:29       03/18/21 14:20       118-79-6         8260D/5035A/5030B SC Volatiles         Analytical Method: EPA 8260D Preparation Method: EPA 5035A/5030B         Pace Analytical Services - Charlotte       ND       ug/kg       8.7       3.5       1       03/17/21 16:07       03/17/21 19:04       67-64-1         Benzene       ND       ug/kg       8.7       3.5       1       03/17/21 16:07       03/17/21 19:04       74-3-2         Bromobenzene       ND       ug/kg       8.7       2.8       1       03/17/21 16:07       03/17/21 19:04       74-97-5         Bromochloromethane       ND       ug/kg       8.7       3.4       1       03/17/21 16:07       03/17/21 19:04       75-25-2         Bromomethane       ND       ug/kg       8.7       3.1       1       03/17/21 16:07       03/17/21 19:04       75-25-2         Bromomethane       ND       ug/kg       8.7       3.1       1       03/17/21 16:07       03/17/21 19:04       75-25-2         Bromomethane       ND<	Phenol-d6 (S)	77	%	18-130		1	03/17/21 16:29	03/18/21 14:20	13127-88-3	
2,4,6-Tribromophenol (S)       64       %       18-130       1       03/17/21 16:29       03/18/21 14:20       118-79-6         8260D/5035A/5030B SC Volatiles       Analytical Method: EPA 8260D Preparation Method: EPA 5035A/5030B       Pace Analytical Services - Charlotte         Acetone       ND       ug/kg       174       56.0       1       03/17/21 16:07       03/17/21 19:04       67-64-1         Benzene       ND       ug/kg       8.7       3.5       1       03/17/21 16:07       03/17/21 19:04       71-43-2         Bromobenzene       ND       ug/kg       8.7       2.8       1       03/17/21 16:07       03/17/21 19:04       74-97-5         Bromochloromethane       ND       ug/kg       8.7       2.6       1       03/17/21 16:07       03/17/21 19:04       75-27-4         Bromoform       ND       ug/kg       8.7       3.1       1       03/17/21 16:07       03/17/21 19:04       75-25-2         Bromomethane       ND       ug/kg       8.7       3.1       1       03/17/21 16:07       03/17/21 19:04       76-83-3         Partmethane       ND       ug/kg       8.7       3.1       1       03/17/21 16:07       03/17/21 19:04       78-93-3         Partmethane       ND	2-Fluorophenol (S)	70	%	18-130		1	03/17/21 16:29	03/18/21 14:20	367-12-4	
8260D/5035A/5030B SC Volatiles         Analytical Method: EPA 8260D Preparation Method: EPA 5035A/5030B Pace Analytical Services - Charlotte           Acetone         ND         ug/kg         174         56.0         1         03/17/21         6:07         03/17/21         9:04         67-64-1           Benzene         ND         ug/kg         8.7         3.5         1         03/17/21         16:07         03/17/21         9:04         71-43-2           Bromobenzene         ND         ug/kg         8.7         2.8         1         03/17/21         6:07         03/17/21         9:04         74-97-5           Bromochloromethane         ND         ug/kg         8.7         3.4         1         03/17/21         16:07         03/17/21         9:04         75-27-4           Bromodichloromethane         ND         ug/kg         8.7         3.1         1         03/17/21         19:04         75-27-4           Bromoform         ND         ug/kg         8.7         3.1         1         03/17/21         19:04         75-25-2           Bromomethane         ND         ug/kg         17.4         13.8         1         03/17/21         19:04         78-93-3           -Paustonone (MEK)         ND <td< td=""><td>2,4,6-Tribromophenol (S)</td><td>64</td><td>%</td><td>18-130</td><td></td><td>1</td><td>03/17/21 16:29</td><td>03/18/21 14:20</td><td>118-79-6</td><td></td></td<>	2,4,6-Tribromophenol (S)	64	%	18-130		1	03/17/21 16:29	03/18/21 14:20	118-79-6	
Pace Analytical Services - Charlotte           Acetone         ND         ug/kg         174         56.0         1         03/17/21 16:07         03/17/21 19:04         67-64-1           Benzene         ND         ug/kg         8.7         3.5         1         03/17/21 16:07         03/17/21 19:04         71-43-2           Bromobenzene         ND         ug/kg         8.7         2.8         1         03/17/21 16:07         03/17/21 19:04         74-97-5           Bromochloromethane         ND         ug/kg         8.7         2.6         1         03/17/21 16:07         03/17/21 19:04         75-27-4           Bromochloromethane         ND         ug/kg         8.7         3.1         1         03/17/21 16:07         03/17/21 19:04         75-27-4           Bromoform         ND         ug/kg         8.7         3.1         1         03/17/21 16:07         03/17/21 19:04         75-25-2           Bromomethane         ND         ug/kg         17.4         13.8         1         03/17/21 16:07         03/17/21 19:04         74-83-9         IH,IK, L1,v1           2-Butanone (MEK)         ND         ug/kg         8.7         3.1         1         03/17/21 16:07         03/17/21 19:04         78-93-3	8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA	8260D Prepa	aration Met	thod: E	PA 5035A/5030B			
Acetone         ND         ug/kg         174         56.0         1         03/17/21 16:07         03/17/21 19:04         67-64-1           Benzene         ND         ug/kg         8.7         3.5         1         03/17/21 16:07         03/17/21 19:04         71-43-2           Bromobenzene         ND         ug/kg         8.7         2.8         1         03/17/21 16:07         03/17/21 19:04         74-97-5           Bromochloromethane         ND         ug/kg         8.7         2.6         1         03/17/21 16:07         03/17/21 19:04         74-97-5           Bromochloromethane         ND         ug/kg         8.7         3.4         1         03/17/21 16:07         03/17/21 19:04         75-27-4           Bromoform         ND         ug/kg         8.7         3.1         1         03/17/21 16:07         03/17/21 19:04         75-25-2           Bromomethane         ND         ug/kg         17.4         13.8         1         03/17/21 16:07         03/17/21 19:04         74-83-9         IH,IK, L1,v1           2-Butanone (MEK)         ND         ug/kg         8.7         4.1         1         03/17/21 16:07         03/17/21 19:04         135-98-8           tert-Butylbenzene         ND		Pace Anal	ytical Service	es - Charlotte						
Benzene         ND         ug/kg         8.7         3.5         1         03/17/21 16:07         03/17/21 19:04         71-43-2           Bromobenzene         ND         ug/kg         8.7         2.8         1         03/17/21 16:07         03/17/21 19:04         71-43-2           Bromochloromethane         ND         ug/kg         8.7         2.6         1         03/17/21 16:07         03/17/21 19:04         74-97-5           Bromodichloromethane         ND         ug/kg         8.7         3.4         1         03/17/21 16:07         03/17/21 19:04         75-27-4           Bromoform         ND         ug/kg         8.7         3.1         1         03/17/21 16:07         03/17/21 19:04         75-25-2           Bromomethane         ND         ug/kg         17.4         13.8         1         03/17/21 16:07         03/17/21 19:04         74-83-9         IH,IK, L1,v1           2-Butanone (MEK)         ND         ug/kg         174         41.9         1         03/17/21 16:07         03/17/21 19:04         78-93-3           n-Butylbenzene         ND         ug/kg         8.7         3.8         1         03/17/21 16:07         03/17/21 19:04         135-98-8           tert-Butylbenzene         ND <td>Acetone</td> <td>ND</td> <td>ug/kg</td> <td>174</td> <td>56.0</td> <td>1</td> <td>03/17/21 16:07</td> <td>03/17/21 19:04</td> <td>67-64-1</td> <td></td>	Acetone	ND	ug/kg	174	56.0	1	03/17/21 16:07	03/17/21 19:04	67-64-1	
Bromobenzene         ND         ug/kg         8.7         2.8         1         03/17/21 16:07         03/17/21 19:04         108-86-1           Bromochloromethane         ND         ug/kg         8.7         2.6         1         03/17/21 16:07         03/17/21 19:04         74-97-5           Bromodichloromethane         ND         ug/kg         8.7         3.4         1         03/17/21 16:07         03/17/21 19:04         75-27-4           Bromoform         ND         ug/kg         8.7         3.1         1         03/17/21 16:07         03/17/21 19:04         75-25-2           Bromomethane         ND         ug/kg         17.4         13.8         1         03/17/21 16:07         03/17/21 19:04         74-83-9         IH,IK, L1,v1           2-Butanone (MEK)         ND         ug/kg         174         41.9         1         03/17/21 16:07         03/17/21 19:04         78-93-3           n-Butylbenzene         ND         ug/kg         8.7         4.1         1         03/17/21 16:07         03/17/21 19:04         78-93-3           tert-Butylbenzene         ND         ug/kg         8.7         3.8         1         03/17/21 16:07         03/17/21 19:04         78-98-8           tert-Butylbenzene	Benzene	ND	ug/kg	8.7	3.5	1	03/17/21 16:07	03/17/21 19:04	71-43-2	
Bromochloromethane         ND         ug/kg         8.7         2.6         1         03/17/21 16:07         03/17/21 19:04         74-97-5           Bromodichloromethane         ND         ug/kg         8.7         3.4         1         03/17/21 16:07         03/17/21 19:04         75-27-4           Bromoform         ND         ug/kg         8.7         3.1         1         03/17/21 16:07         03/17/21 19:04         75-25-2           Bromomethane         ND         ug/kg         17.4         13.8         1         03/17/21 16:07         03/17/21 19:04         74-83-9         IH,IK, L1,v1           2-Butanone (MEK)         ND         ug/kg         174         41.9         1         03/17/21 16:07         03/17/21 19:04         78-93-3           n-Butylbenzene         ND         ug/kg         8.7         4.1         1         03/17/21 16:07         03/17/21 19:04         78-93-3           sec-Butylbenzene         ND         ug/kg         8.7         3.8         1         03/17/21 16:07         03/17/21 19:04         14-51-8           sec-Butylbenzene         ND         ug/kg         8.7         3.8         1         03/17/21 16:07         03/17/21 19:04         98-06-6         v2           Carbon te	Bromobenzene	ND	ug/kg	8.7	2.8	1	03/17/21 16:07	03/17/21 19:04	108-86-1	
Bromodichloromethane         ND         ug/kg         8.7         3.4         1         03/17/21 16:07         03/17/21 19:04         75-27-4           Bromoform         ND         ug/kg         8.7         3.1         1         03/17/21 16:07         03/17/21 19:04         75-25-2           Bromomethane         ND         ug/kg         17.4         13.8         1         03/17/21 16:07         03/17/21 19:04         74-83-9         IH,IK, L1,v1           2-Butanone (MEK)         ND         ug/kg         174         41.9         1         03/17/21 16:07         03/17/21 19:04         78-93-3           n-Butylbenzene         ND         ug/kg         8.7         4.1         1         03/17/21 16:07         03/17/21 19:04         78-93-3           sec-Butylbenzene         ND         ug/kg         8.7         3.8         1         03/17/21 16:07         03/17/21 19:04         14-51-8           sec-Butylbenzene         ND         ug/kg         8.7         3.8         1         03/17/21 16:07         03/17/21 19:04         135-98-8           tert-Butylbenzene         ND         ug/kg         8.7         3.3         1         03/17/21 16:07         03/17/21 19:04         98-06-6         v2           Carbon te	Bromochloromethane	ND	ug/kg	8.7	2.6	1	03/17/21 16:07	03/17/21 19:04	74-97-5	
Bromoform         ND         ug/kg         8.7         3.1         1         03/17/21 16:07         03/17/21 19:04         75-25-2           Bromomethane         ND         ug/kg         17.4         13.8         1         03/17/21 16:07         03/17/21 19:04         74-83-9         IH,IK, L1,v1           2-Butanone (MEK)         ND         ug/kg         174         41.9         1         03/17/21 16:07         03/17/21 19:04         78-93-3           n-Butylbenzene         ND         ug/kg         8.7         4.1         1         03/17/21 16:07         03/17/21 19:04         78-93-3           sec-Butylbenzene         ND         ug/kg         8.7         4.1         1         03/17/21 16:07         03/17/21 19:04         14-51-8           sec-Butylbenzene         ND         ug/kg         8.7         3.8         1         03/17/21 16:07         03/17/21 19:04         135-98-8           tert-Butylbenzene         ND         ug/kg         8.7         3.1         1         03/17/21 16:07         03/17/21 19:04         98-06-6         v2           Carbon tetrachloride         ND         ug/kg         8.7         3.3         1         03/17/21 16:07         03/17/21 19:04         56-23-5           Chloroben	Bromodichloromethane	ND	ug/kg	8.7	3.4	1	03/17/21 16:07	03/17/21 19:04	75-27-4	
Bromomethane         ND         ug/kg         17.4         13.8         1         03/17/21 16:07         03/17/21 19:04         74-83-9         IH,IK, L1,v1           2-Butanone (MEK)         ND         ug/kg         174         41.9         1         03/17/21 16:07         03/17/21 19:04         78-93-3           n-Butylbenzene         ND         ug/kg         8.7         4.1         1         03/17/21 16:07         03/17/21 19:04         104-51-8           sec-Butylbenzene         ND         ug/kg         8.7         3.8         1         03/17/21 16:07         03/17/21 19:04         135-98-8           tert-Butylbenzene         ND         ug/kg         8.7         3.1         1         03/17/21 16:07         03/17/21 19:04         98-06-6         v2           Carbon tetrachloride         ND         ug/kg         8.7         3.3         1         03/17/21 16:07         03/17/21 19:04         56-23-5           Chlorobenzene         ND         ug/kg         8.7         1.7         1         03/17/21 16:07         03/17/21 19:04         75-00-3           Chlorobenzene         ND         ug/kg         8.7         1.7         1         03/17/21 16:07         03/17/21 19:04         75-00-3	Bromoform	ND	ug/kg	8.7	3.1	1	03/17/21 16:07	03/17/21 19:04	75-25-2	
2-Butanone (MEK)       ND       ug/kg       174       41.9       1       03/17/21 16:07       03/17/21 19:04       78-93-3         n-Butylbenzene       ND       ug/kg       8.7       4.1       1       03/17/21 16:07       03/17/21 19:04       104-51-8         sec-Butylbenzene       ND       ug/kg       8.7       3.8       1       03/17/21 16:07       03/17/21 19:04       135-98-8         tert-Butylbenzene       ND       ug/kg       8.7       3.1       1       03/17/21 16:07       03/17/21 19:04       98-06-6       v2         Carbon tetrachloride       ND       ug/kg       8.7       3.3       1       03/17/21 16:07       03/17/21 19:04       56-23-5         Chlorobenzene       ND       ug/kg       8.7       1.7       1       03/17/21 16:07       03/17/21 19:04       75-00-3         Chlorobenzene       ND       ug/kg       17.4       6.7       1       03/17/21 16:07       03/17/21 19:04       75-00-3	Bromomethane	ND	ug/kg	17.4	13.8	1	03/17/21 16:07	03/17/21 19:04	74-83-9	IH,IK,
n-Butylbenzene       ND       ug/kg       8.7       4.1       1       03/17/21 16:07       03/17/21 19:04       104-51-8         sec-Butylbenzene       ND       ug/kg       8.7       3.8       1       03/17/21 16:07       03/17/21 19:04       104-51-8         tert-Butylbenzene       ND       ug/kg       8.7       3.8       1       03/17/21 16:07       03/17/21 19:04       135-98-8         Carbon tetrachloride       ND       ug/kg       8.7       3.1       1       03/17/21 16:07       03/17/21 19:04       98-06-6       v2         Chlorobenzene       ND       ug/kg       8.7       1.7       1       03/17/21 16:07       03/17/21 19:04       56-23-5         Chlorobenzene       ND       ug/kg       8.7       1.7       1       03/17/21 16:07       03/17/21 19:04       108-90-7         Chlorobenzene       ND       ug/kg       17.4       6.7       1       03/17/21 16:07       03/17/21 19:04       75-00-3	2-Butanone (MEK)		ua/ka	174	<i>4</i> 1 Q	1	03/17/21 16:07	03/17/21 19:04	78-03-3	L1,v1
ND       ug/kg       8.7       3.8       1       03/17/21 16:07       03/17/21 19:04       135-98-8         tert-Butylbenzene       ND       ug/kg       8.7       3.1       1       03/17/21 16:07       03/17/21 19:04       135-98-8         carbon tetrachloride       ND       ug/kg       8.7       3.1       1       03/17/21 16:07       03/17/21 19:04       98-06-6       v2         Carbon tetrachloride       ND       ug/kg       8.7       3.3       1       03/17/21 16:07       03/17/21 19:04       56-23-5         Chlorobenzene       ND       ug/kg       8.7       1.7       1       03/17/21 16:07       03/17/21 19:04       108-90-7         Chlorobetnane       ND       ug/kg       17.4       6.7       1       03/17/21 16:07       03/17/21 19:04       75-00-3	n-Butylbenzene		ug/kg	87	41.5	1	03/17/21 10:07	03/17/21 10:04	104-51-8	
isobe back is	sec-Butylbenzene		ug/kg	9.7 9.7	י.י ק א	1	03/17/21 16:07	03/17/21 10:04	135-98-8	
Carbon tetrachloride         ND         ug/kg         8.7         3.3         1         03/17/21         16:07         03/17/21         19:04         56-23-5           Chlorobenzene         ND         ug/kg         8.7         1.7         1         03/17/21         16:07         03/17/21         19:04         56-23-5           Chlorobenzene         ND         ug/kg         8.7         1.7         1         03/17/21         19:04         108-90-7           Chlorobethane         ND         ug/kg         17.4         6.7         1         03/17/21         19:04         75-00-3	tert-Butylbenzene		ug/kg	87	3.0	1	03/17/21 16:07	03/17/21 10:04	98-06-6	v2
Chlorobenzene       ND       ug/kg       8.7       1.7       1       03/17/21       16:07       03/17/21       19:04       108-20-3         Chlorobenzene       ND       ug/kg       8.7       1.7       1       03/17/21       16:07       03/17/21       19:04       108-90-7         Chlorobenzene       ND       ug/kg       17.4       6.7       1       03/17/21       19:04       75-00-3	Carbon tetrachloride	ND	ug/kg	87	33	1	03/17/21 16:07	03/17/21 19:04	56-23-5	**
Chloroethane ND ug/kg 17.4 6.7 1 03/17/21 16:07 03/17/21 19:04 75-00-3	Chlorobenzene	ND	ug/kg	87	1 7	1	03/17/21 16:07	03/17/21 19:04	108-90-7	
	Chloroethane	ND	ua/ka	17.4	6.7	1	03/17/21 16:07	03/17/21 19:04	75-00-3	



#### Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-17 (0.5-1.0)	Lab ID:	9252801100	9 Collected	d: 03/15/21	1 13:30	Received: 03/	16/21 11:45 Ma	atrix: Solid	
Results reported on a "dry weight"	" basis and ar	e adjusted fo	or percent mo	oisture, sar	mple s	ize and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA	8260D Prep	aration Met	thod: E	PA 5035A/5030B			
	Pace Ana	lytical Service	es - Charlotte						
Chloroform	ND	ua/ka	8.7	5.3	1	03/17/21 16:07	03/17/21 19:04	67-66-3	
Chloromethane	ND	ua/ka	17.4	7.3	1	03/17/21 16:07	03/17/21 19:04	74-87-3	
2-Chlorotoluene	ND	ua/ka	8.7	3.1	1	03/17/21 16:07	03/17/21 19:04	95-49-8	
4-Chlorotoluene	ND	ug/kg	8.7	1.5	1	03/17/21 16:07	03/17/21 19:04	106-43-4	
1,2-Dibromo-3-chloropropane	ND	ug/kg	8.7	3.4	1	03/17/21 16:07	03/17/21 19:04	96-12-8	
Dibromochloromethane	ND	ug/kg	8.7	4.9	1	03/17/21 16:07	03/17/21 19:04	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/kg	8.7	3.8	1	03/17/21 16:07	03/17/21 19:04	106-93-4	
Dibromomethane	ND	ug/kg	8.7	1.9	1	03/17/21 16:07	03/17/21 19:04	74-95-3	
1,2-Dichlorobenzene	ND	ug/kg	8.7	3.1	1	03/17/21 16:07	03/17/21 19:04	95-50-1	
1,3-Dichlorobenzene	ND	ug/kg	8.7	2.7	1	03/17/21 16:07	03/17/21 19:04	541-73-1	
1,4-Dichlorobenzene	ND	ug/kg	8.7	2.3	1	03/17/21 16:07	03/17/21 19:04	106-46-7	
Dichlorodifluoromethane	ND	ug/kg	17.4	3.8	1	03/17/21 16:07	03/17/21 19:04	75-71-8	
1,1-Dichloroethane	ND	ug/kg	8.7	3.6	1	03/17/21 16:07	03/17/21 19:04	75-34-3	
1,2-Dichloroethane	ND	ug/kg	8.7	5.8	1	03/17/21 16:07	03/17/21 19:04	107-06-2	
1,1-Dichloroethene	ND	ug/kg	8.7	3.6	1	03/17/21 16:07	03/17/21 19:04	75-35-4	
cis-1,2-Dichloroethene	ND	ug/kg	8.7	3.0	1	03/17/21 16:07	03/17/21 19:04	156-59-2	
trans-1,2-Dichloroethene	ND	ug/kg	8.7	3.1	1	03/17/21 16:07	03/17/21 19:04	156-60-5	
1,2-Dichloropropane	ND	ug/kg	8.7	2.6	1	03/17/21 16:07	03/17/21 19:04	78-87-5	
1,3-Dichloropropane	ND	ug/kg	8.7	2.7	1	03/17/21 16:07	03/17/21 19:04	142-28-9	
2,2-Dichloropropane	ND	ug/kg	8.7	2.8	1	03/17/21 16:07	03/17/21 19:04	594-20-7	
1,1-Dichloropropene	ND	ug/kg	8.7	4.2	1	03/17/21 16:07	03/17/21 19:04	563-58-6	
cis-1,3-Dichloropropene	ND	ug/kg	8.7	2.4	1	03/17/21 16:07	03/17/21 19:04	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/kg	8.7	3.0	1	03/17/21 16:07	03/17/21 19:04	10061-02-6	
Diisopropyl ether	ND	ug/kg	8.7	2.4	1	03/17/21 16:07	03/17/21 19:04	108-20-3	
Ethylbenzene	ND	ug/kg	8.7	4.1	1	03/17/21 16:07	03/17/21 19:04	100-41-4	
Hexachloro-1,3-butadiene	ND	ug/kg	17.4	14.3	1	03/17/21 16:07	03/17/21 19:04	87-68-3	IK
2-Hexanone	ND	ug/kg	87.2	8.4	1	03/17/21 16:07	03/17/21 19:04	591-78-6	
Isopropylbenzene (Cumene)	ND	ug/kg	8.7	3.0	1	03/17/21 16:07	03/17/21 19:04	98-82-8	
p-lsopropyltoluene	ND	ug/kg	8.7	4.3	1	03/17/21 16:07	03/17/21 19:04	99-87-6	
Methylene Chloride	ND	ug/kg	34.9	23.9	1	03/17/21 16:07	03/17/21 19:04	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	87.2	8.4	1	03/17/21 16:07	03/17/21 19:04	108-10-1	
Methyl-tert-butyl ether	ND	ug/kg	8.7	3.3	1	03/17/21 16:07	03/17/21 19:04	1634-04-4	
Naphthalene	8.0J	ug/kg	8.7	4.6	1	03/17/21 16:07	03/17/21 19:04	91-20-3	C8
n-Propylbenzene	ND	ug/kg	8.7	3.1	1	03/17/21 16:07	03/17/21 19:04	103-65-1	
Styrene	ND	ug/kg	8.7	2.3	1	03/17/21 16:07	03/17/21 19:04	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/kg	8.7	3.3	1	03/17/21 16:07	03/17/21 19:04	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/kg	8.7	2.3	1	03/17/21 16:07	03/17/21 19:04	79-34-5	
Tetrachloroethene	ND	ug/kg	8.7	2.8	1	03/17/21 16:07	03/17/21 19:04	127-18-4	
Toluene	12.7	ug/kg	8.7	2.5	1	03/17/21 16:07	03/17/21 19:04	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/kg	8.7	7.0	1	03/17/21 16:07	03/17/21 19:04	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/kg	8.7	7.3	1	03/17/21 16:07	03/17/21 19:04	120-82-1	
1,1,1-Trichloroethane	ND	ug/kg	8.7	4.5	1	03/17/21 16:07	03/17/21 19:04	71-55-6	
1,1,2-Trichloroethane	ND	ug/kg	8.7	2.9	1	03/17/21 16:07	03/17/21 19:04	79-00-5	
Trichloroethene	ND	ug/kg	8.7	2.2	1	03/17/21 16:07	03/17/21 19:04	79-01-6	



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-17 (0.5-1.0)	Lab ID:	925280110	09 Collected	I: 03/15/21	13:30	Received: 03/	16/21 11:45 Ma	atrix: Solid	
Results reported on a "dry weight"	' basis and are	e adjusted f	or percent mo	isture, sar	nple s	ize and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A/5030B SC Volatiles	Analytical	Method: EP	A 8260D Prepa	aration Met	hod: E	PA 5035A/5030B			
	Pace Anal	ytical Servic	es - Charlotte						
Trichlorofluoromethane	ND	ug/kg	8.7	4.8	1	03/17/21 16:07	03/17/21 19:04	75-69-4	
1,2,3-Trichloropropane	ND	ug/kg	8.7	4.4	1	03/17/21 16:07	03/17/21 19:04	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/kg	8.7	2.4	1	03/17/21 16:07	03/17/21 19:04	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/kg	8.7	2.9	1	03/17/21 16:07	03/17/21 19:04	108-67-8	
Vinyl acetate	ND	ug/kg	87.2	6.3	1	03/17/21 16:07	03/17/21 19:04	108-05-4	
Vinyl chloride	ND	ug/kg	17.4	4.4	1	03/17/21 16:07	03/17/21 19:04	75-01-4	
Xylene (Total)	11.4J	ug/kg	17.4	5.0	1	03/17/21 16:07	03/17/21 19:04	1330-20-7	
m&p-Xylene	11.4J	ug/kg	17.4	6.0	1	03/17/21 16:07	03/17/21 19:04	179601-23-1	
o-Xylene	ND	ug/kg	8.7	3.9	1	03/17/21 16:07	03/17/21 19:04	95-47-6	
Surrogates									
Toluene-d8 (S)	102	%	70-130		1	03/17/21 16:07	03/17/21 19:04	2037-26-5	
4-Bromofluorobenzene (S)	94	%	69-134		1	03/17/21 16:07	03/17/21 19:04	460-00-4	
1,2-Dichloroethane-d4 (S)	108	%	70-130		1	03/17/21 16:07	03/17/21 19:04	17060-07-0	
Percent Moisture	Analytical	Method: SW	/-846						
	Pace Anal	ytical Servic	es - Charlotte						
Percent Moisture	20.1	%	0.10	0.10	1		03/17/21 14:12		N2



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-17 (5.5-6.0)	Lab ID:	9252801101	0 Collected	l: 03/15/2′	1 13:35	Received: 03/	16/21 11:45 Ma	atrix: Solid		
Results reported on a "dry weig	ht" basis and are	e adjusted fo	or percent mo	isture, sar	nple s	ize and any diluti	ons.			
Report										
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
8270E MSSV Microwave	Analytical	Method: EPA	A 8270E Prepa	aration Met	hod: E	PA 3546				
	Pace Anal	ytical Service	es - Charlotte							
Acenaphthene	ND	uq/kq	423	149	1	03/17/21 16:29	03/18/21 14:51	83-32-9		
Acenaphthylene	ND	ua/ka	423	149	1	03/17/21 16:29	03/18/21 14:51	208-96-8		
Aniline	ND	ua/ka	423	165	1	03/17/21 16:29	03/18/21 14:51	62-53-3		
Anthracene	ND	ug/kg	423	138	1	03/17/21 16:29	03/18/21 14:51	120-12-7		
Benzo(a)anthracene	ND	ug/kg	423	141	1	03/17/21 16:29	03/18/21 14:51	56-55-3		
Benzo(a)pyrene	ND	ug/kg	423	146	1	03/17/21 16:29	03/18/21 14:51	50-32-8		
Benzo(b)fluoranthene	ND	ug/kg	423	141	1	03/17/21 16:29	03/18/21 14:51	205-99-2		
Benzo(g,h,i)perylene	ND	ug/kg	423	164	1	03/17/21 16:29	03/18/21 14:51	191-24-2		
Benzo(k)fluoranthene	ND	ug/kg	423	149	1	03/17/21 16:29	03/18/21 14:51	207-08-9		
Benzoic Acid	ND	ug/kg	2120	909	1	03/17/21 16:29	03/18/21 14:51	65-85-0		
Benzyl alcohol	ND	ug/kg	846	321	1	03/17/21 16:29	03/18/21 14:51	100-51-6		
4-Bromophenylphenyl ether	ND	ug/kg	423	163	1	03/17/21 16:29	03/18/21 14:51	101-55-3		
Butylbenzylphthalate	ND	ug/kg	423	178	1	03/17/21 16:29	03/18/21 14:51	85-68-7		
4-Chloro-3-methylphenol	ND	ug/kg	846	297	1	03/17/21 16:29	03/18/21 14:51	59-50-7		
4-Chloroaniline	ND	ug/kg	846	332	1	03/17/21 16:29	03/18/21 14:51	106-47-8		
bis(2-Chloroethoxy)methane	ND	ug/kg	423	176	1	03/17/21 16:29	03/18/21 14:51	111-91-1		
bis(2-Chloroethyl) ether	ND	ug/kg	423	159	1	03/17/21 16:29	03/18/21 14:51	111-44-4		
2-Chloronaphthalene	ND	ug/kg	423	168	1	03/17/21 16:29	03/18/21 14:51	91-58-7		
2-Chlorophenol	ND	ug/kg	423	159	1	03/17/21 16:29	03/18/21 14:51	95-57-8		
4-Chlorophenylphenyl ether	ND	ug/kg	423	158	1	03/17/21 16:29	03/18/21 14:51	7005-72-3		
Chrysene	ND	ug/kg	423	154	1	03/17/21 16:29	03/18/21 14:51	218-01-9		
Dibenz(a,h)anthracene	ND	ug/kg	423	163	1	03/17/21 16:29	03/18/21 14:51	53-70-3		
Dibenzofuran	ND	ug/kg	423	153	1	03/17/21 16:29	03/18/21 14:51	132-64-9		
3,3'-Dichlorobenzidine	ND	ug/kg	846	286	1	03/17/21 16:29	03/18/21 14:51	91-94-1	IL	
2,4-Dichlorophenol	ND	ug/kg	423	165	1	03/17/21 16:29	03/18/21 14:51	120-83-2		
Diethylphthalate	ND	ug/kg	423	155	1	03/17/21 16:29	03/18/21 14:51	84-66-2		
2,4-Dimethylphenol	ND	ug/kg	423	176	1	03/17/21 16:29	03/18/21 14:51	105-67-9		
Dimethylphthalate	ND	ug/kg	423	154	1	03/17/21 16:29	03/18/21 14:51	131-11-3		
Di-n-butylphthalate	ND	ug/kg	423	142	1	03/17/21 16:29	03/18/21 14:51	84-74-2		
4,6-Dinitro-2-methylphenol	ND	ug/kg	846	395	1	03/17/21 16:29	03/18/21 14:51	534-52-1		
2,4-Dinitrophenol	ND	ug/kg	2120	1310	1	03/17/21 16:29	03/18/21 14:51	51-28-5		
2,4-Dinitrotoluene	ND	ug/kg	423	163	1	03/17/21 16:29	03/18/21 14:51	121-14-2		
2,6-Dinitrotoluene	ND	ug/kg	423	155	1	03/17/21 16:29	03/18/21 14:51	606-20-2		
Di-n-octylphthalate	ND	ug/kg	423	167	1	03/17/21 16:29	03/18/21 14:51	117-84-0		
bis(2-Ethylhexyl)phthalate	ND	ug/kg	423	164	1	03/17/21 16:29	03/18/21 14:51	117-81-7		
Fluoranthene	ND	ug/kg	423	145	1	03/17/21 16:29	03/18/21 14:51	206-44-0		
Fluorene	ND	ug/kg	423	149	1	03/17/21 16:29	03/18/21 14:51	86-73-7		
Hexachlorobenzene	ND	ug/kg	423	165	1	03/17/21 16:29	03/18/21 14:51	118-74-1		
Hexachlorocyclopentadiene	ND	ug/kg	423	242	1	03/17/21 16:29	03/18/21 14:51	77-47-4		
Hexachloroethane	ND	ug/kg	423	162	1	03/17/21 16:29	03/18/21 14:51	67-72-1		
Indeno(1,2,3-cd)pyrene	ND	ug/kg	423	167	1	03/17/21 16:29	03/18/21 14:51	193-39-5		
Isophorone	ND	ug/kg	423	188	1	03/17/21 16:29	03/18/21 14:51	78-59-1		
1-Methylnaphthalene	ND	ug/kg	423	149	1	03/17/21 16:29	03/18/21 14:51	90-12-0		
2-Methylnaphthalene	ND	ug/kg	423	169	1	03/17/21 16:29	03/18/21 14:51	91-57-6		



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-17 (5.5-6.0)	Lab ID:	9252801101	0 Collected	I: 03/15/21	1 13:35	Received: 03/	16/21 11:45 Ma	atrix: Solid	
Results reported on a "dry weight	" basis and are	e adjusted fo	or percent mo	isture, sar	nple s	ize and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270E MSSV Microwave	Analytical	Method: EPA	8270E Prepa	aration Met	hod: E	PA 3546			
	Pace Anal	vtical Service	es - Charlotte						
2-Methylphenol(o-Cresol)		ua/ka	123	173	1	03/17/21 16:20	03/18/21 1/-51	05-48-7	
384-Methylphenol(m&n Cresol)		ug/kg	423	173	1	03/17/21 16:29	03/18/21 14:51	15831-10-4	
2-Nitroaniline		ug/kg	2120	346	1	03/17/21 16:29	03/18/21 14:51	88-74-4	
3-Nitroaniline		ug/kg	2120	332	1	03/17/21 16:29	03/18/21 14:51	99-09-2	
4-Nitroaniline	ND	ug/kg	846	322	1	03/17/21 16:29	03/18/21 14:51	100-01-6	
Nitrobenzene	ND	ua/ka	423	196	1	03/17/21 16:29	03/18/21 14:51	98-95-3	
2-Nitrophenol	ND	ua/ka	423	183	1	03/17/21 16:29	03/18/21 14:51	88-75-5	
4-Nitrophenol	ND	ua/ka	2120	818	1	03/17/21 16:29	03/18/21 14:51	100-02-7	
N-Nitrosodimethylamine	ND	ua/ka	423	142	1	03/17/21 16:29	03/18/21 14:51	62-75-9	
N-Nitroso-di-n-propylamine	ND	ua/ka	423	159	1	03/17/21 16:29	03/18/21 14:51	621-64-7	
N-Nitrosodiphenylamine	ND	ua/ka	423	150	1	03/17/21 16:29	03/18/21 14:51	86-30-6	
2.2'-Oxybis(1-chloropropane)	ND	ua/ka	423	201	1	03/17/21 16:29	03/18/21 14:51	108-60-1	
Pentachlorophenol	ND	ua/ka	846	414	1	03/17/21 16:29	03/18/21 14:51	87-86-5	
Phenanthrene	ND	ua/ka	423	138	1	03/17/21 16:29	03/18/21 14:51	85-01-8	
Phenol	ND	ua/ka	423	188	1	03/17/21 16:29	03/18/21 14:51	108-95-2	
Pyrene	ND	ug/kg	423	172	1	03/17/21 16:29	03/18/21 14:51	129-00-0	
Pyridine	ND	ug/kg	423	133	1	03/17/21 16:29	03/18/21 14:51	110-86-1	
2,4,5-Trichlorophenol	ND	ug/kg	423	194	1	03/17/21 16:29	03/18/21 14:51	95-95-4	
2,4,6-Trichlorophenol	ND	ug/kg	423	174	1	03/17/21 16:29	03/18/21 14:51	88-06-2	
Surrogates									
Nitrobenzene-d5 (S)	64	%	21-130		1	03/17/21 16:29	03/18/21 14:51	4165-60-0	
2-Fluorobiphenyl (S)	44	%	19-130		1	03/17/21 16:29	03/18/21 14:51	321-60-8	
Terphenyl-d14 (S)	49	%	15-130		1	03/17/21 16:29	03/18/21 14:51	1718-51-0	
Phenol-d6 (S)	63	%	18-130		1	03/17/21 16:29	03/18/21 14:51	13127-88-3	
2-Fluorophenol (S)	61	%	18-130		1	03/17/21 16:29	03/18/21 14:51	367-12-4	
2,4,6-Tribromophenol (S)	66	%	18-130		1	03/17/21 16:29	03/18/21 14:51	118-79-6	
8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA	A 8260D Prepa	aration Met	hod: E	PA 5035A/5030B			
	Pace Anal	ytical Service	es - Charlotte						
Acetone	ND	ug/kg	129	41.3	1	03/17/21 16:07	03/17/21 19:22	67-64-1	
Benzene	ND	ug/kg	6.4	2.6	1	03/17/21 16:07	03/17/21 19:22	71-43-2	
Bromobenzene	ND	ug/kg	6.4	2.1	1	03/17/21 16:07	03/17/21 19:22	108-86-1	
Bromochloromethane	ND	ug/kg	6.4	1.9	1	03/17/21 16:07	03/17/21 19:22	74-97-5	
Bromodichloromethane	ND	ug/kg	6.4	2.5	1	03/17/21 16:07	03/17/21 19:22	75-27-4	
Bromoform	ND	ug/kg	6.4	2.3	1	03/17/21 16:07	03/17/21 19:22	75-25-2	
Bromomethane	ND	ug/kg	12.9	10.2	1	03/17/21 16:07	03/17/21 19:22	74-83-9	IH,IK,
2-Butanone (MEK)	ND	ua/ka	129	30.0	1	03/17/21 16:07	03/17/21 19:22	78-93-3	L1,v1
n-Butylbenzene		ug/kg	6.4	3.0	1	03/17/21 16:07	03/17/21 10:22	104-51-8	
sec-Butylbenzene		ug/kg	6.4	5.0 2.8	1	03/17/21 16:07	03/17/21 10.22	135-98-8	
tert-Butylbenzene		ug/kg	64	2.0	1	03/17/21 16:07	03/17/21 10:22	98-06-6	v2
Carbon tetrachloride	ND	ug/kg	6.4	2.5	1	03/17/21 16:07	03/17/21 19:22	56-23-5	**
Chlorobenzene	ND	ua/ka	6.4	1 2	1	03/17/21 16:07	03/17/21 19:22	108-90-7	
Chloroethane	ND	ua/ka	12.9	5.0	1	03/17/21 16:07	03/17/21 19:22	75-00-3	
		- 3 3		0.0	•				



#### Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-17 (5.5-6.0)	Lab ID:	9252801101	0 Collected	l: 03/15/21	13:35	Received: 03/	16/21 11:45 Ma	atrix: Solid	
Results reported on a "dry weight"	" basis and are	e adjusted fo	or percent mo	isture, sar	nple s	ize and any diluti	ons.		
			Report						
Parameters	Results	Units		MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A/5030B SC Volatiles	Analytical	Method: EP/	A 8260D Prepa	aration Met	hod: E	PA 5035A/5030B			
	Pace Anal	ytical Service	es - Charlotte						
Chloroform	ND	ua/ka	6.4	3.9	1	03/17/21 16:07	03/17/21 19:22	67-66-3	
Chloromethane	ND	ua/ka	12.9	5.4	1	03/17/21 16:07	03/17/21 19:22	74-87-3	
2-Chlorotoluene	ND	ua/ka	6.4	2.3	1	03/17/21 16:07	03/17/21 19:22	95-49-8	
4-Chlorotoluene	ND	ua/ka	6.4	1.1	1	03/17/21 16:07	03/17/21 19:22	106-43-4	
1.2-Dibromo-3-chloropropane	ND	ua/ka	6.4	2.5	1	03/17/21 16:07	03/17/21 19:22	96-12-8	
Dibromochloromethane	ND	ug/kg	6.4	3.6	1	03/17/21 16:07	03/17/21 19:22	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/kg	6.4	2.8	1	03/17/21 16:07	03/17/21 19:22	106-93-4	
Dibromomethane	ND	ug/kg	6.4	1.4	1	03/17/21 16:07	03/17/21 19:22	74-95-3	
1,2-Dichlorobenzene	ND	ug/kg	6.4	2.3	1	03/17/21 16:07	03/17/21 19:22	95-50-1	
1,3-Dichlorobenzene	ND	ug/kg	6.4	2.0	1	03/17/21 16:07	03/17/21 19:22	541-73-1	
1,4-Dichlorobenzene	ND	ug/kg	6.4	1.7	1	03/17/21 16:07	03/17/21 19:22	106-46-7	
Dichlorodifluoromethane	ND	ug/kg	12.9	2.8	1	03/17/21 16:07	03/17/21 19:22	75-71-8	
1,1-Dichloroethane	ND	ug/kg	6.4	2.7	1	03/17/21 16:07	03/17/21 19:22	75-34-3	
1,2-Dichloroethane	ND	ug/kg	6.4	4.3	1	03/17/21 16:07	03/17/21 19:22	107-06-2	
1,1-Dichloroethene	ND	ug/kg	6.4	2.7	1	03/17/21 16:07	03/17/21 19:22	75-35-4	
cis-1,2-Dichloroethene	ND	ug/kg	6.4	2.2	1	03/17/21 16:07	03/17/21 19:22	156-59-2	
trans-1,2-Dichloroethene	ND	ug/kg	6.4	2.3	1	03/17/21 16:07	03/17/21 19:22	156-60-5	
1,2-Dichloropropane	ND	ug/kg	6.4	1.9	1	03/17/21 16:07	03/17/21 19:22	78-87-5	
1,3-Dichloropropane	ND	ug/kg	6.4	2.0	1	03/17/21 16:07	03/17/21 19:22	142-28-9	
2,2-Dichloropropane	ND	ug/kg	6.4	2.1	1	03/17/21 16:07	03/17/21 19:22	594-20-7	
1,1-Dichloropropene	ND	ug/kg	6.4	3.1	1	03/17/21 16:07	03/17/21 19:22	563-58-6	
cis-1,3-Dichloropropene	ND	ug/kg	6.4	1.8	1	03/17/21 16:07	03/17/21 19:22	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/kg	6.4	2.2	1	03/17/21 16:07	03/17/21 19:22	10061-02-6	
Diisopropyl ether	ND	ug/kg	6.4	1.7	1	03/17/21 16:07	03/17/21 19:22	108-20-3	
Ethylbenzene	ND	ug/kg	6.4	3.0	1	03/17/21 16:07	03/17/21 19:22	100-41-4	
Hexachloro-1,3-butadiene	ND	ug/kg	12.9	10.5	1	03/17/21 16:07	03/17/21 19:22	87-68-3	IK
2-Hexanone	ND	ug/kg	64.4	6.2	1	03/17/21 16:07	03/17/21 19:22	591-78-6	
Isopropylbenzene (Cumene)	ND	ug/kg	6.4	2.2	1	03/17/21 16:07	03/17/21 19:22	98-82-8	
p-lsopropyltoluene	ND	ug/kg	6.4	3.2	1	03/17/21 16:07	03/17/21 19:22	99-87-6	
Methylene Chloride	ND	ug/kg	25.7	17.6	1	03/17/21 16:07	03/17/21 19:22	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	64.4	6.2	1	03/17/21 16:07	03/17/21 19:22	108-10-1	
Methyl-tert-butyl ether	ND	ug/kg	6.4	2.4	1	03/17/21 16:07	03/17/21 19:22	1634-04-4	
Naphthalene	ND	ug/kg	6.4	3.4	1	03/17/21 16:07	03/17/21 19:22	91-20-3	
n-Propylbenzene	ND	ug/kg	6.4	2.3	1	03/17/21 16:07	03/17/21 19:22	103-65-1	
Styrene	ND	ug/kg	6.4	1.7	1	03/17/21 16:07	03/17/21 19:22	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/kg	6.4	2.5	1	03/17/21 16:07	03/17/21 19:22	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/kg	6.4	1.7	1	03/17/21 16:07	03/17/21 19:22	79-34-5	
Tetrachloroethene	ND	ug/kg	6.4	2.0	1	03/17/21 16:07	03/17/21 19:22	127-18-4	
Toluene	5.0J	ug/kg	6.4	1.8	1	03/17/21 16:07	03/17/21 19:22	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/kg	6.4	5.2	1	03/17/21 16:07	03/17/21 19:22	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/kg	6.4	5.4	1	03/17/21 16:07	03/17/21 19:22	120-82-1	
1,1,1-Trichloroethane	ND	ug/kg	6.4	3.3	1	03/17/21 16:07	03/17/21 19:22	71-55-6	
1,1,2-Trichloroethane	ND	ug/kg	6.4	2.1	1	03/17/21 16:07	03/17/21 19:22	79-00-5	
Trichloroethene	ND	ug/kg	6.4	1.7	1	03/17/21 16:07	03/17/21 19:22	79-01-6	



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-17 (5.5-6.0)	Lab ID:	9252801101	0 Collected	I: 03/15/21	13:35	Received: 03/	16/21 11:45 Ma	atrix: Solid	
Results reported on a "dry weight"	basis and are	e adjusted f	or percent mo	isture, sar	nple s	ize and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A/5030B SC Volatiles	Analytical	Method: EP/	A 8260D Prepa	aration Met	hod: E	PA 5035A/5030B			
	Pace Anal	ytical Servic	es - Charlotte						
Trichlorofluoromethane	ND	ug/kg	6.4	3.5	1	03/17/21 16:07	03/17/21 19:22	75-69-4	
1,2,3-Trichloropropane	ND	ug/kg	6.4	3.3	1	03/17/21 16:07	03/17/21 19:22	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/kg	6.4	1.8	1	03/17/21 16:07	03/17/21 19:22	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/kg	6.4	2.2	1	03/17/21 16:07	03/17/21 19:22	108-67-8	
Vinyl acetate	ND	ug/kg	64.4	4.7	1	03/17/21 16:07	03/17/21 19:22	108-05-4	
Vinyl chloride	ND	ug/kg	12.9	3.3	1	03/17/21 16:07	03/17/21 19:22	75-01-4	
Xylene (Total)	ND	ug/kg	12.9	3.7	1	03/17/21 16:07	03/17/21 19:22	1330-20-7	
m&p-Xylene	ND	ug/kg	12.9	4.4	1	03/17/21 16:07	03/17/21 19:22	179601-23-1	
o-Xylene	ND	ug/kg	6.4	2.8	1	03/17/21 16:07	03/17/21 19:22	95-47-6	
Surrogates									
Toluene-d8 (S)	101	%	70-130		1	03/17/21 16:07	03/17/21 19:22	2037-26-5	
4-Bromofluorobenzene (S)	92	%	69-134		1	03/17/21 16:07	03/17/21 19:22	460-00-4	
1,2-Dichloroethane-d4 (S)	108	%	70-130		1	03/17/21 16:07	03/17/21 19:22	17060-07-0	
Percent Moisture	Analytical	Method: SW	-846						
	Pace Anal	ytical Servic	es - Charlotte						
Percent Moisture	21.7	%	0.10	0.10	1		03/17/21 14:12		N2



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-18 (0.5-1.0)	Lab ID:	9252801101	1 Collected	d: 03/15/2 ⁻	1 13:45	6 Received: 03/	16/21 11:45 M	atrix: Solid	
Results reported on a "dry weig	ght" basis and are	e adjusted fo	or percent mo	oisture, sar	nple s	ize and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270E MSSV Microwave	Analytical	Method: EPA	A 8270E Prepa	aration Met	hod: E	PA 3546			
	Pace Anal	ytical Service	es - Charlotte						
Acenaphthene	ND	ua/ka	411	144	1	03/17/21 16:29	03/18/21 15:22	83-32-9	
Acenaphthylene	ND	ug/kg	411	144	1	03/17/21 16:29	03/18/21 15:22	208-96-8	
Aniline	ND	ua/ka	411	161	1	03/17/21 16:29	03/18/21 15:22	62-53-3	
Anthracene	ND	ug/kg	411	134	1	03/17/21 16:29	03/18/21 15:22	120-12-7	
Benzo(a)anthracene	ND	ug/kg	411	137	1	03/17/21 16:29	03/18/21 15:22	56-55-3	
Benzo(a)pyrene	ND	ug/kg	411	142	1	03/17/21 16:29	03/18/21 15:22	50-32-8	
Benzo(b)fluoranthene	ND	ug/kg	411	137	1	03/17/21 16:29	03/18/21 15:22	205-99-2	
Benzo(g,h,i)perylene	ND	ug/kg	411	159	1	03/17/21 16:29	03/18/21 15:22	191-24-2	
Benzo(k)fluoranthene	ND	ug/kg	411	144	1	03/17/21 16:29	03/18/21 15:22	207-08-9	
Benzoic Acid	ND	ug/kg	2050	882	1	03/17/21 16:29	03/18/21 15:22	65-85-0	
Benzyl alcohol	ND	ug/kg	821	311	1	03/17/21 16:29	03/18/21 15:22	100-51-6	
4-Bromophenylphenyl ether	ND	ug/kg	411	158	1	03/17/21 16:29	03/18/21 15:22	101-55-3	
Butylbenzylphthalate	ND	ug/kg	411	173	1	03/17/21 16:29	03/18/21 15:22	85-68-7	
4-Chloro-3-methylphenol	ND	ug/kg	821	289	1	03/17/21 16:29	03/18/21 15:22	59-50-7	
4-Chloroaniline	ND	ug/kg	821	322	1	03/17/21 16:29	03/18/21 15:22	106-47-8	
bis(2-Chloroethoxy)methane	ND	ug/kg	411	170	1	03/17/21 16:29	03/18/21 15:22	111-91-1	
bis(2-Chloroethyl) ether	ND	ug/kg	411	154	1	03/17/21 16:29	03/18/21 15:22	111-44-4	
2-Chloronaphthalene	ND	ug/kg	411	163	1	03/17/21 16:29	03/18/21 15:22	91-58-7	
2-Chlorophenol	ND	ug/kg	411	154	1	03/17/21 16:29	03/18/21 15:22	95-57-8	
4-Chlorophenylphenyl ether	ND	ug/kg	411	153	1	03/17/21 16:29	03/18/21 15:22	7005-72-3	
Chrysene	ND	ug/kg	411	149	1	03/17/21 16:29	03/18/21 15:22	218-01-9	
Dibenz(a,h)anthracene	ND	ug/kg	411	158	1	03/17/21 16:29	03/18/21 15:22	53-70-3	
Dibenzofuran	ND	ug/kg	411	148	1	03/17/21 16:29	03/18/21 15:22	132-64-9	
3,3'-Dichlorobenzidine	ND	ug/kg	821	277	1	03/17/21 16:29	03/18/21 15:22	91-94-1	IL
2,4-Dichlorophenol	ND	ug/kg	411	161	1	03/17/21 16:29	03/18/21 15:22	120-83-2	
Diethylphthalate	ND	ug/kg	411	151	1	03/17/21 16:29	03/18/21 15:22	84-66-2	
2,4-Dimethylphenol	ND	ug/kg	411	170	1	03/17/21 16:29	03/18/21 15:22	105-67-9	
Dimethylphthalate	ND	ug/kg	411	149	1	03/17/21 16:29	03/18/21 15:22	131-11-3	
Di-n-butylphthalate	ND	ug/kg	411	138	1	03/17/21 16:29	03/18/21 15:22	84-74-2	
4,6-Dinitro-2-methylphenol	ND	ug/kg	821	383	1	03/17/21 16:29	03/18/21 15:22	534-52-1	
2,4-Dinitrophenol	ND	ug/kg	2050	1270	1	03/17/21 16:29	03/18/21 15:22	51-28-5	
2,4-Dinitrotoluene	ND	ug/kg	411	158	1	03/17/21 16:29	03/18/21 15:22	121-14-2	
2,6-Dinitrotoluene	ND	ug/kg	411	151	1	03/17/21 16:29	03/18/21 15:22	606-20-2	
Di-n-octylphthalate	ND	ug/kg	411	162	1	03/17/21 16:29	03/18/21 15:22	117-84-0	
bis(2-Ethylhexyl)phthalate	ND	ug/kg	411	159	1	03/17/21 16:29	03/18/21 15:22	117-81-7	
Fluoranthene	ND	ug/kg	411	141	1	03/17/21 16:29	03/18/21 15:22	206-44-0	
Fluorene	ND	ug/kg	411	144	1	03/17/21 16:29	03/18/21 15:22	86-73-7	
Hexachlorobenzene	ND	ug/kg	411	161	1	03/17/21 16:29	03/18/21 15:22	118-74-1	
Hexachlorocyclopentadiene	ND	ug/kg	411	235	1	03/17/21 16:29	03/18/21 15:22	77-47-4	
Hexachloroethane	ND	ug/kg	411	157	1	03/17/21 16:29	03/18/21 15:22	67-72-1	
Indeno(1,2,3-cd)pyrene	ND	ug/kg	411	162	1	03/17/21 16:29	03/18/21 15:22	193-39-5	
Isophorone	ND	ug/kg	411	183	1	03/17/21 16:29	03/18/21 15:22	78-59-1	
1-Methylnaphthalene	ND	ug/kg	411	144	1	03/17/21 16:29	03/18/21 15:22	90-12-0	
2-Methylnaphthalene	ND	ug/kg	411	164	1	03/17/21 16:29	03/18/21 15:22	91-57-6	



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Results up and up adjusted for percent molecure, sample size and any dilutions.           Parameters         Result         Units         Limit         MDL         DF         Prepared         Analyzed         CAS No.         Qual           8270E MSSV Microwave         Analytical Method: EPA 8270E         Prepared         0.31/12/1         0.31/12/1         0.31/12/1         0.31/12/1         0.31/12/1         0.31/12/1         0.31/12/1         1.522         95-48-7           384-Methylphenol(m& DCresol)         ND         up/kg         411         166         1         0.31/12/1         1.522         95-48-7           344-Methylphenol(m& DCresol)         ND         up/kg         2050         336         1         0.03/12/1         1.522         90-0-16           Nitrosonline         ND         up/kg         216         0.31/12/1         1.522         90-0-16           Nitrosonline         ND         up/kg         411         1.80         1.93/12/1         0.31/12/1         0.31/12/1         0.31/12/1         0.31/12/1         0.31/12/1         0.31/12/1         0.31/12/1         0.31/12/1         0.31/12/1         0.31/12/1         0.31/12/1         0.31/12/1         0.31/12/1         0.31/12/1         0.31/12/1         0.31/12/1         0.31/12/1	Sample: RI-SB-18 (0.5-1.0)	Lab ID:	92528011011	Collected	d: 03/15/21	1 13:45	Received: 03/	16/21 11:45 Ma	atrix: Solid	
Parameters         Result         Units         Limit         MDL         DF         Prepared         Analyzed         CAS No.         Qual           8270E MSSV Microwave         Analytical Method: EFA 250E Preparation Method: EFA 3546         Pace Analytical Services - Charlotte         03/10/21 15:22         95/48-73         03/10/21 15:22         95/48-73           2-Methylphenol(or-Cresol)         ND         ug/kg         4111         168         1         03/17/21 16:29         03/18/21 15:22         95/48-73           3-Miroaniline         ND         ug/kg         2050         336         1         03/17/21 16:29         03/18/21 15:22         95/48-74           3-Niroaniline         ND         ug/kg         8211         312         1         03/17/21 16:29         03/18/21 15:22         95/49-3           2-Nirophenol         ND         ug/kg         411         188         1         03/17/21 16:29         03/18/21 15:22         16:26-24-7           N-Nirosod/methylamine         ND         ug/kg         411         188         1         03/17/21 16:29         03/18/21 15:22         16:30-6           2.2./Oxybia(1-chloropropanylamine         ND         ug/kg         411         154         1         03/17/21 16:29         03/18/21 15:22         16:3	Results reported on a "dry weight	" basis and are	e adjusted for	percent mo	oisture, sar	nple s	ize and any diluti	ons.		
Parameters         Results         Units         Limit         MDL         DF         Prepared         Analyzed         CAS No.         Qual           8270E MSSV Microwave         Analytical Mathod: EPA 8270E         Preparation Mathod:         EPA 3546         Prepared         Analyzed         CAS No.         Qual           384-Methylphenol(m& Cresol)         ND         ug/kg         411         166         1         03/17/21 16.29         03/18/21 15.22         95-48-7           3Niroaniline         ND         ug/kg         2050         336 1         03/17/21 16.29         03/18/21 15.22         190-0-16           Nirobenzone         ND         ug/kg         211         103/17/21 16.29         03/18/21 15.22         100-0-16           Nirobenzone         ND         ug/kg         411         10         03/17/21 16.29         03/18/21 15.22         100-0-27           Nirobenzone         ND         ug/kg         411         138 1         03/17/21 16.29         03/18/21 15.22         100-0-27           NNirobenzone         ND         ug/kg         411         138 1         03/17/21 16.29         03/18/21 15.22         100-0-7           NNirobenzone         ND         ug/kg         411         141         03/17/21 16.29			-	Report		-	-			
B3270E MSSV Microwave         Analytical Method: EPA 8270E         Preparation Method: EPA 3546           24.Methylphenol(nsp Cresol)         ND         ug/kg         411         168         1         0.317/21         16.29         0.318/21         15.22         15.831-10-4           24.Methylphenol(msp Cresol)         ND         ug/kg         201         0.317/21         16.29         0.318/21         15.22         15.831-10-4           24.Nironaniline         ND         ug/kg         200         3.26         1         0.317/21         16.29         0.318/21         15.22         18.931-10-4           2-Nironaniline         ND         ug/kg         201         0.317/21         16.29         0.318/21         15.22         18.95-3           2-Nirophenol         ND         ug/kg         411         178         1         0.317/21         16.29         0.318/21         15.22         16.95-3           2-Nirophenol         ND         ug/kg         411         178         1         0.317/21         16.29         0.318/21         15.22         16.95-3           2-Nirosodin-propridamine         ND         ug/kg         411         184         0.317/21         16.29         0.318/21         15.22         16.96-1	Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Pace Analytical Services - Charlotter           Pace Analytical Services - Charlotter           2-Methylphenol(neCresol)         ND         upkg         411         166         1         0.3/1721 16:29         0.3/1821 15:22         95-48-7           34-Methylphenol(m&Cresol)         ND         upkg         2050         336         1         0.3/1721 16:29         0.3/1821 15:22         90-0-2           2-Nirroaniline         ND         upkg         2050         322         1         0.3/1721 16:29         0.3/1821 15:22         90-0-2           2-Nirroaniline         ND         upkg         211         10.3/1721 16:29         0.3/1821 15:22         10:00-16           Nirroaniline         ND         upkg         411         100         10.3/1721 16:29         0.3/1821 15:22         10:00-27           Nirrosodimethylamine         ND         upkg         411         164         1         0.3/1721 16:29         0.3/1821 15:22         10:00-27           Nirrosodimethylamine         ND         upkg         411         164         1         0.3/1721 16:29         0.3/1821 15:22         10:60-1           Nirrosodimethylamine         ND         upkg         411         164         1         0.3/1721 16:29	8270F MSSV Microwave	Analytical	Method: FPA	8270F Prep	aration Met	hod: F	PA 3546			
2.4Methylphenol(in-Cresol)         ND         ug/kg         411         168         1         03/17/21 16:29         03/18/21 15:22         95-48-7           38.4.Methylphenol(inb, Cresol)         ND         ug/kg         411         165         1         03/17/21 16:29         03/18/21 15:22         95-48-7           2.Niroraniline         ND         ug/kg         2050         322         1         03/17/21 16:29         03/18/21 15:22         99-09-2           4.Niroraniline         ND         ug/kg         211         120/17/21 16:29         03/18/21 15:22         98-65.3           2.Nirophenol         ND         ug/kg         411         190         103/17/21 16:29         03/18/21 15:22         82-75.5           4.Nirosodin-tryopylamine         ND         ug/kg         411         188         1         03/17/21 16:29         03/18/21 15:22         82-66-1           2Coxbis(1-chropropalanie         ND         ug/kg         411         146         1         03/17/21 16:29         03/18/21 15:22         82-66-1           Pentachlorphenol         ND         ug/kg         411         146         1         03/17/21 16:29         03/18/21 15:22         87-66-5           Phenol         ND         ug/kg         411		Pace Anal	vtical Services	s - Charlotte						
Zmitrophenolog/Cresol)         ND         ug/kg         411         168         1         0.31 /7.21 16.22         0.31 /0.21 15.22         16.24         5.41 /0.41 /0.21 15.22         16.24 /0.41 /0.21 15.22         16.24 /0.41 /0.21 15.22         16.24 /0.41 /0.21 15.22         16.24 /0.41 /0.21 15.22         16.24 /0.41 /0.21 15.22         16.24 /0.41 /0.21 15.22         16.24 /0.41 /0.21 15.22         16.24 /0.41 /0.21 15.22         16.24 /0.41 /0.21 /0.22 /0.41 /0.21 /0.22         16.24 /0.41 /0.21 /0.22 /0.41 /0.21 /0.22 /0.41 /0.21 /0.22 /0.41 /0.21 /0.22 /0.41 /0.21 /0.22 /0.41 /0.21 /0.22 /0.41 /0.21 /0.22 /0.41 /0.21 /0.22 /0.41 /0.21 /0.22 /0.41 /0.21 /0.22 /0.41 /0.21 /0.22 /0.41 /0.21 /0.22 /0.41 /0.21 /0.22 /0.41 /0.21 /0.22 /0.41 /0.21 /0.22 /0.41 /0.21 /0.22 /0.41 /0.21 /0.22 /0.41 /0.21 /0.22 /0.41 /0.21 /0.22 /0.41 /0.21 /0.22 /0.41 /0.21 /0.22 /0.41 /0.21 /0.22 /0.41 /0.21 /0.22 /0.41 /0.21 /0.22 /0.41 /0.21 /0.22 /0.41 /0.21 /0.22 /0.41 /0.21 /0.22 /0.41 /0.21 /0.22 /0.41 /0.21 /0.22 /0.41 /0.21 /0.22 /0.41 /0.21 /0.22 /0.41 /0.21 /0.22 /0.41 /0.21 /0.22 /0.41 /0.21 /0.22 /0.41 /0.21 /0.22 /0.41 /0.21 /0.22 /0.41 /0.21 /0.22 /0.41 /0.21 /0.22 /0.41 /0.21 /0.22 /0.41 /0.21 /0.22 /0.41 /0.21 /0.22 /0.41 /0.21 /0.22 /0.41 /0.21 /0.22 /0.41 /0.21 /0.22 /0.41 /0.21 /0.22 /0.41 /0.21 /0.22 /0.41 /0.21 /0.22 /0.41 /0.21 /0.22 /0.42 /0.41 /0.21 /0.22 /0.42 /0.21 /0.42 /0.21 /0.42 /0.21 /0.42 /0.21 /0.22 /0.42 /0.21 /0.42 /0.21 /0.42 /0.21 /0.42 /0.21 /0.22 /0.42 /0.42 /0.41 /0.21 /0.21 /0.22 /0.42 /0.42 /0.41 /0.21 /0.21 /0.22 /0.42 /0.22 /0.42 /0.42 /0.41 /0.21 /0.21 /0.22 /0.42 /0.42 /0.41 /0.21 /0.21 /0.42 /0.42 /0.41 /0.21 /0.21 /0.42 /0.42 /0.41 /0.21 /0.21 /0.41 /0.22 /0.42 /0.42 /0.41 /0.21 /0.21 /0.41 /0.22 /0.42 /0.42 /0.41 /0.21 /0.21 /0.42 /0.42 /0.41 /0.21 /0.22 /0.42 /0.42 /0.41 /0.21 /0.21 /0.41	2 Mothylphonol(o Crocol)		ualka	111	169	1	02/17/21 16:20	02/10/21 15.22	05 49 7	
Jack-main spin lend(map (clesu))         ND         ug/kg         2050         335         1         031/721         15.22         031821         15.22         031821         15.22         031821         15.22         031821         15.22         031821         15.22         031821         15.22         031821         15.22         031821         15.22         031821         15.22         031821         15.22         031821         15.22         031821         15.22         031821         15.22         031821         15.22         031821         15.22         031821         15.22         031821         15.22         031821         15.22         031821         15.22         031821         15.22         031821         15.22         031821         15.22         031821         15.22         031821         15.22         031821         15.22         031821         15.22         031821         15.22         031821         15.22         031821         15.22         031821         15.22         031821         15.22         031821         15.22         031821         15.22         031821         15.22         031821         15.22         031821         15.22         031821         15.22         031821         15.22         031821         15.22	2-Methylphenol(0-Cresol)		ug/kg	411	100	1	03/17/21 10:29	03/16/21 15:22	90-40-7	
Antionalinine         ND         ug/kg         2000         336         1         031/721         16.20         031/821         15.22         06-14.4           ANitroaniline         ND         ug/kg         821         312         1         031/721         16.29         031/821         15.22         09-04-2           ANitroaniline         ND         ug/kg         411         176         1         031/721         16.29         031/821         15.22         89-55           2-Nitrophenol         ND         ug/kg         411         178         1         031/721         16.29         031/821         15.22         62-75-9           N-Nitrosodin-propylamine         ND         ug/kg         411         146         1         031/721         16.29         031/821         15.22         62-75-9           N-Nitrosodin-propylamine         ND         ug/kg         411         146         1         031/721         16.29         031/821         15.22         62-75-9           N-Nitrosodin-propylamine         ND         ug/kg         411         160         031/721         16.29         031/821         15.22         80-62           Pyricine         ND         ug/kg         411         <	3&4-methyphenol(map Cresol)		ug/kg	2050	200	1	03/17/21 10:29	03/16/21 15:22	15031-10-4	
Animaline         ND         ug/kg         2100         312         1         031721         16.25         031721         16.25         1000         1002           Nitrobenzene         ND         ug/kg         411         190         1         031721         16.29         031821         15.22         100-01-6           Nitrobenzene         ND         ug/kg         411         178         1         031721         16.29         031821         15.22         100-01-6           -Nitrosodinentylamine         ND         ug/kg         411         154         1         031721         16.29         031821         15.22         287-55           N-Nitrosodinentylamine         ND         ug/kg         411         154         1         031721         16.29         031821         15.22         267-66           N-Nitrosodiphenylamine         ND         ug/kg         411         154         1         031721         16.29         031821         15.22         10-86-1           Pentachlorophenol         ND         ug/kg         411         163         1         031721         16.29         031821         15.22         10-86-1           Pyrene         ND         ug/kg         4	2-Nitroaniline		ug/kg	2050	222	1	03/17/21 10.29	03/10/21 15.22	00-74-4	
Handballine         ND         ug/kg         421         192         1         03/17/21         110.22         03/18/21         15.22         89-85-3           2-Nitrophenol         ND         ug/kg         411         178         1         03/17/21         16.29         03/18/21         15.22         89-85-3           2-Nitrophenol         ND         ug/kg         411         138         1         03/17/21         16.29         03/18/21         52.2         29-95-3           N-Nitrosodimethylamine         ND         ug/kg         411         134         1         03/17/21         16.29         03/18/21         52.2         68-30-6           2.2'-Oxybis(1-chioropropane)         ND         ug/kg         411         146         1         03/17/21         16.29         03/18/21         52.2         87-8-5           Phenachiorophenol         ND         ug/kg         411         134         1         03/17/21         16.29         03/18/21         52.2         87-8-5           Phenol         ND         ug/kg         411         183         1         03/17/21         16.29         03/18/21         52.2         18-8-5           Pyrene         ND         ug/kg         411 </td <td></td> <td></td> <td>ug/kg</td> <td>2050</td> <td>342</td> <td>1</td> <td>03/17/21 10.29</td> <td>03/10/21 15.22</td> <td>99-09-2 100 01 6</td> <td></td>			ug/kg	2050	342	1	03/17/21 10.29	03/10/21 15.22	99-09-2 100 01 6	
Nitoschene         ND         ug/kg         411         130         1         03/17/21         16.25         03/16/21         15.22         80-93-3           2-Nitrophenol         ND         ug/kg         2050         794         1         03/17/21         16.29         03/18/21         15.22         80-93-3           4-Nitrophenol         ND         ug/kg         411         148         1         03/17/21         16.29         03/18/21         15.22         80-93-3           2-Coxbis/1-choropropane)         ND         ug/kg         411         146         1         03/17/21         16.29         03/18/21         15.22         80-60-1           Pentachlorophenol         ND         ug/kg         411         146         1         03/17/21         16.29         03/18/21         15.22         108-05-1           Pentachlorophenol         ND         ug/kg         411         163         1         03/17/21         16.29         03/18/21         15.22         108-95-2           Pyrene         ND         ug/kg         411         163         1         03/17/21         16.29         03/18/21         15.22         108-61           2.4.6-Trichorophenol         ND         ug/kg	4-Nilloaniinie Nitrobonzono		ug/kg	021	100	1	03/17/21 10.29	03/10/21 15.22	08 05 3	
2-Introphenol         ND         ug/kg         211         110         1         03/17/21         16.28         03/10/21         15.22         100-02-7           N-Nitrosodinethylamine         ND         ug/kg         411         138         1         03/17/21         16.29         03/18/21         15.22         62-75-9           N-Nitrosodinethylamine         ND         ug/kg         411         146         1         03/17/21         16.29         03/18/21         15.22         63-64           N-Nitrosodinenylamine         ND         ug/kg         411         146         1         03/17/21         62.9         03/18/21         15.22         108-60-1           Pentachirorphenol         ND         ug/kg         411         183         1         03/17/21         16.29         03/18/21         15.22         108-60-1           Phenol         ND         ug/kg         411         183         1         03/17/21         16.29         03/18/21         15.22         108-62           Pyrene         ND         ug/kg         411         181         1         03/17/21         16.29         03/18/21         15.22         24.6-7           2.4.6-Trichlorophenol         ND         ug/kg			ug/kg	411	170	1	03/17/21 10.29	03/10/21 15:22	90-95-5 99 75 5	
Thitopartion         ND         ug/kg         410         103/1721         102.2         003/02.1         103.2         103.02.1           N-Nitrosocin-propylamine         ND         ug/kg         411         134         1         03/1721         16.29         03/1821         15.22         627-57           N-Nitrosocin-propylamine         ND         ug/kg         411         195         1         03/1721         16.29         03/1821         15.22         637-65           2.2'-Oxybis(1-chloropropane)         ND         ug/kg         411         195         1         03/1721         16.29         03/1821         15.22         87-86-5           Phenanthrene         ND         ug/kg         411         183         1         03/1721         16.29         03/1821         15.22         15.20         15.22         15.22         15.22         15.22         15.22         15.22         15.22         15.22         15.22         15.22         15.22         15.22         15.22         15.22         15.22         15.22         15.22         15.22         15.22         15.22         15.22         15.22         15.22         15.22         15.22         15.22         15.22         15.22         15.22         15.22<	4-Nitrophenol		ug/kg	2050	70/	1	03/17/21 10:29	03/18/21 15:22	100-02-7	
Nutroscolinalization         ND         ug/kg         411         150         1         03/17/21         152/2         03/18/21         152/2         03/18/21         152/2         03/18/21         152/2         03/18/21         152/2         03/18/21         152/2         03/18/21         152/2         03/18/21         152/2         03/18/21         152/2         03/18/21         152/2         03/18/21         152/2         03/18/21         152/2         03/18/21         152/2         03/18/21         152/2         03/18/21         152/2         03/18/21         152/2         03/18/21         152/2         03/18/21         152/2         03/18/21         152/2         03/18/21         152/2         03/18/21         152/2         03/18/21         152/2         03/18/21         152/2         15/2         03/18/21         152/2         15/2         15/2         15/2         15/2         15/2         15/2         15/2         15/2         15/2         15/2         15/2         15/2         15/2         15/2         15/2         15/2         15/2         15/2         15/2         15/2         15/2         15/2         15/2         15/2         15/2         15/2         15/2         15/2         15/2         15/2         15/2         1	A-Nitrosodimethylamine		ug/kg	2050	138	1	03/17/21 10:29	03/18/21 15:22	62-75-0	
Nutrosourhpropynamine         ND         ug/kg         411         103         1         031721         10:29         031821         12:28         031821         12:28         031821         12:28         031821         12:28         031821         12:28         031821         12:28         031821         12:28         031821         12:28         031821         12:28         031821         12:28         031821         12:28         031821         12:28         031821         12:28         031821         12:28         031821         12:28         031821         12:28         031821         12:28         031821         12:28         031821         12:28         031821         12:28         031821         12:28         031821         12:28         031821         12:28         031821         12:28         031821         12:28         031821         12:28         031821         12:28         031821         12:28         031821         12:28         031821         12:28         031821         12:28         031821         12:28         031821         12:28         031821         12:28         031821         12:28         031821         12:28         031821         12:28         031821         12:28         031821         12:28	N-Nitroso-di-n-propylamine		ug/kg	411	150	1	03/17/21 10:29	03/18/21 15:22	621-64-7	
Nr. Moscolprent yraining         ND         ug/kg         H1         H6         I         0.317/21         16.32         0.31/21         15.32         0.31/21         15.32         0.31/21         15.32         0.31/21         15.32         0.31/21         15.32         0.31/21         15.32         0.31/21         15.32         0.31/21         15.32         0.31/21         15.32         0.31/21         15.32         0.31/21         15.32         0.31/21         15.32         0.31/21         15.32         0.31/21         15.32         0.31/21         15.32         0.31/21         15.32         0.31/21         15.32         0.31/21         15.32         0.31/21         15.32         0.31/21         15.32         0.31/21         15.32         0.31/21         15.32         0.31/21         15.32         0.31/21         15.32         0.31/21         15.32         0.31/21         15.32         0.31/21         15.32         10.31/21         11.33         1         0.31/1/21         16.32         0.31/82/1         15.32         10.31/21         11.32         10.31/1/21         10.31/1/21         10.31/1/21         10.31/1/21         10.31/1/21         10.31/1/21         10.31/1/21         10.31/1/21         10.31/1/21         10.31/1/21         10.31/1/21         10.31/1/2	N-Nitrosodinhenvlamine		ug/kg	411	1/6	1	03/17/21 10:29	03/18/21 15:22	86-30-6	
L2 Oxylar, Charlon Complexity       HD       ug/kg       411       163       1       03/17/21 16:20       03/18/21 15:22       87-86-5         Phenath/rene       ND       ug/kg       411       134       1       03/17/21 16:29       03/18/21 15:22       88-96-5         Phenol       ND       ug/kg       411       167       1       03/17/21 16:29       03/18/21 15:22       108-95-2         Pyrene       ND       ug/kg       411       167       1       03/17/21 16:29       03/18/21 15:22       110-86-1         2,4,6-Trichlorophenol       ND       ug/kg       411       188       1       03/17/21 16:29       03/18/21 15:22       88-06-2         Surrogates       ND       ug/kg       411       189       1       03/17/21 16:29       03/18/21 15:22       88-06-2         Surrogates       ND       ug/kg       411       189       1       03/17/21 16:29       03/18/21 15:22       110-86-10         Phenol-d6 (S)       76       %       21-130       1       03/17/21 16:29       03/18/21 15:22       116-76-0         2-Fluorophenol (S)       49       %       18-130       1       03/17/21 16:20       03/18/21 15:22       116-72-2       121-72-4	$2.2^{-}$ Oxybis(1-chloropropage)		ug/kg	411	190	1	03/17/21 16:20	03/18/21 15:22	108-60-1	
International operation         ND         ug/kg         411         134         1         03/17/21         16:22         03/18/21         5:22         85-01-8           Phenol         ND         ug/kg         411         167         1         03/17/21         16:29         03/18/21         5:22         15:0-18           Pyrene         ND         ug/kg         411         167         1         03/17/21         16:29         03/18/21         5:22         10:0-66-1           2,4.5-Trichlorophenol         ND         ug/kg         411         168         1         03/17/21         16:29         03/18/21         5:22         10:0-66-1           2,4.6-Trichlorophenol         ND         ug/kg         411         168         1         03/17/21         16:29         03/18/21         5:22         88-06-2           Surrogates         Surrogates         Surrogates         1         03/17/21         16:29         03/18/21         15:22         312-60-8           Terphenyl-414 (S)         64         %         18-130         1         03/17/21         16:29         03/18/21         15:22         178-51-0           Phenol-d6 (S)         71         %         18-130         1         03/17/21	Pentachlorophenol		ug/kg	821	402	1	03/17/21 16:20	03/18/21 15:22	87-86-5	
International Phenol       ND       ug/kg       411       163       1       03/17/21       16:29       03/18/21       15:22       103/18/21       15:22       103/18/21       15:22       103/18/21       15:22       103/18/21       15:22       103/18/21       15:22       103/18/21       15:22       103/18/21       15:22       103/18/21       15:22       103/18/21       15:22       103/18/21       15:22       103/18/21       15:22       103/18/21       15:22       103/18/21       15:22       103/18/21       15:22       103/18/21       15:22       103/18/21       15:22       103/18/21       15:22       103/18/21       15:22       103/18/21       15:22       103/18/21       15:22       103/18/21       15:22       103/18/21       103/18/21       103/18/21       103/18/21       103/18/21       103/18/21       103/18/21       103/18/21       103/18/21       103/18/21       103/18/21       103/18/21       103/18/21       103/18/21       103/18/21       103/18/21       103/18/21       110/18/20       103/18/21       103/18/21       103/18/21       103/18/21       103/18/21       103/18/21       103/18/21       103/18/21       103/18/21       103/18/21       103/18/21       103/18/21       103/18/21       103/18/21       103/18/21       103/	Phenanthrene		ug/kg	/11	13/	1	03/17/21 10:29	03/18/21 15:22	85-01-8	
Initial         ND         ug/kg         411         167         1         03/17/21         1623         103/3         1         103/3         1           Pyrene         ND         ug/kg         411         129         1         03/17/21         1623         03/18/21         1522         129-00-0           Pyridine         ND         ug/kg         411         188         1         03/17/21         1623         03/18/21         1522         129-00-0           2,4,6-Trichlorophenol         ND         ug/kg         411         169         1         03/17/21         1623         03/18/21         1522         129-00-0           Surrogates         ND         ug/kg         411         169         1         03/17/21         1629         03/18/21         1522         21-60-8           Stropphenyl-G(S)         76         %         21-130         1         03/17/21         1629         03/18/21         1522         131/2-88-3           Strophenyl-G(S)         64         %         18-130         1         03/17/21         1629         03/18/21         1522         131/2-88-3           2-Fluorophenol (S)         49         %         18-130         1         03/17/21 <td>Phenol</td> <td></td> <td>ug/kg</td> <td>411</td> <td>183</td> <td>1</td> <td>03/17/21 16:20</td> <td>03/18/21 15:22</td> <td>108-95-2</td> <td></td>	Phenol		ug/kg	411	183	1	03/17/21 16:20	03/18/21 15:22	108-95-2	
Printine       ND       ug/kg       411       129       1       03/17/21       16.29       03/18/21       15.22       110.88-1         2,4,5-Trichlorophenol       ND       ug/kg       411       188       1       03/17/21       16.29       03/18/21       15.22       110.88-1         2,4,6-Trichlorophenol       ND       ug/kg       411       188       1       03/17/21       16.29       03/18/21       15.22       110.88-1         Surrogates       ND       ug/kg       411       189       1       03/17/21       16.29       03/18/21       15.22       31-60-0         2-Fluorobiphenyl (S)       49       %       19-130       1       03/17/21       16.29       03/18/21       15.22       31-60-8         Terphenyl-141 (S)       64       %       18-130       1       03/17/21       16.29       03/18/21       15.22       37-8-3         2-Fluorophenol (S)       64       %       18-130       1       03/17/21       16.29       03/18/21       15.22       37-24         2,4,6-Tribromophenol (S)       49       %       18-130       1       03/17/21       16.07       03/17/21       19:40       67-64-1         Benzene       <	Pyrene		ug/kg ug/kg	411	167	1	03/17/21 16:29	03/18/21 15:22	129-00-0	
This       ND       ug/kg       H1       168       1       03/17/21       16:29       03/18/21       15:22       95-95-4         2,4,5-Trichlorophenol       ND       ug/kg       411       169       1       03/17/21       16:29       03/18/21       15:22       95-95-4         Surrogates	Pyridine	ND	ug/kg ug/kg	411	129	1	03/17/21 16:29	03/18/21 15:22	120 00 0	
Line         No         ug/kg         H1         169         1         03/17/21 16:29         03/17/21 16:22         80-03           24,6-Trichlorophenol         ND         ug/kg         411         169         1         03/17/21 16:29         03/18/21 15:22         88-06-2           Surrogates         Nitrobenzene-d5 (S)         76         %         21-130         1         03/17/21 16:29         03/18/21 15:22         321-60-8           Terphenyl-d14 (S)         64         %         15-130         1         03/17/21 16:29         03/18/21 15:22         317-88-3           2-Fluorophenol (S)         64         %         18-130         1         03/17/21 16:29         03/18/21 15:22         367-12-4           2,4,6-Tribromophenol (S)         49         %         18-130         1         03/17/21 16:29         03/18/21 15:22         178-78-3           8260D/5035A/5030B SC Volatiles         Analytical Method: EPA 8260D Preparation Method: EPA 5035A/5030B         Face         1         03/17/21 16:07         03/17/21 19/40         71-43-2           Bromobenzene         ND         ug/kg         7.4         3.0         1         03/17/21 16:07         03/17/21 19/40         74-97-5           Bromobenzene         ND         ug/kg         7.4 <td>2 4 5-Trichlorophenol</td> <td>ND</td> <td>ug/kg ug/kg</td> <td>411</td> <td>188</td> <td>1</td> <td>03/17/21 16:29</td> <td>03/18/21 15:22</td> <td>95-95-4</td> <td></td>	2 4 5-Trichlorophenol	ND	ug/kg ug/kg	411	188	1	03/17/21 16:29	03/18/21 15:22	95-95-4	
Antonionalistic         Nitroberzene-d5 (S)         76         % 21-130         1         03/17/21 16:29         03/18/21 15:22         115:22         115:20         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22         115:22 <th1< td=""><td>2 4 6-Trichlorophenol</td><td>ND</td><td>ug/kg ug/kg</td><td>411</td><td>169</td><td>1</td><td>03/17/21 16:29</td><td>03/18/21 15:22</td><td>88-06-2</td><td></td></th1<>	2 4 6-Trichlorophenol	ND	ug/kg ug/kg	411	169	1	03/17/21 16:29	03/18/21 15:22	88-06-2	
Nitrobenzene-d5 (S)         76         %         21-130         1         03/17/21 16:29         03/18/21 15:22         21465-60-0           2-Fluorobiphenyl (S)         49         %         19-130         1         03/17/21 16:29         03/18/21 15:22         321-60-8           Terphenyl-d14 (S)         64         %         15-130         1         03/17/21 16:29         03/18/21 15:22         1718-51-0           Phenol-d6 (S)         71         %         18-130         1         03/17/21 16:29         03/18/21 15:22         1327-88-3           2-Fluorophenol (S)         64         %         18-130         1         03/17/21 16:29         03/18/21 15:22         118-79-6           8260D/5035A/5030B SC Volatiles         Analytical Method: EPA 8260D Preparation Method: EPA 5035A/5030B         Pace Analytical Services - Charlotte         ND         ug/kg         7.4         2.4         1         03/17/21 16:07         03/17/21 19:40         71-43-2           Bromochoromethane         ND         ug/kg         7.4         2.4         1         03/17/21 16:07         03/17/21 19:40         76-64-1           Bromochoromethane         ND         ug/kg         7.4         2.4         1         03/17/21 16:07         03/17/21 19:40         76-27-4           <	Surrogates	i i b	ug/ng		100		00,11,21 10.20	00,10,21 10.22	00 00 2	
2-Fluorobiphenyl (S)       49       %       19-130       1       03/17/21 16:29       03/18/21 15:22       321-60-8         Terphenyl-d14 (S)       64       %       15-130       1       03/17/21 16:29       03/18/21 15:22       1718-51-0         Phenol-d6 (S)       71       %       18-130       1       03/17/21 16:29       03/18/21 15:22       13127-88-3         2-Fluorophenol (S)       64       %       18-130       1       03/17/21 16:29       03/18/21 15:22       367-12-4         2.4,6-Tribromophenol (S)       49       %       18-130       1       03/17/21 16:29       03/18/21 15:22       367-12-4         8260D/5035A/5030B SC Volatiles       Analytical Method: EPA 8260D       Preparation Method:       EPA 5055A/5030B       Featomatical Services - Charlotte         Acetone       ND       ug/kg       7.4       3.0       1       03/17/21 16:07       03/17/21 19:40       71-43-2         Bromobenzene       ND       ug/kg       7.4       2.4       1       03/17/21 16:07       03/17/21 19:40       74-97-5         Bromochloromethane       ND       ug/kg       7.4       2.4       1       03/17/21 19:40       74-97-5       2-52-2         Bromochloromethane       ND       ug/kg	Nitrobenzene-d5 (S)	76	%	21-130		1	03/17/21 16:29	03/18/21 15:22	4165-60-0	
Terphenyl-d14 (S)       64       %       15-130       1       03/17/21 16:29       03/18/21 15:22       1718-51-0         Phenol-d6 (S)       71       %       18-130       1       03/17/21 16:29       03/18/21 15:22       13127-88-3         2-Fluorophenol (S)       64       %       18-130       1       03/17/21 16:29       03/18/21 15:22       367-12-4         2,4,6-Tribromophenol (S)       49       %       18-130       1       03/17/21 16:29       03/18/21 15:22       367-12-4         8260D/5035A/5030B SC Volatiles       Analytical Method: EPA 8260D Preparation Method: EPA 50308       Pace Analytical Services - Charlotte       ND       ug/kg       14       03/17/21 16:07       03/17/21 19:40       67-64-1         Benzene       ND       ug/kg       7.4       2.4       1       03/17/21 16:07       03/17/21 19:40       71-43-2         Bromochloromethane       ND       ug/kg       7.4       2.4       1       03/17/21 19:40       74-43-2         Bromochloromethane       ND       ug/kg       7.4       2.4       1       03/17/21 19:40       75-27-4         Bromochloromethane       ND       ug/kg       7.4       2.6       1       03/17/21 19:40       74-83-9       1         B	2-Fluorobiphenyl (S)	49	%	19-130		1	03/17/21 16:29	03/18/21 15:22	321-60-8	
Phenol-d6 (S)       71       %       18-130       1       03/17/21 16:29       03/18/21 15:22       13127-88-3         2-Fluorophenol (S)       64       %       18-130       1       03/17/21 16:29       03/18/21 15:22       367-12-4         2,4,6-Tribromophenol (S)       49       %       18-130       1       03/17/21 16:29       03/18/21 15:22       118-79-6         8260D/5035A/5030B SC Volatiles       Analytical Method: EPA 8260D Preparation Method: EPA 5035A/5030B       Evaluation       Evaluation       Evaluation       67-64-1         Acetone       ND       ug/kg       7.4       3.0       1       03/17/21 16:07       03/17/21 19:40       67-64-1         Benzene       ND       ug/kg       7.4       2.4       1       03/17/21 16:07       03/17/21 19:40       71-43-2         Bromochloromethane       ND       ug/kg       7.4       2.4       1       03/17/21 16:07       03/17/21 19:40       74-97-5         Bromochloromethane       ND       ug/kg       7.4       2.6       1       03/17/21 16:07       03/17/21 19:40       75-25-2         Bromochloromethane       ND       ug/kg       7.4       2.6       1       03/17/21 16:07       03/17/21 19:40       74-83-9       I_1,1,1       1	Terphenyl-d14 (S)	64	%	15-130		1	03/17/21 16:29	03/18/21 15:22	1718-51-0	
2-Fluorophenol (S)       64       %       18-130       1       03/17/21 16:29       03/18/21 15:22       367-12-4         2,4,6-Tribromophenol (S)       49       %       18-130       1       03/17/21 16:29       03/18/21 15:22       118-79-6         8260D/5035A/5030B SC Volatiles       Analytical Method: EPA 8260D Preparation Method: EPA 5035A/5030B       EPA 5035A/5030B       EPA 5035A/5030B         Acetone       ND       ug/kg       148       47.6       1       03/17/21 16:07       03/17/21 19:40       67-64-1         Benzene       ND       ug/kg       7.4       3.0       1       03/17/21 16:07       03/17/21 19:40       71-43-2         Bromobenzene       ND       ug/kg       7.4       2.4       1       03/17/21 16:07       03/17/21 19:40       74-97-5         Bromochloromethane       ND       ug/kg       7.4       2.6       1       03/17/21 16:07       03/17/21 19:40       75-25-2         Bromomethane       ND       ug/kg       7.4       2.6       1       03/17/21 16:07       03/17/21 19:40       75-25-2         Bromomethane       ND       ug/kg       14.8       11.7       1       03/17/21 16:07       03/17/21 19:40       74-83-3         Pace-Butylbenzene       ND </td <td>Phenol-d6 (S)</td> <td>71</td> <td>%</td> <td>18-130</td> <td></td> <td>1</td> <td>03/17/21 16:29</td> <td>03/18/21 15:22</td> <td>13127-88-3</td> <td></td>	Phenol-d6 (S)	71	%	18-130		1	03/17/21 16:29	03/18/21 15:22	13127-88-3	
2,4,6-Tribromophenol (S)       49       %       18-130       1       03/17/21 16:29       03/18/21 15:22       118-79-6         8260D/5035A/5030B SC Volatiles       Analytical Method: EPA 8260D       Preparation Method: EPA 5035A/5030B       EPA 5035A/5030B       South State       South	2-Fluorophenol (S)	64	%	18-130		1	03/17/21 16:29	03/18/21 15:22	367-12-4	
8260D/5035A/5030B SC Volatiles         Analytical Method: EPA 8260D Preparation Method: EPA 5035A/5030B           Pace Analytical Services - Charlotte           Acetone         ND         ug/kg         148         47.6         1         03/17/21 16:07         03/17/21 19:40         67-64-1           Benzene         ND         ug/kg         7.4         3.0         1         03/17/21 16:07         03/17/21 19:40         71-43-2           Bromobenzene         ND         ug/kg         7.4         2.4         1         03/17/21 16:07         03/17/21 19:40         71-43-2           Bromochloromethane         ND         ug/kg         7.4         2.2         1         03/17/21 16:07         03/17/21 19:40         74-97-5           Bromochloromethane         ND         ug/kg         7.4         2.2         1         03/17/21 16:07         03/17/21 19:40         75-27-4           Bromoform         ND         ug/kg         7.4         2.6         1         03/17/21 16:07         03/17/21 19:40         75-25-2           Bromomethane         ND         ug/kg         14.8         11.7         1         03/17/21 16:07         03/17/21 19:40         74-83-9         IH,IK, L1,v1           2-Butanone (MEK)         ND         ug/kg <t< td=""><td>2,4,6-Tribromophenol (S)</td><td>49</td><td>%</td><td>18-130</td><td></td><td>1</td><td>03/17/21 16:29</td><td>03/18/21 15:22</td><td>118-79-6</td><td></td></t<>	2,4,6-Tribromophenol (S)	49	%	18-130		1	03/17/21 16:29	03/18/21 15:22	118-79-6	
ND         ug/kg         148         47.6         1         03/17/21 16:07         03/17/21 19:40         67-64-1           Benzene         ND         ug/kg         7.4         3.0         1         03/17/21 16:07         03/17/21 19:40         71-43-2           Bromobenzene         ND         ug/kg         7.4         2.4         1         03/17/21 16:07         03/17/21 19:40         71-43-2           Bromobenzene         ND         ug/kg         7.4         2.2         1         03/17/21 16:07         03/17/21 19:40         74-97-5           Bromochloromethane         ND         ug/kg         7.4         2.9         1         03/17/21 16:07         03/17/21 19:40         75-27-4           Bromoform         ND         ug/kg         7.4         2.6         1         03/17/21 16:07         03/17/21 19:40         75-25-2           Bromomethane         ND         ug/kg         14.8         11.7         1         03/17/21 16:07         03/17/21 19:40         78-93-3          Butylbenzene         ND         ug/kg         7.4         3.5         1         03/17/21 19:40         78-93-3          Butylbenzene         ND         ug/kg         7.4         3.5         1         03/17/21	8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA	8260D Prep	aration Met	hod: E	PA 5035A/5030B			
Acetone       ND       ug/kg       148       47.6       1       03/17/21 16:07       03/17/21 19:40       67-64-1         Benzene       ND       ug/kg       7.4       3.0       1       03/17/21 16:07       03/17/21 19:40       71-43-2         Bromobenzene       ND       ug/kg       7.4       2.4       1       03/17/21 16:07       03/17/21 19:40       108-86-1         Bromochloromethane       ND       ug/kg       7.4       2.2       1       03/17/21 16:07       03/17/21 19:40       74-97-5         Bromochloromethane       ND       ug/kg       7.4       2.9       1       03/17/21 16:07       03/17/21 19:40       75-27-4         Bromoform       ND       ug/kg       7.4       2.6       1       03/17/21 19:40       74-83-9       IH,IK, L1,v1         2-Butanone (MEK)       ND       ug/kg       14.8       11.7       1       03/17/21 16:07       03/17/21 19:40       78-93-3         n-Butylbenzene       ND       ug/kg       7.4       3.5       1       03/17/21 16:07       03/17/21 19:40       78-93-3         ect-Butylbenzene       ND       ug/kg       7.4       3.5       1       03/17/21 16:07       03/17/21 19:40       14-51-8 <tr< td=""><td></td><td>Pace Anal</td><td>ytical Services</td><td>s - Charlotte</td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>		Pace Anal	ytical Services	s - Charlotte						
Benzene         ND         ug/kg         7.4         3.0         1         03/17/21 16:07         03/17/21 19:40         71-43-2           Bromobenzene         ND         ug/kg         7.4         2.4         1         03/17/21 16:07         03/17/21 19:40         108-86-1           Bromochloromethane         ND         ug/kg         7.4         2.2         1         03/17/21 16:07         03/17/21 19:40         74-97-5           Bromochloromethane         ND         ug/kg         7.4         2.9         1         03/17/21 16:07         03/17/21 19:40         75-27-4           Bromoform         ND         ug/kg         7.4         2.6         1         03/17/21 16:07         03/17/21 19:40         75-25-2           Bromomethane         ND         ug/kg         1.4.8         11.7         1         03/17/21 16:07         03/17/21 19:40         74-83-9         IH,IK, L1,v1           2-Butanone (MEK)         ND         ug/kg         7.4         3.5         1         03/17/21 16:07         03/17/21 19:40         78-93-3           n-Butylbenzene         ND         ug/kg         7.4         3.5         1         03/17/21 16:07         03/17/21 19:40         135-98-8           tert-Butylbenzene         ND	Acetone	ND	ug/kg	148	47.6	1	03/17/21 16:07	03/17/21 19:40	67-64-1	
Bromobenzene         ND         ug/kg         7.4         2.4         1         03/17/21 16:07         03/17/21 19:40         108-86-1           Bromochloromethane         ND         ug/kg         7.4         2.2         1         03/17/21 16:07         03/17/21 19:40         74-97-5           Bromochloromethane         ND         ug/kg         7.4         2.9         1         03/17/21 16:07         03/17/21 19:40         75-27-4           Bromoform         ND         ug/kg         7.4         2.6         1         03/17/21 16:07         03/17/21 19:40         75-25-2           Bromomethane         ND         ug/kg         14.8         11.7         1         03/17/21 16:07         03/17/21 19:40         74-83-9         IH,IK, L1,v1           2-Butanone (MEK)         ND         ug/kg         14.8         35.6         1         03/17/21 16:07         03/17/21 19:40         78-93-3           n-Butylbenzene         ND         ug/kg         7.4         3.5         1         03/17/21 16:07         03/17/21 19:40         104-51-8           sec-Butylbenzene         ND         ug/kg         7.4         3.3         1         03/17/21 16:07         03/17/21 19:40         185-98-8           tert-Butylbenzene	Benzene	ND	ug/kg	7.4	3.0	1	03/17/21 16:07	03/17/21 19:40	71-43-2	
Bromochloromethane         ND         ug/kg         7.4         2.2         1         03/17/21 16:07         03/17/21 19:40         74-97-5           Bromodichloromethane         ND         ug/kg         7.4         2.9         1         03/17/21 16:07         03/17/21 19:40         75-27-4           Bromoform         ND         ug/kg         7.4         2.6         1         03/17/21 16:07         03/17/21 19:40         75-25-2           Bromomethane         ND         ug/kg         14.8         11.7         1         03/17/21 16:07         03/17/21 19:40         74-83-9         IH,IK, L1,v1           2-Butanone (MEK)         ND         ug/kg         14.8         35.6         1         03/17/21 16:07         03/17/21 19:40         78-93-3           n-Butylbenzene         ND         ug/kg         7.4         3.5         1         03/17/21 16:07         03/17/21 19:40         104-51-8           sec-Butylbenzene         ND         ug/kg         7.4         3.3         1         03/17/21 16:07         03/17/21 19:40         135-98-8           tert-Butylbenzene         ND         ug/kg         7.4         2.6         1         03/17/21 16:07         03/17/21 19:40         98-06-6         v2           Carbo	Bromobenzene	ND	ug/kg	7.4	2.4	1	03/17/21 16:07	03/17/21 19:40	108-86-1	
Bromodichloromethane         ND         ug/kg         7.4         2.9         1         03/17/21 16:07         03/17/21 19:40         75-27-4           Bromoform         ND         ug/kg         7.4         2.6         1         03/17/21 16:07         03/17/21 19:40         75-25-2           Bromomethane         ND         ug/kg         14.8         11.7         1         03/17/21 16:07         03/17/21 19:40         74-83-9         IH,IK, L1,v1           2-Butanone (MEK)         ND         ug/kg         14.8         35.6         1         03/17/21 16:07         03/17/21 19:40         78-93-3           n-Butylbenzene         ND         ug/kg         7.4         3.5         1         03/17/21 16:07         03/17/21 19:40         144-51-8           sec-Butylbenzene         ND         ug/kg         7.4         3.3         1         03/17/21 16:07         03/17/21 19:40         145-98-8           tert-Butylbenzene         ND         ug/kg         7.4         2.6         1         03/17/21 16:07         03/17/21 19:40         98-06-6         v2           Carbon tetrachloride         ND         ug/kg         7.4         2.8         1         03/17/21 16:07         03/17/21 19:40         98-06-6         v2	Bromochloromethane	ND	ug/kg	7.4	2.2	1	03/17/21 16:07	03/17/21 19:40	74-97-5	
Bromoform         ND         ug/kg         7.4         2.6         1         03/17/21 16:07         03/17/21 19:40         75-25-2           Bromomethane         ND         ug/kg         14.8         11.7         1         03/17/21 16:07         03/17/21 19:40         74-83-9         IH,IK, L1,v1           2-Butanone (MEK)         ND         ug/kg         14.8         35.6         1         03/17/21 16:07         03/17/21 19:40         78-93-3           n-Butylbenzene         ND         ug/kg         7.4         3.5         1         03/17/21 16:07         03/17/21 19:40         104-51-8           sec-Butylbenzene         ND         ug/kg         7.4         3.3         1         03/17/21 16:07         03/17/21 19:40         135-98-8           tert-Butylbenzene         ND         ug/kg         7.4         2.6         1         03/17/21 16:07         03/17/21 19:40         135-98-8           carbon tetrachloride         ND         ug/kg         7.4         2.6         1         03/17/21 16:07         03/17/21 19:40         98-06-6         v2           Carbon tetrachloride         ND         ug/kg         7.4         2.8         1         03/17/21 16:07         03/17/21 19:40         56-23-5           Ch	Bromodichloromethane	ND	ug/kg	7.4	2.9	1	03/17/21 16:07	03/17/21 19:40	75-27-4	
Bromomethane         ND         ug/kg         14.8         11.7         1         03/17/21 16:07         03/17/21 19:40         74-83-9         IH,IK, L1,v1           2-Butanone (MEK)         ND         ug/kg         148         35.6         1         03/17/21 16:07         03/17/21 19:40         78-93-3           n-Butylbenzene         ND         ug/kg         7.4         3.5         1         03/17/21 16:07         03/17/21 19:40         104-51-8           sec-Butylbenzene         ND         ug/kg         7.4         3.3         1         03/17/21 16:07         03/17/21 19:40         135-98-8           tert-Butylbenzene         ND         ug/kg         7.4         2.6         1         03/17/21 16:07         03/17/21 19:40         98-06-6         v2           Carbon tetrachloride         ND         ug/kg         7.4         2.8         1         03/17/21 16:07         03/17/21 19:40         56-23-5           Chlorobenzene         ND         ug/kg         7.4         1.4         1         03/17/21 16:07         03/17/21 19:40         108-90-7           Chlorobenzene         ND         ug/kg         7.4         1.4         1         03/17/21 16:07         03/17/21 19:40         75-00-3	Bromoform	ND	ug/kg	7.4	2.6	1	03/17/21 16:07	03/17/21 19:40	75-25-2	
2-Butanone (MEK)       ND       ug/kg       148       35.6       1       03/17/21 16:07       03/17/21 19:40       78-93-3         n-Butylbenzene       ND       ug/kg       7.4       3.5       1       03/17/21 16:07       03/17/21 19:40       104-51-8         sec-Butylbenzene       ND       ug/kg       7.4       3.3       1       03/17/21 16:07       03/17/21 19:40       135-98-8         tert-Butylbenzene       ND       ug/kg       7.4       2.6       1       03/17/21 16:07       03/17/21 19:40       98-06-6       v2         Carbon tetrachloride       ND       ug/kg       7.4       2.8       1       03/17/21 16:07       03/17/21 19:40       56-23-5         Chlorobenzene       ND       ug/kg       7.4       1.4       1       03/17/21 16:07       03/17/21 19:40       108-90-7         Chlorobenzene       ND       ug/kg       14.8       5.7       1       03/17/21 16:07       03/17/21 19:40       75-00-3	Bromomethane	ND	ug/kg	14.8	11.7	1	03/17/21 16:07	03/17/21 19:40	74-83-9	IH,IK,
n-Butylbenzene       ND       ug/kg       7.4       3.5       1       03/17/21 16:07       03/17/21 19:40       104-51-8         sec-Butylbenzene       ND       ug/kg       7.4       3.3       1       03/17/21 16:07       03/17/21 19:40       104-51-8         tert-Butylbenzene       ND       ug/kg       7.4       2.6       1       03/17/21 16:07       03/17/21 19:40       135-98-8         Carbon tetrachloride       ND       ug/kg       7.4       2.6       1       03/17/21 16:07       03/17/21 19:40       98-06-6       v2         Chlorobenzene       ND       ug/kg       7.4       2.8       1       03/17/21 16:07       03/17/21 19:40       56-23-5         Chlorobenzene       ND       ug/kg       7.4       1.4       1       03/17/21 16:07       03/17/21 19:40       108-90-7         Chlorobetnzene       ND       ug/kg       14.8       5.7       1       03/17/21 16:07       03/17/21 19:40       75-00-3	2-Butanone (MEK)	חוא	ua/ka	148	25 R	1	03/17/21 16:07	03/17/21 10.40	78-93-3	L1,v1
ND       ug/kg       7.4       3.3       1       03/17/21 16:07       03/17/21 19:40       135-98-8         sec-Butylbenzene       ND       ug/kg       7.4       2.6       1       03/17/21 16:07       03/17/21 19:40       135-98-8         tert-Butylbenzene       ND       ug/kg       7.4       2.6       1       03/17/21 16:07       03/17/21 19:40       98-06-6       v2         Carbon tetrachloride       ND       ug/kg       7.4       2.8       1       03/17/21 16:07       03/17/21 19:40       56-23-5         Chlorobenzene       ND       ug/kg       7.4       1.4       1       03/17/21 16:07       03/17/21 19:40       108-90-7         Chlorobetnane       ND       ug/kg       14.8       5.7       1       03/17/21 16:07       03/17/21 19:40       75-00-3	n-Butylbenzene		ug/kg	74	3.5	1	03/17/21 10:07	03/17/21 19:40	104-51-8	
iso back back back back back back back back	sec-Butylbenzene		ug/kg	7.4	3.J 3.J	1	03/17/21 16:07	03/17/21 10:40	135-98-8	
Carbon tetrachloride         ND         ug/kg         7.4         2.6         1         03/17/21 16:07         03/17/21 19:40         960000         V2           Carbon tetrachloride         ND         ug/kg         7.4         2.8         1         03/17/21 16:07         03/17/21 19:40         56-23-5           Chlorobenzene         ND         ug/kg         7.4         1.4         1         03/17/21 16:07         03/17/21 19:40         108-90-7           Chlorobethane         ND         ug/kg         14.8         5.7         1         03/17/21 16:07         03/17/21 19:40         75-00-3	tert-Butylbenzene		ug/kg	7.4	5.5 2.6	1	03/17/21 16:07	03/17/21 10:40	98-06-6	v2
Chlorobenzene       ND       ug/kg       7.4       1.4       1       03/17/21       16:07       03/17/21       19:40       108:90-7         Chlorobenzene       ND       ug/kg       14.8       5.7       1       03/17/21       16:07       03/17/21       19:40       108:90-7	Carbon tetrachloride	ND	ug/kg	7.4	2.0	1	03/17/21 16:07	03/17/21 19:40	56-23-5	v 4
Chloroethane ND ug/kg 14.8 5.7 1 03/17/21 16:07 03/17/21 19:40 75-00-3	Chlorobenzene	ND	ug/kg	74	2.0 1 4	1	03/17/21 16:07	03/17/21 19:40	108-90-7	
	Chloroethane	ND	ug/ka	14.8	5.7	1	03/17/21 16:07	03/17/21 19:40	75-00-3	



#### Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-18 (0.5-1.0)	Lab ID:	9252801101	1 Collected	d: 03/15/21	13:45	6 Received: 03/	16/21 11:45 Ma	atrix: Solid	
Results reported on a "dry weight"	" basis and are	e adjusted fo	or percent mo	isture, san	nple s	ize and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA	8260D Prepa	aration Met	hod: E	PA 5035A/5030B			
	Pace Anal	ytical Service	es - Charlotte						
Chloroform	ND	ua/ka	7.4	4.5	1	03/17/21 16:07	03/17/21 19:40	67-66-3	
Chloromethane	ND	ua/ka	14.8	6.2	1	03/17/21 16:07	03/17/21 19:40	74-87-3	
2-Chlorotoluene	ND	ua/ka	7.4	2.6	1	03/17/21 16:07	03/17/21 19:40	95-49-8	
4-Chlorotoluene	ND	ug/kg	7.4	1.3	1	03/17/21 16:07	03/17/21 19:40	106-43-4	
1,2-Dibromo-3-chloropropane	ND	ug/kg	7.4	2.9	1	03/17/21 16:07	03/17/21 19:40	96-12-8	
Dibromochloromethane	ND	ug/kg	7.4	4.2	1	03/17/21 16:07	03/17/21 19:40	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/kg	7.4	3.3	1	03/17/21 16:07	03/17/21 19:40	106-93-4	
Dibromomethane	ND	ug/kg	7.4	1.6	1	03/17/21 16:07	03/17/21 19:40	74-95-3	
1,2-Dichlorobenzene	ND	ug/kg	7.4	2.7	1	03/17/21 16:07	03/17/21 19:40	95-50-1	
1,3-Dichlorobenzene	ND	ug/kg	7.4	2.3	1	03/17/21 16:07	03/17/21 19:40	541-73-1	
1,4-Dichlorobenzene	ND	ug/kg	7.4	1.9	1	03/17/21 16:07	03/17/21 19:40	106-46-7	
Dichlorodifluoromethane	ND	ug/kg	14.8	3.2	1	03/17/21 16:07	03/17/21 19:40	75-71-8	
1,1-Dichloroethane	ND	ug/kg	7.4	3.1	1	03/17/21 16:07	03/17/21 19:40	75-34-3	
1,2-Dichloroethane	ND	ug/kg	7.4	4.9	1	03/17/21 16:07	03/17/21 19:40	107-06-2	
1,1-Dichloroethene	ND	ug/kg	7.4	3.1	1	03/17/21 16:07	03/17/21 19:40	75-35-4	
cis-1,2-Dichloroethene	ND	ug/kg	7.4	2.5	1	03/17/21 16:07	03/17/21 19:40	156-59-2	
trans-1,2-Dichloroethene	ND	ug/kg	7.4	2.6	1	03/17/21 16:07	03/17/21 19:40	156-60-5	
1,2-Dichloropropane	ND	ug/kg	7.4	2.2	1	03/17/21 16:07	03/17/21 19:40	78-87-5	
1,3-Dichloropropane	ND	ug/kg	7.4	2.3	1	03/17/21 16:07	03/17/21 19:40	142-28-9	
2,2-Dichloropropane	ND	ug/kg	7.4	2.4	1	03/17/21 16:07	03/17/21 19:40	594-20-7	
1,1-Dichloropropene	ND	ug/kg	7.4	3.6	1	03/17/21 16:07	03/17/21 19:40	563-58-6	
cis-1,3-Dichloropropene	ND	ug/kg	7.4	2.0	1	03/17/21 16:07	03/17/21 19:40	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/kg	7.4	2.6	1	03/17/21 16:07	03/17/21 19:40	10061-02-6	
Diisopropyl ether	ND	ug/kg	7.4	2.0	1	03/17/21 16:07	03/17/21 19:40	108-20-3	
Ethylbenzene	ND	ug/kg	7.4	3.5	1	03/17/21 16:07	03/17/21 19:40	100-41-4	
Hexachloro-1,3-butadiene	ND	ug/kg	14.8	12.1	1	03/17/21 16:07	03/17/21 19:40	87-68-3	IK
2-Hexanone	ND	ug/kg	74.1	7.1	1	03/17/21 16:07	03/17/21 19:40	591-78-6	
Isopropylbenzene (Cumene)	ND	ug/kg	7.4	2.5	1	03/17/21 16:07	03/17/21 19:40	98-82-8	
p-Isopropyltoluene	ND	ug/kg	7.4	3.6	1	03/17/21 16:07	03/17/21 19:40	99-87-6	
Methylene Chloride	ND	ug/kg	29.7	20.3	1	03/17/21 16:07	03/17/21 19:40	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	74.1	7.1	1	03/17/21 16:07	03/17/21 19:40	108-10-1	
Methyl-tert-butyl ether	ND	ug/kg	7.4	2.8	1	03/17/21 16:07	03/17/21 19:40	1634-04-4	
Naphthalene	ND	ug/kg	7.4	3.9	1	03/17/21 16:07	03/17/21 19:40	91-20-3	
n-Propylbenzene	ND	ug/kg	7.4	2.6	1	03/17/21 16:07	03/17/21 19:40	103-65-1	
Styrene	ND	ug/kg	7.4	2.0	1	03/17/21 16:07	03/17/21 19:40	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/kg	7.4	2.8	1	03/17/21 16:07	03/17/21 19:40	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/kg	7.4	2.0	1	03/17/21 16:07	03/17/21 19:40	79-34-5	
Tetrachloroethene	ND	ug/kg	7.4	2.3	1	03/17/21 16:07	03/17/21 19:40	127-18-4	
Toluene	ND	ug/kg	7.4	2.1	1	03/17/21 16:07	03/17/21 19:40	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/kg	7.4	6.0	1	03/17/21 16:07	03/17/21 19:40	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/kg	7.4	6.2	1	03/17/21 16:07	03/17/21 19:40	120-82-1	
1,1,1-Trichloroethane	ND	ug/kg	7.4	3.9	1	03/17/21 16:07	03/17/21 19:40	71-55-6	
1,1,2-Trichloroethane	ND	ug/kg	7.4	2.5	1	03/17/21 16:07	03/17/21 19:40	79-00-5	
Trichloroethene	ND	ug/kg	7.4	1.9	1	03/17/21 16:07	03/17/21 19:40	79-01-6	



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-18 (0.5-1.0)	Lab ID:	9252801101	1 Collected	1: 03/15/21	13:45	Received: 03/	16/21 11:45 Ma	atrix: Solid	
Results reported on a "dry weight"	basis and are	e adjusted fo	or percent mo	isture, san	nple s	ize and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA	A 8260D Prepa	aration Met	hod: E	PA 5035A/5030B			
	Pace Anal	ytical Service	es - Charlotte						
Trichlorofluoromethane	ND	ug/kg	7.4	4.1	1	03/17/21 16:07	03/17/21 19:40	75-69-4	
1,2,3-Trichloropropane	ND	ug/kg	7.4	3.8	1	03/17/21 16:07	03/17/21 19:40	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/kg	7.4	2.0	1	03/17/21 16:07	03/17/21 19:40	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/kg	7.4	2.5	1	03/17/21 16:07	03/17/21 19:40	108-67-8	
Vinyl acetate	ND	ug/kg	74.1	5.4	1	03/17/21 16:07	03/17/21 19:40	108-05-4	
Vinyl chloride	ND	ug/kg	14.8	3.8	1	03/17/21 16:07	03/17/21 19:40	75-01-4	
Xylene (Total)	ND	ug/kg	14.8	4.2	1	03/17/21 16:07	03/17/21 19:40	1330-20-7	
m&p-Xylene	ND	ug/kg	14.8	5.1	1	03/17/21 16:07	03/17/21 19:40	179601-23-1	
o-Xylene	ND	ug/kg	7.4	3.3	1	03/17/21 16:07	03/17/21 19:40	95-47-6	
Surrogates									
Toluene-d8 (S)	100	%	70-130		1	03/17/21 16:07	03/17/21 19:40	2037-26-5	
4-Bromofluorobenzene (S)	94	%	69-134		1	03/17/21 16:07	03/17/21 19:40	460-00-4	
1,2-Dichloroethane-d4 (S)	107	%	70-130		1	03/17/21 16:07	03/17/21 19:40	17060-07-0	
Percent Moisture	Analytical	Method: SW	-846						
	Pace Anal	ytical Service	es - Charlotte						
Percent Moisture	20.4	%	0.10	0.10	1		03/17/21 14:12		N2



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-18 (5.5-6.0)	Lab ID:	9252801101	2 Collected	1: 03/15/2 ⁻	1 13:50	Received: 03/	16/21 11:45 Ma	atrix: Solid	
Results reported on a "dry weig	ght" basis and are	e adjusted fo	or percent mo	isture, sar	nple s	ize and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270E MSSV Microwave	Analytical	Method: EPA	A 8270E Prepa	aration Met	hod: E	PA 3546			
	Pace Anal	ytical Service	es - Charlotte						
Acenaphthene	ND	ua/ka	429	151	1	03/17/21 16:29	03/18/21 15:53	83-32-9	
Acenaphthylene	ND	ua/ka	429	151	1	03/17/21 16:29	03/18/21 15:53	208-96-8	
Aniline	ND	ug/kg	429	168	1	03/17/21 16:29	03/18/21 15:53	62-53-3	
Anthracene	ND	ug/kg	429	140	1	03/17/21 16:29	03/18/21 15:53	120-12-7	
Benzo(a)anthracene	ND	ug/kg	429	143	1	03/17/21 16:29	03/18/21 15:53	56-55-3	
Benzo(a)pyrene	ND	ug/kg	429	148	1	03/17/21 16:29	03/18/21 15:53	50-32-8	
Benzo(b)fluoranthene	ND	ug/kg	429	143	1	03/17/21 16:29	03/18/21 15:53	205-99-2	
Benzo(g,h,i)perylene	ND	ug/kg	429	166	1	03/17/21 16:29	03/18/21 15:53	191-24-2	
Benzo(k)fluoranthene	ND	ug/kg	429	151	1	03/17/21 16:29	03/18/21 15:53	207-08-9	
Benzoic Acid	ND	ug/kg	2140	921	1	03/17/21 16:29	03/18/21 15:53	65-85-0	
Benzyl alcohol	ND	ug/kg	858	325	1	03/17/21 16:29	03/18/21 15:53	100-51-6	
4-Bromophenylphenyl ether	ND	ug/kg	429	165	1	03/17/21 16:29	03/18/21 15:53	101-55-3	
Butylbenzylphthalate	ND	ug/kg	429	181	1	03/17/21 16:29	03/18/21 15:53	85-68-7	
4-Chloro-3-methylphenol	ND	ug/kg	858	302	1	03/17/21 16:29	03/18/21 15:53	59-50-7	
4-Chloroaniline	ND	ug/kg	858	337	1	03/17/21 16:29	03/18/21 15:53	106-47-8	
bis(2-Chloroethoxy)methane	ND	ug/kg	429	178	1	03/17/21 16:29	03/18/21 15:53	111-91-1	
bis(2-Chloroethyl) ether	ND	ug/kg	429	161	1	03/17/21 16:29	03/18/21 15:53	111-44-4	
2-Chloronaphthalene	ND	ug/kg	429	170	1	03/17/21 16:29	03/18/21 15:53	91-58-7	
2-Chlorophenol	ND	ug/kg	429	161	1	03/17/21 16:29	03/18/21 15:53	95-57-8	
4-Chlorophenylphenyl ether	ND	ug/kg	429	160	1	03/17/21 16:29	03/18/21 15:53	7005-72-3	
Chrysene	ND	ug/kg	429	156	1	03/17/21 16:29	03/18/21 15:53	218-01-9	
Dibenz(a,h)anthracene	ND	ug/kg	429	165	1	03/17/21 16:29	03/18/21 15:53	53-70-3	
Dibenzofuran	ND	ug/kg	429	155	1	03/17/21 16:29	03/18/21 15:53	132-64-9	
3,3'-Dichlorobenzidine	ND	ug/kg	858	290	1	03/17/21 16:29	03/18/21 15:53	91-94-1	IL
2,4-Dichlorophenol	ND	ug/kg	429	168	1	03/17/21 16:29	03/18/21 15:53	120-83-2	
Diethylphthalate	ND	ug/kg	429	157	1	03/17/21 16:29	03/18/21 15:53	84-66-2	
2,4-Dimethylphenol	ND	ug/kg	429	178	1	03/17/21 16:29	03/18/21 15:53	105-67-9	
Dimethylphthalate	ND	ug/kg	429	156	1	03/17/21 16:29	03/18/21 15:53	131-11-3	
Di-n-butylphthalate	ND	ug/kg	429	144	1	03/17/21 16:29	03/18/21 15:53	84-74-2	
4,6-Dinitro-2-methylphenol	ND	ug/kg	858	400	1	03/17/21 16:29	03/18/21 15:53	534-52-1	
2,4-Dinitrophenol	ND	ug/kg	2140	1330	1	03/17/21 16:29	03/18/21 15:53	51-28-5	
2,4-Dinitrotoluene	ND	ug/kg	429	165	1	03/17/21 16:29	03/18/21 15:53	121-14-2	
2,6-Dinitrotoluene	ND	ug/kg	429	157	1	03/17/21 16:29	03/18/21 15:53	606-20-2	
Di-n-octylphthalate	ND	ug/kg	429	169	1	03/17/21 16:29	03/18/21 15:53	117-84-0	
bis(2-Ethylhexyl)phthalate	ND	ug/kg	429	166	1	03/17/21 16:29	03/18/21 15:53	117-81-7	
Fluoranthene	ND	ug/kg	429	147	1	03/17/21 16:29	03/18/21 15:53	206-44-0	
Fluorene	ND	ug/kg	429	151	1	03/17/21 16:29	03/18/21 15:53	86-73-7	
Hexachlorobenzene	ND	ug/kg	429	168	1	03/17/21 16:29	03/18/21 15:53	118-74-1	
Hexachlorocyclopentadiene	ND	ug/kg	429	246	1	03/17/21 16:29	03/18/21 15:53	77-47-4	
Hexachloroethane	ND	ug/kg	429	164	1	03/17/21 16:29	03/18/21 15:53	67-72-1	
Indeno(1,2,3-cd)pyrene	ND	ug/kg	429	169	1	03/17/21 16:29	03/18/21 15:53	193-39-5	
Isophorone	ND	ug/kg	429	191	1	03/17/21 16:29	03/18/21 15:53	78-59-1	
1-Methylnaphthalene	ND	ug/kg	429	151	1	03/17/21 16:29	03/18/21 15:53	90-12-0	
2-Methylnaphthalene	ND	ug/kg	429	172	1	03/17/21 16:29	03/18/21 15:53	91-57-6	



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-18 (5.5-6.0)	Lab ID:	9252801101	2 Collected	I: 03/15/21	1 13:50	Received: 03/	16/21 11:45 Ma	atrix: Solid	
Results reported on a "dry weight	" basis and are	e adjusted fo	or percent mo	isture, sar	nple s	ize and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270F MSSV Microwave	Analytical	Method: EP/	8270F Prepa	aration Met	hod: F	PA 3546			
	Pace Anal	vtical Service	es - Charlotte						
	1 000 / 1101		onanotte						
2-Methylphenol(o-Cresol)	ND	ug/kg	429	175	1	03/17/21 16:29	03/18/21 15:53	95-48-7	
3&4-Methylphenol(m&p Cresol)	ND	ug/kg	429	173	1	03/17/21 16:29	03/18/21 15:53	15831-10-4	
2-Nitroaniline	ND	ug/kg	2140	351	1	03/17/21 16:29	03/18/21 15:53	88-74-4	
3-Nitroaniline	ND	ug/kg	2140	337	1	03/17/21 16:29	03/18/21 15:53	99-09-2	
4-Nitroaniline	ND	ug/kg	858	326	1	03/17/21 16:29	03/18/21 15:53	100-01-6	
Nitrobenzene	ND	ug/kg	429	199	1	03/17/21 16:29	03/18/21 15:53	98-95-3	
2-Nitrophenol	ND	ug/kg	429	186	1	03/17/21 16:29	03/18/21 15:53	88-75-5	
4-Nitrophenol	ND	ug/kg	2140	829	1	03/17/21 16:29	03/18/21 15:53	100-02-7	
N-Nitrosodimethylamine	ND	ug/kg	429	144	1	03/17/21 16:29	03/18/21 15:53	62-75-9	
N-Nitroso-di-n-propylamine	ND	ug/kg	429	161	1	03/17/21 16:29	03/18/21 15:53	621-64-7	
N-Nitrosodiphenylamine	ND	ug/kg	429	152	1	03/17/21 16:29	03/18/21 15:53	86-30-6	
2,2'-Oxybis(1-chloropropane)	ND	ug/kg	429	204	1	03/17/21 16:29	03/18/21 15:53	108-60-1	
Pentachlorophenol	ND	ug/kg	858	420	1	03/17/21 16:29	03/18/21 15:53	87-86-5	
Phenanthrene	ND	ug/kg	429	140	1	03/17/21 16:29	03/18/21 15:53	85-01-8	
Phenol	ND	ug/kg	429	191	1	03/17/21 16:29	03/18/21 15:53	108-95-2	
Pyrene	ND	ug/kg	429	174	1	03/17/21 16:29	03/18/21 15:53	129-00-0	
Pyridine	ND	ug/kg	429	135	1	03/17/21 16:29	03/18/21 15:53	110-86-1	
2,4,5-Trichlorophenol	ND	ug/kg	429	196	1	03/17/21 16:29	03/18/21 15:53	95-95-4	
2,4,6-Trichlorophenol	ND	ug/kg	429	177	1	03/17/21 16:29	03/18/21 15:53	88-06-2	
Nitrobenzene-d5 (S)	70	%	21-130		1	03/17/21 16:29	03/18/21 15:53	4165-60-0	
2-Fluorobiohenvl (S)	45	%	19-130		1	03/17/21 16:29	03/18/21 15:53	321-60-8	
Terphenyl-d14 (S)	49	%	15-130		1	03/17/21 16:29	03/18/21 15:53	1718-51-0	
Phenol-d6 (S)	68	%	18-130		1	03/17/21 16:29	03/18/21 15:53	13127-88-3	
2-Fluorophenol (S)	63	%	18-130		1	03/17/21 16:29	03/18/21 15:53	367-12-4	
2,4,6-Tribromophenol (S)	69	%	18-130		1	03/17/21 16:29	03/18/21 15:53	118-79-6	
8260D/5035A/5030B SC Volatiles	Analytical	Method: EP/	8260D Prep	aration Met	hod: F	PA 5035A/5030B			
	Pace Anal	ytical Service	es - Charlotte						
Acetone	ND	ug/kg	183	58.6	1	03/17/21 16:07	03/17/21 19:57	67-64-1	
Benzene	ND	ug/kg	9.1	3.6	1	03/17/21 16:07	03/17/21 19:57	71-43-2	
Bromobenzene	ND	ug/kg	9.1	3.0	1	03/17/21 16:07	03/17/21 19:57	108-86-1	
Bromochloromethane	ND	ug/kg	9.1	2.7	1	03/17/21 16:07	03/17/21 19:57	74-97-5	
Bromodichloromethane	ND	ug/kg	9.1	3.5	1	03/17/21 16:07	03/17/21 19:57	75-27-4	
Bromoform	ND	ug/kg	9.1	3.2	1	03/17/21 16:07	03/17/21 19:57	75-25-2	
Bromomethane	ND	ug/kg	18.3	14.4	1	03/17/21 16:07	03/17/21 19:57	74-83-9	IH,IK,
2 Butanana (MEK)			100	0 01	4	02/17/21 16:07	02/17/24 10.57	79 02 2	L1,v1
		ug/kg	183	43.8	T A	03/17/21 16:07	03/17/21 19:57	10-93-3	
		ug/kg	9.1	4.3	ן ∡	03/17/21 16:07	03/17/21 19:57	104-51-8	
sec-Butylbenzene		ug/kg	9.1	4.0	ן ∡	03/17/21 16:07	03/17/21 19:57	132-98-8	
		ug/kg	9.1	3.3	ï ∡	03/17/21 16:07	03/17/21 19:57	90-00-0 56 00 5	٧Z
		ug/kg	9.1	3.4	ן ∡	03/17/21 16:07	03/17/21 19:57	00-23-5	
Chloropenzene		ug/Kg	9.1	1.8	1 4	03/17/21 16:07	03/17/21 19:57	108-90-7	
Unioroethane	ND	ug/kg	18.3	7.0	1	03/17/21 16:07	03/17/21 19:57	15-00-3	



#### Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-18 (5.5-6.0)	Lab ID:	9252801101	2 Collected	I: 03/15/21	1 13:50	Received: 03/	16/21 11:45 M	atrix: Solid	
Results reported on a "dry weight"	" basis and are	e adjusted fo	or percent mo	isture, sar	nple s	ize and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA	8260D Prepa	aration Met	hod: E	PA 5035A/5030B			
	Pace Anal	ytical Service	es - Charlotte						
Chloroform	ND	ua/ka	9.1	5.6	1	03/17/21 16:07	03/17/21 19:57	67-66-3	
Chloromethane	ND	ug/kg	18.3	7.7	1	03/17/21 16:07	03/17/21 19:57	74-87-3	
2-Chlorotoluene	ND	ug/kg	9.1	3.2	1	03/17/21 16:07	03/17/21 19:57	95-49-8	
4-Chlorotoluene	ND	ug/kg	9.1	1.6	1	03/17/21 16:07	03/17/21 19:57	106-43-4	
1,2-Dibromo-3-chloropropane	ND	ug/kg	9.1	3.5	1	03/17/21 16:07	03/17/21 19:57	96-12-8	
Dibromochloromethane	ND	ug/kg	9.1	5.1	1	03/17/21 16:07	03/17/21 19:57	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/kg	9.1	4.0	1	03/17/21 16:07	03/17/21 19:57	106-93-4	
Dibromomethane	ND	ug/kg	9.1	2.0	1	03/17/21 16:07	03/17/21 19:57	74-95-3	
1,2-Dichlorobenzene	ND	ug/kg	9.1	3.3	1	03/17/21 16:07	03/17/21 19:57	95-50-1	
1,3-Dichlorobenzene	ND	ug/kg	9.1	2.8	1	03/17/21 16:07	03/17/21 19:57	541-73-1	
1,4-Dichlorobenzene	ND	ug/kg	9.1	2.4	1	03/17/21 16:07	03/17/21 19:57	106-46-7	
Dichlorodifluoromethane	ND	ug/kg	18.3	4.0	1	03/17/21 16:07	03/17/21 19:57	75-71-8	
1,1-Dichloroethane	ND	ug/kg	9.1	3.8	1	03/17/21 16:07	03/17/21 19:57	75-34-3	
1,2-Dichloroethane	ND	ug/kg	9.1	6.0	1	03/17/21 16:07	03/17/21 19:57	107-06-2	
1,1-Dichloroethene	ND	ug/kg	9.1	3.8	1	03/17/21 16:07	03/17/21 19:57	75-35-4	
cis-1,2-Dichloroethene	ND	ug/kg	9.1	3.1	1	03/17/21 16:07	03/17/21 19:57	156-59-2	
trans-1,2-Dichloroethene	ND	ug/kg	9.1	3.2	1	03/17/21 16:07	03/17/21 19:57	156-60-5	
1,2-Dichloropropane	ND	ug/kg	9.1	2.7	1	03/17/21 16:07	03/17/21 19:57	78-87-5	
1,3-Dichloropropane	ND	ug/kg	9.1	2.8	1	03/17/21 16:07	03/17/21 19:57	142-28-9	
2,2-Dichloropropane	ND	ug/kg	9.1	3.0	1	03/17/21 16:07	03/17/21 19:57	594-20-7	
1,1-Dichloropropene	ND	ug/kg	9.1	4.4	1	03/17/21 16:07	03/17/21 19:57	563-58-6	
cis-1,3-Dichloropropene	ND	ug/kg	9.1	2.5	1	03/17/21 16:07	03/17/21 19:57	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/kg	9.1	3.1	1	03/17/21 16:07	03/17/21 19:57	10061-02-6	
Diisopropyl ether	ND	ug/kg	9.1	2.5	1	03/17/21 16:07	03/17/21 19:57	108-20-3	
Ethylbenzene	ND	ug/kg	9.1	4.3	1	03/17/21 16:07	03/17/21 19:57	100-41-4	
Hexachloro-1,3-butadiene	ND	ug/kg	18.3	14.9	1	03/17/21 16:07	03/17/21 19:57	87-68-3	IK
2-Hexanone	ND	ug/kg	91.3	8.8	1	03/17/21 16:07	03/17/21 19:57	591-78-6	
Isopropylbenzene (Cumene)	ND	ug/kg	9.1	3.1	1	03/17/21 16:07	03/17/21 19:57	98-82-8	
p-Isopropyltoluene	ND	ug/kg	9.1	4.5	1	03/17/21 16:07	03/17/21 19:57	99-87-6	
Methylene Chloride	ND	ug/kg	36.5	25.0	1	03/17/21 16:07	03/17/21 19:57	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	91.3	8.8	1	03/17/21 16:07	03/17/21 19:57	108-10-1	
Methyl-tert-butyl ether	ND	ug/kg	9.1	3.4	1	03/17/21 16:07	03/17/21 19:57	1634-04-4	
Naphthalene	ND	ug/kg	9.1	4.8	1	03/17/21 16:07	03/17/21 19:57	91-20-3	
n-Propylbenzene	ND	ug/kg	9.1	3.3	1	03/17/21 16:07	03/17/21 19:57	103-65-1	
Styrene	ND	ug/kg	9.1	2.4	1	03/17/21 16:07	03/17/21 19:57	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/kg	9.1	3.5	1	03/17/21 16:07	03/17/21 19:57	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/kg	9.1	2.4	1	03/17/21 16:07	03/17/21 19:57	79-34-5	
Tetrachloroethene	ND	ug/kg	9.1	2.9	1	03/17/21 16:07	03/17/21 19:57	127-18-4	
Toluene	ND	ug/kg	9.1	2.6	1	03/17/21 16:07	03/17/21 19:57	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/kg	9.1	7.4	1	03/17/21 16:07	03/17/21 19:57	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/kg	9.1	7.7	1	03/17/21 16:07	03/17/21 19:57	120-82-1	
1,1,1-Trichloroethane	ND	ug/kg	9.1	4.7	1	03/17/21 16:07	03/17/21 19:57	71-55-6	
1,1,2-Trichloroethane	ND	ug/kg	9.1	3.0	1	03/17/21 16:07	03/17/21 19:57	79-00-5	
Trichloroethene	ND	ug/kg	9.1	2.4	1	03/17/21 16:07	03/17/21 19:57	79-01-6	



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-18 (5.5-6.0)	Lab ID:	925280110	12 Collected	I: 03/15/21	13:50	Received: 03/	16/21 11:45 Ma	atrix: Solid	
Results reported on a "dry weight"	' basis and are	e adjusted f	or percent mo	isture, sar	nple s	ize and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A/5030B SC Volatiles	Analytical	Method: EP	A 8260D Prepa	aration Met	hod: E	PA 5035A/5030B			
	Pace Anal	ytical Servic	es - Charlotte						
Trichlorofluoromethane	ND	ug/kg	9.1	5.0	1	03/17/21 16:07	03/17/21 19:57	75-69-4	
1,2,3-Trichloropropane	ND	ug/kg	9.1	4.6	1	03/17/21 16:07	03/17/21 19:57	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/kg	9.1	2.5	1	03/17/21 16:07	03/17/21 19:57	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/kg	9.1	3.1	1	03/17/21 16:07	03/17/21 19:57	108-67-8	
Vinyl acetate	ND	ug/kg	91.3	6.6	1	03/17/21 16:07	03/17/21 19:57	108-05-4	
Vinyl chloride	ND	ug/kg	18.3	4.6	1	03/17/21 16:07	03/17/21 19:57	75-01-4	
Xylene (Total)	ND	ug/kg	18.3	5.2	1	03/17/21 16:07	03/17/21 19:57	1330-20-7	
m&p-Xylene	ND	ug/kg	18.3	6.2	1	03/17/21 16:07	03/17/21 19:57	179601-23-1	
o-Xylene	ND	ug/kg	9.1	4.0	1	03/17/21 16:07	03/17/21 19:57	95-47-6	
Surrogates									
Toluene-d8 (S)	101	%	70-130		1	03/17/21 16:07	03/17/21 19:57	2037-26-5	
4-Bromofluorobenzene (S)	95	%	69-134		1	03/17/21 16:07	03/17/21 19:57	460-00-4	
1,2-Dichloroethane-d4 (S)	109	%	70-130		1	03/17/21 16:07	03/17/21 19:57	17060-07-0	
Percent Moisture	Analytical	Method: SW	/-846						
	Pace Anal	ytical Servic	es - Charlotte						
Percent Moisture	22.5	%	0.10	0.10	1		03/17/21 14:12		N2



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-21 (0.5-1.0)	Lab ID:	92528011013	Collected	: 03/15/21	15:05	Received: 03	/16/21 11:45 Mat	trix: Solid	
Results reported on a "dry weight"	basis and ar	e adjusted for _l	percent mo	isture, san	nple siz	e and any dilut	tions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture	Analytical Pace Ana	Method: SW-84 lytical Services	46 - Charlotte						
Percent Moisture	13.5	%	0.10	0.10	1		03/17/21 14:12		N2



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-21 (5.5-6.0)	Lab ID:	92528011014	Collected	: 03/15/21	15:10	Received: 03	/16/21 11:45 Mat	rix: Solid	
Results reported on a "dry weight	" basis and are	adjusted for	percent mo	isture, san	nple siz	e and any dilut	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture	Analytical Pace Anal	Method: SW-84 ytical Services	46 - Charlotte						
Percent Moisture	34.0	%	0.10	0.10	1		03/17/21 14:12		N2



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-22 (0.5-1.0)	Lab ID:	92528011015	Collected	: 03/15/21	15:25	Received: 03	8/16/21 11:45 Mat	trix: Solid	
Results reported on a "dry weigh	t" basis and are	adjusted for	percent mo	isture, san	nple siz	e and any dilu	tions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture	Analytical Pace Analy	Method: SW-84 ytical Services	46 - Charlotte					-	
Percent Moisture	13.4	%	0.10	0.10	1		03/17/21 14:13		N2



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-22 (5.5-6.0)	Lab ID:	92528011016	Collected	: 03/15/21	15:30	Received: 03	/16/21 11:45 Mat	trix: Solid	
Results reported on a "dry weight	" basis and are	adjusted for	percent mo	isture, san	nple siz	e and any dilut	tions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture	Analytical Pace Analy	Method: SW-84 ytical Services	46 - Charlotte						
Percent Moisture	40.6	%	0.10	0.10	1		03/17/21 14:13		N2



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-23 (0.5-1.0)	Lab ID:	9252801101	7 Collected	: 03/15/2	1 15:35	6 Received: 03/	16/21 11:45 Ma	atrix: Solid	
Results reported on a "dry weig	ght" basis and are	e adjusted fo	or percent mo	isture, sar	mple s	ize and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270E MSSV Microwave	Analytical	Method: EPA	A 8270E Prepa	aration Met	thod: E	PA 3546			
	Pace Anal	ytical Service	es - Charlotte						
Acenaphthene	ΝD	ua/ka	385	135	1	03/24/21 11.18	03/24/21 16:03	83-32-9	
Acenaphthylene	ND	ug/kg	385	135	1	03/24/21 11:18	03/24/21 16:03	208-96-8	
Aniline	ND	ug/kg	385	151	1	03/24/21 11:18	03/24/21 16:03	62-53-3	
Anthracene	ND	ug/kg	385	126	1	03/24/21 11:18	03/24/21 16:03	120-12-7	
Benzo(a)anthracene	ND	ua/ka	385	128	1	03/24/21 11:18	03/24/21 16:03	56-55-3	
Benzo(a)pyrene	ND	ug/kg	385	133	1	03/24/21 11:18	03/24/21 16:03	50-32-8	
Benzo(b)fluoranthene	ND	ua/ka	385	128	1	03/24/21 11:18	03/24/21 16:03	205-99-2	
Benzo(a,h,i)pervlene	ND	ua/ka	385	149	1	03/24/21 11:18	03/24/21 16:03	191-24-2	v1
Benzo(k)fluoranthene	ND	ua/ka	385	135	1	03/24/21 11:18	03/24/21 16:03	207-08-9	
Benzoic Acid	ND	ug/kg	1930	828	1	03/24/21 11:18	03/24/21 16:03	65-85-0	
Benzyl alcohol	ND	ug/kg	771	292	1	03/24/21 11:18	03/24/21 16:03	100-51-6	
4-Bromophenylphenyl ether	ND	ug/kg	385	148	1	03/24/21 11:18	03/24/21 16:03	101-55-3	
Butylbenzylphthalate	ND	ug/kg	385	162	1	03/24/21 11:18	03/24/21 16:03	85-68-7	v1
4-Chloro-3-methylphenol	ND	ug/kg	771	271	1	03/24/21 11:18	03/24/21 16:03	59-50-7	
4-Chloroaniline	ND	ug/kg	771	302	1	03/24/21 11:18	03/24/21 16:03	106-47-8	
bis(2-Chloroethoxy)methane	ND	ug/kg	385	160	1	03/24/21 11:18	03/24/21 16:03	111-91-1	
bis(2-Chloroethyl) ether	ND	ug/kg	385	145	1	03/24/21 11:18	03/24/21 16:03	111-44-4	M1
2-Chloronaphthalene	ND	ug/kg	385	153	1	03/24/21 11:18	03/24/21 16:03	91-58-7	
2-Chlorophenol	ND	ug/kg	385	145	1	03/24/21 11:18	03/24/21 16:03	95-57-8	
4-Chlorophenylphenyl ether	ND	ug/kg	385	144	1	03/24/21 11:18	03/24/21 16:03	7005-72-3	
Chrysene	ND	ug/kg	385	140	1	03/24/21 11:18	03/24/21 16:03	218-01-9	
Dibenz(a,h)anthracene	ND	ug/kg	385	148	1	03/24/21 11:18	03/24/21 16:03	53-70-3	
Dibenzofuran	ND	ug/kg	385	139	1	03/24/21 11:18	03/24/21 16:03	132-64-9	
3,3'-Dichlorobenzidine	ND	ug/kg	771	260	1	03/24/21 11:18	03/24/21 16:03	91-94-1	IL
2,4-Dichlorophenol	ND	ug/kg	385	151	1	03/24/21 11:18	03/24/21 16:03	120-83-2	
Diethylphthalate	ND	ug/kg	385	141	1	03/24/21 11:18	03/24/21 16:03	84-66-2	
2,4-Dimethylphenol	ND	ug/kg	385	160	1	03/24/21 11:18	03/24/21 16:03	105-67-9	
Dimethylphthalate	ND	ug/kg	385	140	1	03/24/21 11:18	03/24/21 16:03	131-11-3	
Di-n-butylphthalate	ND	ug/kg	385	130	1	03/24/21 11:18	03/24/21 16:03	84-74-2	
4,6-Dinitro-2-methylphenol	ND	ug/kg	771	360	1	03/24/21 11:18	03/24/21 16:03	534-52-1	
2,4-Dinitrophenol	ND	ug/kg	1930	1190	1	03/24/21 11:18	03/24/21 16:03	51-28-5	
2,4-Dinitrotoluene	ND	ug/kg	385	148	1	03/24/21 11:18	03/24/21 16:03	121-14-2	
2,6-Dinitrotoluene	ND	ug/kg	385	141	1	03/24/21 11:18	03/24/21 16:03	606-20-2	
Di-n-octylphthalate	ND	ug/kg	385	152	1	03/24/21 11:18	03/24/21 16:03	117-84-0	v1
bis(2-Ethylhexyl)phthalate	ND	ug/kg	385	149	1	03/24/21 11:18	03/24/21 16:03	117-81-7	
Fluoranthene	ND	ug/kg	385	132	1	03/24/21 11:18	03/24/21 16:03	206-44-0	
Fluorene	ND	ug/kg	385	135	1	03/24/21 11:18	03/24/21 16:03	86-73-7	
Hexachlorobenzene	ND	ug/kg	385	151	1	03/24/21 11:18	03/24/21 16:03	118-74-1	
Hexachlorocyclopentadiene	ND	ug/kg	385	221	1	03/24/21 11:18	03/24/21 16:03	77-47-4	
Hexachloroethane	ND	ug/kg	385	147	1	03/24/21 11:18	03/24/21 16:03	67-72-1	
Indeno(1,2,3-cd)pyrene	ND	ug/kg	385	152	1	03/24/21 11:18	03/24/21 16:03	193-39-5	
Isophorone	ND	ug/kg	385	172	1	03/24/21 11:18	03/24/21 16:03	78-59-1	
1-Methylnaphthalene	ND	ug/kg	385	135	1	03/24/21 11:18	03/24/21 16:03	90-12-0	
2-Methylnaphthalene	ND	ug/kg	385	154	1	03/24/21 11:18	03/24/21 16:03	91-57-6	



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-23 (0.5-1.0)	Lab ID:	9252801101	7 Collected	d: 03/15/21	15:35	5 Received: 03/	/16/21 11:45 Ma	atrix: Solid	
Results reported on a "dry weight"	" basis and are	e adjusted fo	or percent mo	oisture, san	nple s	ize and any diluti	ions.		
		-	Report		-	-			
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270E MSSV Microwave	Analytical	Method: EPA	8270E Prep	aration Met	hod: E	PA 3546			
	Pace Anal	ytical Service	es - Charlotte						
2-Methylphenol(o-Cresol)	ND	ua/ka	385	158	1	03/24/21 11.18	03/24/21 16:03	95-48-7	
3&4-Methylphenol(m&p Cresol)	ND	ug/kg	385	155	1	03/24/21 11:18	03/24/21 16:03	15831-10-4	
2-Nitroaniline	ND	ug/kg	1930	315	1	03/24/21 11:18	03/24/21 16:03	88-74-4	
3-Nitroaniline	ND	ug/kg	1930	302	1	03/24/21 11:18	03/24/21 16:03	99-09-2	
4-Nitroaniline	ND	ua/ka	771	293	1	03/24/21 11:18	03/24/21 16:03	100-01-6	
Nitrobenzene	ND	ua/ka	385	179	1	03/24/21 11:18	03/24/21 16:03	98-95-3	
2-Nitrophenol	ND	ua/ka	385	167	1	03/24/21 11:18	03/24/21 16:03	88-75-5	
4-Nitrophenol	ND	ua/ka	1930	745	1	03/24/21 11:18	03/24/21 16:03	100-02-7	
N-Nitrosodimethylamine	ND	ua/ka	385	130	1	03/24/21 11:18	03/24/21 16:03	62-75-9	
N-Nitroso-di-n-propylamine	ND	ua/ka	385	145	1	03/24/21 11:18	03/24/21 16:03	621-64-7	
N-Nitrosodiphenylamine	ND	ug/kg	385	137	1	03/24/21 11:18	03/24/21 16:03	86-30-6	
2,2'-Oxybis(1-chloropropane)	ND	ug/kg	385	183	1	03/24/21 11:18	03/24/21 16:03	108-60-1	
Pentachlorophenol	ND	ug/kg	771	377	1	03/24/21 11:18	03/24/21 16:03	87-86-5	
Phenanthrene	ND	ug/kg	385	126	1	03/24/21 11:18	03/24/21 16:03	85-01-8	
Phenol	ND	ug/kg	385	172	1	03/24/21 11:18	03/24/21 16:03	108-95-2	
Pyrene	ND	ug/kg	385	157	1	03/24/21 11:18	03/24/21 16:03	129-00-0	
Pyridine	ND	ug/kg	385	121	1	03/24/21 11:18	03/24/21 16:03	110-86-1	
2,4,5-Trichlorophenol	ND	ug/kg	385	176	1	03/24/21 11:18	03/24/21 16:03	95-95-4	
2,4,6-Trichlorophenol	ND	ug/kg	385	159	1	03/24/21 11:18	03/24/21 16:03	88-06-2	
Surrogates									
Nitrobenzene-d5 (S)	63	%	21-130		1	03/24/21 11:18	03/24/21 16:03	4165-60-0	
2-Fluorobiphenyl (S)	62	%	19-130		1	03/24/21 11:18	03/24/21 16:03	321-60-8	
Terphenyl-d14 (S)	90	%	15-130		1	03/24/21 11:18	03/24/21 16:03	1718-51-0	
Phenol-d6 (S)	55	%	18-130		1	03/24/21 11:18	03/24/21 16:03	13127-88-3	
2-Fluorophenol (S)	57	%	18-130		1	03/24/21 11:18	03/24/21 16:03	367-12-4	
2,4,6-Tribromophenol (S)	60	%	18-130		1	03/24/21 11:18	03/24/21 16:03	118-79-6	
8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA	8260D Prep	aration Met	hod: E	PA 5035A/5030B			
	Pace Anal	ytical Service	es - Charlotte						
Acetone	ND	ug/kg	141	45.3	1	03/24/21 11:57	03/24/21 14:30	67-64-1	
Benzene	ND	ug/kg	7.1	2.8	1	03/24/21 11:57	03/24/21 14:30	71-43-2	
Bromobenzene	ND	ug/kg	7.1	2.3	1	03/24/21 11:57	03/24/21 14:30	108-86-1	
Bromochloromethane	ND	ug/kg	7.1	2.1	1	03/24/21 11:57	03/24/21 14:30	74-97-5	
Bromodichloromethane	ND	ug/kg	7.1	2.7	1	03/24/21 11:57	03/24/21 14:30	75-27-4	
Bromoform	ND	ug/kg	7.1	2.5	1	03/24/21 11:57	03/24/21 14:30	75-25-2	
Bromomethane	ND	ug/kg	14.1	11.2	1	03/24/21 11:57	03/24/21 14:30	74-83-9	
2-Butanone (MEK)	ND	ug/kg	141	33.9	1	03/24/21 11:57	03/24/21 14:30	78-93-3	
n-Butylbenzene	ND	ug/kg	7.1	3.3	1	03/24/21 11:57	03/24/21 14:30	104-51-8	
sec-Butylbenzene	ND	ug/kg	7.1	3.1	1	03/24/21 11:57	03/24/21 14:30	135-98-8	
tert-Butylbenzene	ND	ug/kg	7.1	2.5	1	03/24/21 11:57	03/24/21 14:30	98-06-6	
Carbon tetrachloride	ND	ug/kg	7.1	2.6	1	03/24/21 11:57	03/24/21 14:30	56-23-5	
Chlorobenzene	ND	ug/kg	7.1	1.4	1	03/24/21 11:57	03/24/21 14:30	108-90-7	
Chloroethane	ND	ug/kg	14.1	5.4	1	03/24/21 11:57	03/24/21 14:30	75-00-3	
Chloroform	ND	ug/kg	7.1	4.3	1	03/24/21 11:57	03/24/21 14:30	67-66-3	



#### Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-23 (0.5-1.0)	Lab ID:	9252801101	7 Collected	d: 03/15/21	1 15:35	5 Received: 03/	16/21 11:45 Ma	atrix: Solid	
Results reported on a "dry weight"	" basis and are	e adjusted fo	or percent mo	oisture, sar	nple s	ize and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA	A 8260D Prepa	aration Met	hod: E	PA 5035A/5030B			
	Pace Anal	ytical Service	es - Charlotte						
Chloromethane	ND	ug/kg	14.1	5.9	1	03/24/21 11:57	03/24/21 14:30	74-87-3	
2-Chlorotoluene	ND	ug/kg	7.1	2.5	1	03/24/21 11:57	03/24/21 14:30	95-49-8	
4-Chlorotoluene	ND	ug/kg	7.1	1.2	1	03/24/21 11:57	03/24/21 14:30	106-43-4	
1,2-Dibromo-3-chloropropane	ND	ug/kg	7.1	2.7	1	03/24/21 11:57	03/24/21 14:30	96-12-8	
Dibromochloromethane	ND	ug/kg	7.1	4.0	1	03/24/21 11:57	03/24/21 14:30	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/kg	7.1	3.1	1	03/24/21 11:57	03/24/21 14:30	106-93-4	
Dibromomethane	ND	ug/kg	7.1	1.5	1	03/24/21 11:57	03/24/21 14:30	74-95-3	
1,2-Dichlorobenzene	ND	ug/kg	7.1	2.5	1	03/24/21 11:57	03/24/21 14:30	95-50-1	
1,3-Dichlorobenzene	ND	ug/kg	7.1	2.2	1	03/24/21 11:57	03/24/21 14:30	541-73-1	
1,4-Dichlorobenzene	ND	ug/kg	7.1	1.8	1	03/24/21 11:57	03/24/21 14:30	106-46-7	
Dichlorodifluoromethane	ND	ug/kg	14.1	3.1	1	03/24/21 11:57	03/24/21 14:30	75-71-8	
1,1-Dichloroethane	ND	ug/kg	7.1	2.9	1	03/24/21 11:57	03/24/21 14:30	75-34-3	
1,2-Dichloroethane	ND	ug/kg	7.1	4.7	1	03/24/21 11:57	03/24/21 14:30	107-06-2	
1,1-Dichloroethene	ND	ug/kg	7.1	2.9	1	03/24/21 11:57	03/24/21 14:30	75-35-4	
cis-1,2-Dichloroethene	ND	ug/kg	7.1	2.4	1	03/24/21 11:57	03/24/21 14:30	156-59-2	
trans-1,2-Dichloroethene	ND	ug/kg	7.1	2.5	1	03/24/21 11:57	03/24/21 14:30	156-60-5	
1,2-Dichloropropane	ND	ug/kg	7.1	2.1	1	03/24/21 11:57	03/24/21 14:30	78-87-5	
1,3-Dichloropropane	ND	ug/kg	7.1	2.2	1	03/24/21 11:57	03/24/21 14:30	142-28-9	
2,2-Dichloropropane	ND	ug/kg	7.1	2.3	1	03/24/21 11:57	03/24/21 14:30	594-20-7	
1,1-Dichloropropene	ND	ug/kg	7.1	3.4	1	03/24/21 11:57	03/24/21 14:30	563-58-6	
cis-1,3-Dichloropropene	ND	ug/kg	7.1	1.9	1	03/24/21 11:57	03/24/21 14:30	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/kg	7.1	2.4	1	03/24/21 11:57	03/24/21 14:30	10061-02-6	
Diisopropyl ether	ND	ug/kg	7.1	1.9	1	03/24/21 11:57	03/24/21 14:30	108-20-3	
Ethylbenzene	ND	ug/kg	7.1	3.3	1	03/24/21 11:57	03/24/21 14:30	100-41-4	
Hexachloro-1,3-butadiene	ND	ug/kg	14.1	11.5	1	03/24/21 11:57	03/24/21 14:30	87-68-3	
2-Hexanone	ND	ug/kg	70.6	6.8	1	03/24/21 11:57	03/24/21 14:30	591-78-6	
Isopropylbenzene (Cumene)	ND	ug/kg	7.1	2.4	1	03/24/21 11:57	03/24/21 14:30	98-82-8	
p-Isopropyltoluene	ND	ug/kg	7.1	3.5	1	03/24/21 11:57	03/24/21 14:30	99-87-6	
Methylene Chloride	ND	ug/kg	28.2	19.3	1	03/24/21 11:57	03/24/21 14:30	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	70.6	6.8	1	03/24/21 11:57	03/24/21 14:30	108-10-1	
Methyl-tert-butyl ether	ND	ug/kg	7.1	2.6	1	03/24/21 11:57	03/24/21 14:30	1634-04-4	
Naphthalene	ND	ug/kg	7.1	3.7	1	03/24/21 11:57	03/24/21 14:30	91-20-3	
n-Propylbenzene	ND	ug/kg	7.1	2.5	1	03/24/21 11:57	03/24/21 14:30	103-65-1	
Styrene	ND	ug/kg	7.1	1.9	1	03/24/21 11:57	03/24/21 14:30	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/kg	7.1	2.7	1	03/24/21 11:57	03/24/21 14:30	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/kg	7.1	1.9	1	03/24/21 11:57	03/24/21 14:30	79-34-5	
Tetrachloroethene	ND	ug/kg	7.1	2.2	1	03/24/21 11:57	03/24/21 14:30	127-18-4	
Toluene	ND	ug/kg	7.1	2.0	1	03/24/21 11:57	03/24/21 14:30	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/kg	7.1	5.7	1	03/24/21 11:57	03/24/21 14:30	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/kg	7.1	5.9	1	03/24/21 11:57	03/24/21 14:30	120-82-1	
1,1,1-Trichloroethane	ND	ug/kg	7.1	3.7	1	03/24/21 11:57	03/24/21 14:30	71-55-6	
1,1,2-Trichloroethane	ND	ug/kg	7.1	2.3	1	03/24/21 11:57	03/24/21 14:30	79-00-5	
Trichloroethene	ND	ug/kg	7.1	1.8	1	03/24/21 11:57	03/24/21 14:30	79-01-6	
Trichlorofluoromethane	ND	ug/kg	7.1	3.9	1	03/24/21 11:57	03/24/21 14:30	75-69-4	



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-23 (0.5-1.0)	Lab ID:	9252801101	7 Collected	d: 03/15/21	15:35	Received: 03/	/16/21 11:45 Ma	atrix: Solid	
Results reported on a "dry weight	" basis and are	e adjusted f	or percent mo	isture, san	nple s	ize and any dilut	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A/5030B SC Volatiles	Analytical	Method: EP/	A 8260D Prep	aration Met	hod: E	PA 5035A/5030B			
	Pace Anal	ytical Servic	es - Charlotte						
1,2,3-Trichloropropane	ND	ug/kg	7.1	3.6	1	03/24/21 11:57	03/24/21 14:30	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/kg	7.1	1.9	1	03/24/21 11:57	03/24/21 14:30	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/kg	7.1	2.4	1	03/24/21 11:57	03/24/21 14:30	108-67-8	
Vinyl acetate	ND	ug/kg	70.6	5.1	1	03/24/21 11:57	03/24/21 14:30	108-05-4	
Vinyl chloride	ND	ug/kg	14.1	3.6	1	03/24/21 11:57	03/24/21 14:30	75-01-4	
Xylene (Total)	ND	ug/kg	14.1	4.0	1	03/24/21 11:57	03/24/21 14:30	1330-20-7	
m&p-Xylene	ND	ug/kg	14.1	4.8	1	03/24/21 11:57	03/24/21 14:30	179601-23-1	
o-Xylene	ND	ug/kg	7.1	3.1	1	03/24/21 11:57	03/24/21 14:30	95-47-6	
Surrogates									
Toluene-d8 (S)	99	%	70-130		1	03/24/21 11:57	03/24/21 14:30	2037-26-5	
4-Bromofluorobenzene (S)	97	%	69-134		1	03/24/21 11:57	03/24/21 14:30	460-00-4	
1,2-Dichloroethane-d4 (S)	91	%	70-130		1	03/24/21 11:57	03/24/21 14:30	17060-07-0	
Percent Moisture	Analytical	Method: SW	-846						
	Pace Anal	ytical Servic	es - Charlotte						
Percent Moisture	14.7	%	0.10	0.10	1		03/17/21 14:13		N2



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-23 (5.5-6.0)	Lab ID:	9252801101	8 Collected	d: 03/15/2 ⁻	1 15:40	Received: 03/	16/21 11:45 Ma	atrix: Solid	
Results reported on a "dry weig	ght" basis and are	e adjusted fo	or percent mo	oisture, sar	nple s	ize and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270E MSSV Microwave	Analytical	Method: EP/	A 8270E Prepa	aration Met	hod: E	PA 3546			
	Pace Anal	ytical Service	es - Charlotte						
Acenaphthene	ND	ua/ka	416	146	1	03/24/21 11 18	03/24/21 16:58	83-32-9	
Acenaphthylene	ND	ug/kg	416	146	1	03/24/21 11:18	03/24/21 16:58	208-96-8	
Aniline	ND	ug/kg	416	163	1	03/24/21 11:18	03/24/21 16:58	62-53-3	
Anthracene	ND	ua/ka	416	136	1	03/24/21 11:18	03/24/21 16:58	120-12-7	
Benzo(a)anthracene	ND	ua/ka	416	139	1	03/24/21 11:18	03/24/21 16:58	56-55-3	
Benzo(a)pyrene	ND	ug/kg	416	144	1	03/24/21 11:18	03/24/21 16:58	50-32-8	
Benzo(b)fluoranthene	ND	ug/kg	416	139	1	03/24/21 11:18	03/24/21 16:58	205-99-2	
Benzo(g,h,i)perylene	ND	ug/kg	416	161	1	03/24/21 11:18	03/24/21 16:58	191-24-2	v1
Benzo(k)fluoranthene	ND	ug/kg	416	146	1	03/24/21 11:18	03/24/21 16:58	207-08-9	
Benzoic Acid	ND	ug/kg	2080	894	1	03/24/21 11:18	03/24/21 16:58	65-85-0	
Benzyl alcohol	ND	ug/kg	832	315	1	03/24/21 11:18	03/24/21 16:58	100-51-6	
4-Bromophenylphenyl ether	ND	ug/kg	416	160	1	03/24/21 11:18	03/24/21 16:58	101-55-3	
Butylbenzylphthalate	ND	ug/kg	416	175	1	03/24/21 11:18	03/24/21 16:58	85-68-7	v1
4-Chloro-3-methylphenol	ND	ug/kg	832	293	1	03/24/21 11:18	03/24/21 16:58	59-50-7	
4-Chloroaniline	ND	ug/kg	832	327	1	03/24/21 11:18	03/24/21 16:58	106-47-8	
bis(2-Chloroethoxy)methane	ND	ug/kg	416	173	1	03/24/21 11:18	03/24/21 16:58	111-91-1	
bis(2-Chloroethyl) ether	ND	ug/kg	416	156	1	03/24/21 11:18	03/24/21 16:58	111-44-4	
2-Chloronaphthalene	ND	ug/kg	416	165	1	03/24/21 11:18	03/24/21 16:58	91-58-7	
2-Chlorophenol	ND	ug/kg	416	156	1	03/24/21 11:18	03/24/21 16:58	95-57-8	
4-Chlorophenylphenyl ether	ND	ug/kg	416	155	1	03/24/21 11:18	03/24/21 16:58	7005-72-3	
Chrysene	ND	ug/kg	416	151	1	03/24/21 11:18	03/24/21 16:58	218-01-9	
Dibenz(a,h)anthracene	ND	ug/kg	416	160	1	03/24/21 11:18	03/24/21 16:58	53-70-3	
Dibenzofuran	ND	ug/kg	416	150	1	03/24/21 11:18	03/24/21 16:58	132-64-9	
3,3'-Dichlorobenzidine	ND	ug/kg	832	281	1	03/24/21 11:18	03/24/21 16:58	91-94-1	IL
2,4-Dichlorophenol	ND	ug/kg	416	163	1	03/24/21 11:18	03/24/21 16:58	120-83-2	
Diethylphthalate	ND	ug/kg	416	153	1	03/24/21 11:18	03/24/21 16:58	84-66-2	
2,4-Dimethylphenol	ND	ug/kg	416	173	1	03/24/21 11:18	03/24/21 16:58	105-67-9	
Dimethylphthalate	ND	ug/kg	416	151	1	03/24/21 11:18	03/24/21 16:58	131-11-3	
Di-n-butylphthalate	ND	ug/kg	416	140	1	03/24/21 11:18	03/24/21 16:58	84-74-2	
4,6-Dinitro-2-methylphenol	ND	ug/kg	832	388	1	03/24/21 11:18	03/24/21 16:58	534-52-1	
2,4-Dinitrophenol	ND	ug/kg	2080	1290	1	03/24/21 11:18	03/24/21 16:58	51-28-5	
2,4-Dinitrotoluene	ND	ug/kg	416	160	1	03/24/21 11:18	03/24/21 16:58	121-14-2	
2,6-Dinitrotoluene	ND	ug/kg	416	153	1	03/24/21 11:18	03/24/21 16:58	606-20-2	
Di-n-octylphthalate	ND	ug/kg	416	164	1	03/24/21 11:18	03/24/21 16:58	117-84-0	V1
bis(2-Ethylhexyl)phthalate	ND	ug/kg	416	161	1	03/24/21 11:18	03/24/21 16:58	117-81-7	
Fluoranthene	ND	ug/kg	416	143	1	03/24/21 11:18	03/24/21 16:58	206-44-0	
Fluorene	ND	ug/kg	416	140	1	03/24/21 11:18	03/24/21 16:58	86-73-7	
Hexachiorobenzene	ND	ug/kg	416	163	1	03/24/21 11:18	03/24/21 16:58	118-74-1	
		ug/kg	416	238	ן א	03/24/21 11:18	03/24/21 16:58	11-41-4	
		ug/kg	410	159	1 4	03/24/21 11:18	03/24/21 10:58	102 20 5	
Isophorope	<b>ט</b> או חוא	ug/kg	410	104	1	03/24/21 11.10	03/24/21 10.00	78-50 1	
1-Methylpaphthalono	<b>ט</b> או חוא	ug/kg	410	116	1	03/24/21 11.10	03/24/21 10.00	00-12 0	
	<b>ט</b> או חוא	ug/kg	410	140	1	03/24/21 11.10	03/24/21 10.00	01-57 G	
∠-ivieu iyinapi unalene	ND	uy/ky	410	100	1	03/24/21 11.10	03/24/21 10.30	91-01-0	



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-23 (5.5-6.0)	Lab ID:	9252801101	8 Collected	d: 03/15/21	15:40	) Received: 03/	(16/21 11:45 Ma	atrix: Solid	
Results reported on a "dry weight"	" basis and are	e adjusted fo	or percent mo	oisture, sar	nple s	ize and any dilut	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270E MSSV Microwave	Analytical	Method: EP/	A 8270E Prepa	aration Met	hod: E	PA 3546			
	Pace Anal	ytical Service	es - Charlotte						
2-Methylphenol(o-Cresol)	ND	ua/ka	416	170	1	03/24/21 11:18	03/24/21 16:58	95-48-7	
3&4-Methylphenol(m&p Cresol)	ND	ua/ka	416	168	1	03/24/21 11:18	03/24/21 16:58	15831-10-4	
2-Nitroaniline	ND	ua/ka	2080	341	1	03/24/21 11:18	03/24/21 16:58	88-74-4	
3-Nitroaniline	ND	ua/ka	2080	327	1	03/24/21 11:18	03/24/21 16:58	99-09-2	
4-Nitroaniline	ND	ua/ka	832	317	1	03/24/21 11:18	03/24/21 16:58	100-01-6	
Nitrobenzene	ND	ua/ka	416	193	1	03/24/21 11:18	03/24/21 16:58	98-95-3	
2-Nitrophenol	ND	ua/ka	416	180	1	03/24/21 11:18	03/24/21 16:58	88-75-5	
4-Nitrophenol	ND	ua/ka	2080	805	1	03/24/21 11:18	03/24/21 16:58	100-02-7	
N-Nitrosodimethylamine	ND	ua/ka	416	140	1	03/24/21 11:18	03/24/21 16:58	62-75-9	
N-Nitroso-di-n-propylamine	ND	ua/ka	416	156	1	03/24/21 11:18	03/24/21 16:58	621-64-7	
N-Nitrosodiphenvlamine	ND	ua/ka	416	148	1	03/24/21 11:18	03/24/21 16:58	86-30-6	
2.2'-Oxybis(1-chloropropane)	ND	ua/ka	416	198	1	03/24/21 11:18	03/24/21 16:58	108-60-1	
Pentachlorophenol	ND	ua/ka	832	407	1	03/24/21 11:18	03/24/21 16:58	87-86-5	
Phenanthrene	ND	ua/ka	416	136	1	03/24/21 11:18	03/24/21 16:58	85-01-8	
Phenol	ND	ua/ka	416	185	1	03/24/21 11:18	03/24/21 16:58	108-95-2	
Pyrene	ND	ua/ka	416	169	1	03/24/21 11:18	03/24/21 16:58	129-00-0	
Pyridine	ND	ua/ka	416	131	1	03/24/21 11:18	03/24/21 16:58	110-86-1	
2.4.5-Trichlorophenol	ND	ua/ka	416	190	1	03/24/21 11:18	03/24/21 16:58	95-95-4	
2,4,6-Trichlorophenol	ND	ug/kg	416	172	1	03/24/21 11:18	03/24/21 16:58	88-06-2	
Surrogates									
Nitrobenzene-d5 (S)	75	%	21-130		1	03/24/21 11:18	03/24/21 16:58	4165-60-0	
2-Fluorobiphenyl (S)	41	%	19-130		1	03/24/21 11:18	03/24/21 16:58	321-60-8	
Terphenyl-d14 (S)	43	%	15-130		1	03/24/21 11:18	03/24/21 16:58	1718-51-0	
Phenol-d6 (S)	65	%	18-130		1	03/24/21 11:18	03/24/21 16:58	13127-88-3	
2-Fluorophenol (S)	69	%	18-130		1	03/24/21 11:18	03/24/21 16:58	367-12-4	
2,4,6-Tribromophenol (S)	68	%	18-130		1	03/24/21 11:18	03/24/21 16:58	118-79-6	
8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA	A 8260D Prepa	aration Met	hod: E	PA 5035A/5030B			
	Pace Anal	ytical Service	es - Charlotte						
Acetone	ND	ug/kg	176	56.6	1	03/24/21 11:57	03/24/21 15:06	67-64-1	
Benzene	ND	ug/kg	8.8	3.5	1	03/24/21 11:57	03/24/21 15:06	71-43-2	
Bromobenzene	ND	ug/kg	8.8	2.9	1	03/24/21 11:57	03/24/21 15:06	108-86-1	
Bromochloromethane	ND	ug/kg	8.8	2.6	1	03/24/21 11:57	03/24/21 15:06	74-97-5	
Bromodichloromethane	ND	ug/kg	8.8	3.4	1	03/24/21 11:57	03/24/21 15:06	75-27-4	
Bromoform	ND	ug/kg	8.8	3.1	1	03/24/21 11:57	03/24/21 15:06	75-25-2	
Bromomethane	ND	ug/kg	17.6	13.9	1	03/24/21 11:57	03/24/21 15:06	74-83-9	
2-Butanone (MEK)	ND	ug/kg	176	42.3	1	03/24/21 11:57	03/24/21 15:06	78-93-3	
n-Butylbenzene	ND	ug/kg	8.8	4.2	1	03/24/21 11:57	03/24/21 15:06	104-51-8	
sec-Butylbenzene	ND	ug/kg	8.8	3.9	1	03/24/21 11:57	03/24/21 15:06	135-98-8	
tert-Butylbenzene	ND	ug/kg	8.8	3.1	1	03/24/21 11:57	03/24/21 15:06	98-06-6	
Carbon tetrachloride	ND	ug/kg	8.8	3.3	1	03/24/21 11:57	03/24/21 15:06	56-23-5	
Chlorobenzene	ND	ug/kg	8.8	1.7	1	03/24/21 11:57	03/24/21 15:06	108-90-7	
Chloroethane	ND	ug/kg	17.6	6.8	1	03/24/21 11:57	03/24/21 15:06	75-00-3	
Chloroform	ND	ug/kg	8.8	5.4	1	03/24/21 11:57	03/24/21 15:06	67-66-3	



#### Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-23 (5.5-6.0)	Lab ID:	9252801101	8 Collected	I: 03/15/21	1 15:40	Received: 03/	'16/21 11:45 Ma	atrix: Solid			
Results reported on a "dry weight"	" basis and ar	e adjusted fo	or percent moisture, sample size and any dilutions.								
			Report								
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual		
8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA	8260D Prepa	aration Met	hod: E	PA 5035A/5030B					
	Pace Ana	ytical Service	es - Charlotte								
Chloromethane	ND	ua/ka	17.6	7.4	1	03/24/21 11:57	03/24/21 15:06	74-87-3			
2-Chlorotoluene	ND	ua/ka	8.8	3.1	1	03/24/21 11:57	03/24/21 15:06	95-49-8			
4-Chlorotoluene	ND	ua/ka	8.8	1.6	1	03/24/21 11:57	03/24/21 15:06	106-43-4			
1.2-Dibromo-3-chloropropane	ND	ua/ka	8.8	3.4	1	03/24/21 11:57	03/24/21 15:06	96-12-8			
Dibromochloromethane	ND	ua/ka	8.8	5.0	1	03/24/21 11:57	03/24/21 15:06	124-48-1			
1,2-Dibromoethane (EDB)	ND	ug/kg	8.8	3.9	1	03/24/21 11:57	03/24/21 15:06	106-93-4	M1		
Dibromomethane	ND	ug/kg	8.8	1.9	1	03/24/21 11:57	03/24/21 15:06	74-95-3			
1,2-Dichlorobenzene	ND	ug/kg	8.8	3.2	1	03/24/21 11:57	03/24/21 15:06	95-50-1			
1,3-Dichlorobenzene	ND	ug/kg	8.8	2.7	1	03/24/21 11:57	03/24/21 15:06	541-73-1			
1,4-Dichlorobenzene	ND	ug/kg	8.8	2.3	1	03/24/21 11:57	03/24/21 15:06	106-46-7			
Dichlorodifluoromethane	ND	ug/kg	17.6	3.8	1	03/24/21 11:57	03/24/21 15:06	75-71-8			
1,1-Dichloroethane	ND	ug/kg	8.8	3.6	1	03/24/21 11:57	03/24/21 15:06	75-34-3			
1,2-Dichloroethane	ND	ug/kg	8.8	5.8	1	03/24/21 11:57	03/24/21 15:06	107-06-2			
1,1-Dichloroethene	ND	ug/kg	8.8	3.6	1	03/24/21 11:57	03/24/21 15:06	75-35-4			
cis-1,2-Dichloroethene	ND	ug/kg	8.8	3.0	1	03/24/21 11:57	03/24/21 15:06	156-59-2			
trans-1,2-Dichloroethene	ND	ug/kg	8.8	3.1	1	03/24/21 11:57	03/24/21 15:06	156-60-5			
1,2-Dichloropropane	ND	ug/kg	8.8	2.6	1	03/24/21 11:57	03/24/21 15:06	78-87-5			
1,3-Dichloropropane	ND	ug/kg	8.8	2.7	1	03/24/21 11:57	03/24/21 15:06	142-28-9			
2,2-Dichloropropane	ND	ug/kg	8.8	2.9	1	03/24/21 11:57	03/24/21 15:06	594-20-7			
1,1-Dichloropropene	ND	ug/kg	8.8	4.2	1	03/24/21 11:57	03/24/21 15:06	563-58-6			
cis-1,3-Dichloropropene	ND	ug/kg	8.8	2.4	1	03/24/21 11:57	03/24/21 15:06	10061-01-5			
trans-1,3-Dichloropropene	ND	ug/kg	8.8	3.0	1	03/24/21 11:57	03/24/21 15:06	10061-02-6			
Diisopropyl ether	ND	ug/kg	8.8	2.4	1	03/24/21 11:57	03/24/21 15:06	108-20-3			
Ethylbenzene	5.4J	ug/kg	8.8	4.1	1	03/24/21 11:57	03/24/21 15:06	100-41-4			
Hexachloro-1,3-butadiene	ND	ug/kg	17.6	14.4	1	03/24/21 11:57	03/24/21 15:06	87-68-3			
2-Hexanone	ND	ug/kg	88.1	8.5	1	03/24/21 11:57	03/24/21 15:06	591-78-6			
Isopropylbenzene (Cumene)	ND	ug/kg	8.8	3.0	1	03/24/21 11:57	03/24/21 15:06	98-82-8			
p-Isopropyltoluene	ND	ug/kg	8.8	4.3	1	03/24/21 11:57	03/24/21 15:06	99-87-6			
Methylene Chloride	ND	ug/kg	35.2	24.1	1	03/24/21 11:57	03/24/21 15:06	75-09-2			
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	88.1	8.5	1	03/24/21 11:57	03/24/21 15:06	108-10-1			
Methyl-tert-butyl ether	ND	ug/kg	8.8	3.3	1	03/24/21 11:57	03/24/21 15:06	1634-04-4			
Naphthalene	21.0	ug/kg	8.8	4.6	1	03/24/21 11:57	03/24/21 15:06	91-20-3			
n-Propylbenzene	ND	ug/kg	8.8	3.1	1	03/24/21 11:57	03/24/21 15:06	103-65-1			
Styrene	ND	ug/kg	8.8	2.3	1	03/24/21 11:57	03/24/21 15:06	100-42-5			
1,1,1,2-Tetrachloroethane	ND	ug/kg	8.8	3.4	1	03/24/21 11:57	03/24/21 15:06	630-20-6			
1,1,2,2-Tetrachloroethane	ND	ug/kg	8.8	2.3	1	03/24/21 11:57	03/24/21 15:06	79-34-5			
Tetrachloroethene	ND	ug/kg	8.8	2.8	1	03/24/21 11:57	03/24/21 15:06	127-18-4			
Toluene	8.1J	ug/kg	8.8	2.5	1	03/24/21 11:57	03/24/21 15:06	108-88-3			
1,2,3-Trichlorobenzene	ND	ug/kg	8.8	7.1	1	03/24/21 11:57	03/24/21 15:06	87-61-6			
1,2,4-Trichlorobenzene	ND	ug/kg	8.8	7.4	1	03/24/21 11:57	03/24/21 15:06	120-82-1			
1,1,1-Trichloroethane	ND	ug/kg	8.8	4.6	1	03/24/21 11:57	03/24/21 15:06	71-55-6			
1,1,2-Trichloroethane	ND	ug/kg	8.8	2.9	1	03/24/21 11:57	03/24/21 15:06	79-00-5			
Trichloroethene	ND	ug/kg	8.8	2.3	1	03/24/21 11:57	03/24/21 15:06	79-01-6			
Trichlorofluoromethane	ND	ug/kg	8.8	4.8	1	03/24/21 11:57	03/24/21 15:06	75-69-4			



Project: BRAMLETTE J21030497

----

Pace Project No.: 92528011

Sample: RI-SB-23 (5.5-6.0)	Lab ID:	9252801101	8 Collected	d: 03/15/21	15:40	Received: 03/	(16/21 11:45 Ma	atrix: Solid	
Results reported on a "dry weight	" basis and are	e adjusted f	or percent mo	oisture, san	nple si	ize and any dilut	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A/5030B SC Volatiles	Analytical	Method: EP/	A 8260D Prep	aration Met	hod: E	PA 5035A/5030B			
	Pace Anal	ytical Servic	es - Charlotte						
1,2,3-Trichloropropane	ND	ug/kg	8.8	4.5	1	03/24/21 11:57	03/24/21 15:06	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/kg	8.8	2.4	1	03/24/21 11:57	03/24/21 15:06	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/kg	8.8	3.0	1	03/24/21 11:57	03/24/21 15:06	108-67-8	
Vinyl acetate	ND	ug/kg	88.1	6.4	1	03/24/21 11:57	03/24/21 15:06	108-05-4	
Vinyl chloride	ND	ug/kg	17.6	4.5	1	03/24/21 11:57	03/24/21 15:06	75-01-4	
Xylene (Total)	ND	ug/kg	17.6	5.0	1	03/24/21 11:57	03/24/21 15:06	1330-20-7	
m&p-Xylene	ND	ug/kg	17.6	6.0	1	03/24/21 11:57	03/24/21 15:06	179601-23-1	
o-Xylene	ND	ug/kg	8.8	3.9	1	03/24/21 11:57	03/24/21 15:06	95-47-6	
Surrogates									
Toluene-d8 (S)	99	%	70-130		1	03/24/21 11:57	03/24/21 15:06	2037-26-5	
4-Bromofluorobenzene (S)	98	%	69-134		1	03/24/21 11:57	03/24/21 15:06	460-00-4	
1,2-Dichloroethane-d4 (S)	93	%	70-130		1	03/24/21 11:57	03/24/21 15:06	17060-07-0	
Percent Moisture	Analytical	Method: SW	-846						
	Pace Anal	ytical Servic	es - Charlotte						
Percent Moisture	20.4	%	0.10	0.10	1		03/17/21 14:13		N2



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-24 (0.5-1.0)	Lab ID:	9252801101	9 Collected	l: 03/15/2 [,]	1 15:55	6 Received: 03/	16/21 11:45 Ma	atrix: Solid	
Results reported on a "dry weig	ght" basis and are	e adjusted fo	or percent mo	isture, sai	nple s	ize and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270E MSSV Microwave	Analytical	Method: EPA	A 8270E Prepa	aration Met	hod: E	PA 3546			
	Pace Anal	ytical Service	es - Charlotte						
Acenaphthene	ND	ua/ka	388	137	1	03/24/21 11.18	03/24/21 17:54	83-32-9	
Acenaphthylene	ND	ug/kg	388	137	1	03/24/21 11:18	03/24/21 17:54	208-96-8	
Aniline	ND	ug/kg	388	152	1	03/24/21 11:18	03/24/21 17:54	62-53-3	
Anthracene	ND	ug/kg	388	127	1	03/24/21 11:18	03/24/21 17:54	120-12-7	
Benzo(a)anthracene	ND	ua/ka	388	129	1	03/24/21 11:18	03/24/21 17:54	56-55-3	
Benzo(a)pyrene	ND	ug/kg	388	134	1	03/24/21 11:18	03/24/21 17:54	50-32-8	
Benzo(b)fluoranthene	ND	ua/ka	388	129	1	03/24/21 11:18	03/24/21 17:54	205-99-2	
Benzo(a,h,i)pervlene	ND	ua/ka	388	151	1	03/24/21 11:18	03/24/21 17:54	191-24-2	v1
Benzo(k)fluoranthene	ND	ug/kg	388	137	1	03/24/21 11:18	03/24/21 17:54	207-08-9	
Benzoic Acid	ND	ug/kg	1940	834	1	03/24/21 11:18	03/24/21 17:54	65-85-0	
Benzyl alcohol	ND	ug/kg	777	294	1	03/24/21 11:18	03/24/21 17:54	100-51-6	
4-Bromophenylphenyl ether	ND	ug/kg	388	149	1	03/24/21 11:18	03/24/21 17:54	101-55-3	
Butylbenzylphthalate	ND	ug/kg	388	164	1	03/24/21 11:18	03/24/21 17:54	85-68-7	v1
4-Chloro-3-methylphenol	ND	ug/kg	777	273	1	03/24/21 11:18	03/24/21 17:54	59-50-7	
4-Chloroaniline	ND	ug/kg	777	305	1	03/24/21 11:18	03/24/21 17:54	106-47-8	
bis(2-Chloroethoxy)methane	ND	ug/kg	388	161	1	03/24/21 11:18	03/24/21 17:54	111-91-1	
bis(2-Chloroethyl) ether	ND	ug/kg	388	146	1	03/24/21 11:18	03/24/21 17:54	111-44-4	
2-Chloronaphthalene	ND	ug/kg	388	154	1	03/24/21 11:18	03/24/21 17:54	91-58-7	
2-Chlorophenol	ND	ug/kg	388	146	1	03/24/21 11:18	03/24/21 17:54	95-57-8	
4-Chlorophenylphenyl ether	ND	ug/kg	388	145	1	03/24/21 11:18	03/24/21 17:54	7005-72-3	
Chrysene	ND	ug/kg	388	141	1	03/24/21 11:18	03/24/21 17:54	218-01-9	
Dibenz(a,h)anthracene	ND	ug/kg	388	149	1	03/24/21 11:18	03/24/21 17:54	53-70-3	
Dibenzofuran	ND	ug/kg	388	140	1	03/24/21 11:18	03/24/21 17:54	132-64-9	
3,3'-Dichlorobenzidine	ND	ug/kg	777	262	1	03/24/21 11:18	03/24/21 17:54	91-94-1	IL
2,4-Dichlorophenol	ND	ug/kg	388	152	1	03/24/21 11:18	03/24/21 17:54	120-83-2	
Diethylphthalate	ND	ug/kg	388	142	1	03/24/21 11:18	03/24/21 17:54	84-66-2	
2,4-Dimethylphenol	ND	ug/kg	388	161	1	03/24/21 11:18	03/24/21 17:54	105-67-9	
Dimethylphthalate	ND	ug/kg	388	141	1	03/24/21 11:18	03/24/21 17:54	131-11-3	
Di-n-butylphthalate	ND	ug/kg	388	131	1	03/24/21 11:18	03/24/21 17:54	84-74-2	
4,6-Dinitro-2-methylphenol	ND	ug/kg	777	362	1	03/24/21 11:18	03/24/21 17:54	534-52-1	
2,4-Dinitrophenol	ND	ug/kg	1940	1200	1	03/24/21 11:18	03/24/21 17:54	51-28-5	
2,4-Dinitrotoluene	ND	ug/kg	388	149	1	03/24/21 11:18	03/24/21 17:54	121-14-2	
2,6-Dinitrotoluene	ND	ug/kg	388	142	1	03/24/21 11:18	03/24/21 17:54	606-20-2	
Di-n-octylphthalate	ND	ug/kg	388	153	1	03/24/21 11:18	03/24/21 17:54	117-84-0	v1
bis(2-Ethylhexyl)phthalate	ND	ug/kg	388	151	1	03/24/21 11:18	03/24/21 17:54	117-81-7	
Fluoranthene	ND	ug/kg	388	133	1	03/24/21 11:18	03/24/21 17:54	206-44-0	
Fluorene	ND	ug/kg	388	137	1	03/24/21 11:18	03/24/21 17:54	86-73-7	
Hexachlorobenzene	ND	ug/kg	388	152	1	03/24/21 11:18	03/24/21 17:54	118-74-1	
Hexachlorocyclopentadiene	ND	ug/kg	388	222	1	03/24/21 11:18	03/24/21 17:54	77-47-4	
Hexachloroethane	ND	ug/kg	388	148	1	03/24/21 11:18	03/24/21 17:54	67-72-1	
Indeno(1,2,3-cd)pyrene	ND	ug/kg	388	153	1	03/24/21 11:18	03/24/21 17:54	193-39-5	
Isophorone	ND	ug/kg	388	173	1	03/24/21 11:18	03/24/21 17:54	78-59-1	
1-Methylnaphthalene	ND	ug/kg	388	137	1	03/24/21 11:18	03/24/21 17:54	90-12-0	
2-Methylnaphthalene	ND	ug/kg	388	155	1	03/24/21 11:18	03/24/21 17:54	91-57-6	



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-24 (0.5-1.0)	Lab ID:	925280110	19 Collected	d: 03/15/21	1 15:55	5 Received: 03/	16/21 11:45 Ma	atrix: Solid	
Results reported on a "dry weight"	" basis and are	e adjusted f	or percent mo	isture, sar	nple s	ize and any dilut	ions.		
		-	Report		-	-			
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270E MSSV Microwave	Analytical	Method: EP	A 8270E Prepa	aration Met	hod: E	PA 3546			
	Pace Anal	ytical Servic	es - Charlotte						
2-Methylphenol(o-Cresol)	ND	ua/ka	388	159	1	03/24/21 11:18	03/24/21 17:54	95-48-7	
3&4-Methylphenol(m&p Cresol)	ND	ua/ka	388	157	1	03/24/21 11:18	03/24/21 17:54	15831-10-4	
2-Nitroaniline	ND	ua/ka	1940	318	1	03/24/21 11:18	03/24/21 17:54	88-74-4	
3-Nitroaniline	ND	ua/ka	1940	305	1	03/24/21 11:18	03/24/21 17:54	99-09-2	
4-Nitroaniline	ND	ug/kg	777	295	1	03/24/21 11:18	03/24/21 17:54	100-01-6	
Nitrobenzene	ND	ug/kg	388	180	1	03/24/21 11:18	03/24/21 17:54	98-95-3	
2-Nitrophenol	ND	ug/kg	388	168	1	03/24/21 11:18	03/24/21 17:54	88-75-5	
4-Nitrophenol	ND	ug/kg	1940	751	1	03/24/21 11:18	03/24/21 17:54	100-02-7	
N-Nitrosodimethylamine	ND	ug/kg	388	131	1	03/24/21 11:18	03/24/21 17:54	62-75-9	
N-Nitroso-di-n-propylamine	ND	ug/kg	388	146	1	03/24/21 11:18	03/24/21 17:54	621-64-7	
N-Nitrosodiphenylamine	ND	ug/kg	388	138	1	03/24/21 11:18	03/24/21 17:54	86-30-6	
2,2'-Oxybis(1-chloropropane)	ND	ug/kg	388	185	1	03/24/21 11:18	03/24/21 17:54	108-60-1	
Pentachlorophenol	ND	ug/kg	777	380	1	03/24/21 11:18	03/24/21 17:54	87-86-5	
Phenanthrene	ND	ug/kg	388	127	1	03/24/21 11:18	03/24/21 17:54	85-01-8	
Phenol	ND	ug/kg	388	173	1	03/24/21 11:18	03/24/21 17:54	108-95-2	
Pyrene	ND	ug/kg	388	158	1	03/24/21 11:18	03/24/21 17:54	129-00-0	
Pyridine	ND	ug/kg	388	122	1	03/24/21 11:18	03/24/21 17:54	110-86-1	
2,4,5-Trichlorophenol	ND	ug/kg	388	178	1	03/24/21 11:18	03/24/21 17:54	95-95-4	
2,4,6-Trichlorophenol	ND	ug/kg	388	160	1	03/24/21 11:18	03/24/21 17:54	88-06-2	
Nitrobonzono dE (S)	60	0/	21 120		4	02/24/21 11.10	02/24/21 17:54	4165 60 0	
2 Elucrobiobooud (S)	69	70 0/	21-130		1	03/24/21 11.10	03/24/21 17.54	4100-00-0	
Z-Fluorobipitellyi (S)	00	70 0/	19-130		1	03/24/21 11.10	03/24/21 17.54	321-00-0	
Phonol de (S)	93	70 0/	10-130		1	03/24/21 11.10	03/24/21 17.54	1710-01-0	
2 Elucrophonol (S)	60	70 0/	18 120		1	03/24/21 11.10	03/24/21 17.54	267 12 /	
2.4.6-Tribromonbenol (S)	61	70 9/2	18-130		1	03/24/21 11:10	03/24/21 17:54	118-70-6	
		70				03/24/21 11.10	03/24/21 17:34	110-7 5-0	
8260D/5035A/5030B SC Volatiles	Analytical	Method: EP	A 8260D Prepa	aration Met	hod: E	PA 5035A/5030B			
	Pace Anal	ytical Servic	es - Charlotte						
Acetone	ND	ug/kg	141	45.3	1	03/24/21 11:57	03/24/21 15:24	67-64-1	
Benzene	ND	ug/kg	7.1	2.8	1	03/24/21 11:57	03/24/21 15:24	71-43-2	
Bromobenzene	ND	ug/kg	7.1	2.3	1	03/24/21 11:57	03/24/21 15:24	108-86-1	
Bromochloromethane	ND	ug/kg	7.1	2.1	1	03/24/21 11:57	03/24/21 15:24	74-97-5	
Bromodichloromethane	ND	ug/kg	7.1	2.7	1	03/24/21 11:57	03/24/21 15:24	75-27-4	
Bromoform	ND	ug/kg	7.1	2.5	1	03/24/21 11:57	03/24/21 15:24	75-25-2	
Bromomethane	ND	ug/kg	14.1	11.1	1	03/24/21 11:57	03/24/21 15:24	74-83-9	
2-Butanone (MEK)	ND	ug/kg	141	33.8	1	03/24/21 11:57	03/24/21 15:24	78-93-3	
n-Butylbenzene	ND	ug/kg	7.1	3.3	1	03/24/21 11:57	03/24/21 15:24	104-51-8	
sec-Butylbenzene	ND	ug/kg	7.1	3.1	1	03/24/21 11:57	03/24/21 15:24	135-98-8	
tert-Butylbenzene	ND	ug/kg	7.1	2.5	1	03/24/21 11:57	03/24/21 15:24	98-06-6	
Carbon tetrachloride	ND	ug/kg	7.1	2.6	1	03/24/21 11:57	03/24/21 15:24	56-23-5	
Chlorobenzene	ND	ug/kg	7.1	1.4	1	03/24/21 11:57	03/24/21 15:24	108-90-7	
Chloroethane	ND	ug/kg	14.1	5.4	1	03/24/21 11:57	03/24/21 15:24	75-00-3	
Chloroform	ND	ug/kg	7.1	4.3	1	03/24/21 11:57	03/24/21 15:24	67-66-3	



#### Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-24 (0.5-1.0)	Lab ID:	9252801101	9 Collected	d: 03/15/21	15:55	5 Received: 03/	(16/21 11:45 Ma	atrix: Solid	
Results reported on a "dry weight	" basis and are	e adjusted fo	or percent mo	isture, san	nple s	ize and any dilut	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A/5030B SC Volatiles	Analytical	Method: EP/	A 8260D Prepa	aration Met	hod: E	PA 5035A/5030B			
	Pace Anal	ytical Service	es - Charlotte						
Chloromethane	ND	uq/kq	14.1	5.9	1	03/24/21 11:57	03/24/21 15:24	74-87-3	
2-Chlorotoluene	ND	ua/ka	7.1	2.5	1	03/24/21 11:57	03/24/21 15:24	95-49-8	
4-Chlorotoluene	ND	ug/kg	7.1	1.2	1	03/24/21 11:57	03/24/21 15:24	106-43-4	
1,2-Dibromo-3-chloropropane	ND	ug/kg	7.1	2.7	1	03/24/21 11:57	03/24/21 15:24	96-12-8	
Dibromochloromethane	ND	ug/kg	7.1	4.0	1	03/24/21 11:57	03/24/21 15:24	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/kg	7.1	3.1	1	03/24/21 11:57	03/24/21 15:24	106-93-4	
Dibromomethane	ND	ug/kg	7.1	1.5	1	03/24/21 11:57	03/24/21 15:24	74-95-3	
1,2-Dichlorobenzene	ND	ug/kg	7.1	2.5	1	03/24/21 11:57	03/24/21 15:24	95-50-1	
1.3-Dichlorobenzene	ND	ua/ka	7.1	2.2	1	03/24/21 11:57	03/24/21 15:24	541-73-1	
1.4-Dichlorobenzene	ND	ua/ka	7.1	1.8	1	03/24/21 11:57	03/24/21 15:24	106-46-7	
Dichlorodifluoromethane	ND	ua/ka	14.1	3.1	1	03/24/21 11:57	03/24/21 15:24	75-71-8	
1.1-Dichloroethane	ND	ua/ka	7.1	2.9	1	03/24/21 11:57	03/24/21 15:24	75-34-3	
1.2-Dichloroethane	ND	ua/ka	7.1	4.7	1	03/24/21 11:57	03/24/21 15:24	107-06-2	
1.1-Dichloroethene	ND	ua/ka	7.1	2.9	1	03/24/21 11:57	03/24/21 15:24	75-35-4	
cis-1.2-Dichloroethene	ND	ua/ka	7.1	2.4	1	03/24/21 11:57	03/24/21 15:24	156-59-2	
trans-1.2-Dichloroethene	ND	ua/ka	7.1	2.5	1	03/24/21 11:57	03/24/21 15:24	156-60-5	
1.2-Dichloropropane	ND	ua/ka	7.1	2.1	1	03/24/21 11:57	03/24/21 15:24	78-87-5	
1.3-Dichloropropane	ND	ua/ka	7.1	2.2	1	03/24/21 11:57	03/24/21 15:24	142-28-9	
2.2-Dichloropropane	ND	ua/ka	7.1	2.3	1	03/24/21 11:57	03/24/21 15:24	594-20-7	
1.1-Dichloropropene	ND	ua/ka	7.1	3.4	1	03/24/21 11:57	03/24/21 15:24	563-58-6	
cis-1.3-Dichloropropene	ND	ua/ka	7.1	1.9	1	03/24/21 11:57	03/24/21 15:24	10061-01-5	
trans-1.3-Dichloropropene	ND	ua/ka	7.1	2.4	1	03/24/21 11:57	03/24/21 15:24	10061-02-6	
Diisopropyl ether	ND	ua/ka	7.1	1.9	1	03/24/21 11:57	03/24/21 15:24	108-20-3	
Ethylbenzene	ND	ua/ka	7.1	3.3	1	03/24/21 11:57	03/24/21 15:24	100-41-4	
Hexachloro-1.3-butadiene	ND	ua/ka	14.1	11.5	1	03/24/21 11:57	03/24/21 15:24	87-68-3	
2-Hexanone	ND	ua/ka	70.5	6.8	1	03/24/21 11:57	03/24/21 15:24	591-78-6	
Isopropylbenzene (Cumene)	ND	ua/ka	7.1	2.4	1	03/24/21 11:57	03/24/21 15:24	98-82-8	
n-Isopropyltoluene	ND	ug/kg	7.1	3.5	1	03/24/21 11:57	03/24/21 15:24	99-87-6	
Methylene Chloride	ND	ug/kg	28.2	19.3	1	03/24/21 11:57	03/24/21 15:24	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	70.5	6.8	1	03/24/21 11:57	03/24/21 15:24	108-10-1	
Methyl-tert-butyl ether	ND	ug/kg	7 1	2.6	1	03/24/21 11:57	03/24/21 15:24	1634-04-4	
Naphthalene	7.7	ua/ka	7 1	37	1	03/24/21 11:57	03/24/21 15:24	91-20-3	
n-Propylbenzene	ND	ua/ka	7 1	2.5	1	03/24/21 11:57	03/24/21 15:24	103-65-1	
Styrene	ND	ug/kg	7 1	19	1	03/24/21 11:57	03/24/21 15:24	100-42-5	
1 1 1 2-Tetrachloroethane	ND	ug/kg	7 1	27	1	03/24/21 11:57	03/24/21 15:24	630-20-6	
1 1 2 2-Tetrachloroethane	ND	ug/kg	7.1	1.9	1	03/24/21 11:57	03/24/21 15:24	79-34-5	
Tetrachloroethene	ND	ug/kg	7.1	22	1	03/24/21 11:57	03/24/21 15:24	127-18-4	
Toluene	4.6.1	ug/kg	7.1	2.2	1	03/24/21 11:57	03/24/21 15:24	108-88-3	
1 2 3-Trichlorobenzene		ug/kg	7.1	57	1	03/24/21 11:57	03/24/21 15:24	87-61-6	
1 2 4-Trichlorobenzene		ug/kg	7.1	50	1	03/24/21 11.57	03/24/21 15.24	120-82-1	
1 1 1-Trichloroethane		ug/kg	7.1	3.5	1	03/24/21 11:57	03/24/21 15.24	71-55-6	
1 1 2-Trichloroethane		ug/kg	7.1	23	1	03/24/21 11:57	03/24/21 15.24	79-00-5	
Trichloroethene		ug/kg	7.1	2.0 1 R	1	03/24/21 11:57	03/24/21 15:24	79-01-6	
Trichlorofluoromethane		ug/kg	7.1	20	1	03/24/21 11:57	03/24/21 15:24	75-69-4	
	110	ug/ng	1.1	0.0		55/27/21 11.07	00/2-7/21 10.2-	10 00 4	



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-24 (0.5-1.0)	Lab ID:	9252801101	9 Collected	d: 03/15/21	15:55	6 Received: 03/	/16/21 11:45 Ma	atrix: Solid	
Results reported on a "dry weight	" basis and are	e adjusted fo	or percent mo	oisture, san	nple s	ize and any dilut	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A/5030B SC Volatiles	Analytical	Method: EP/	A 8260D Prep	aration Met	hod: E	PA 5035A/5030B			
	Pace Anal	ytical Service	es - Charlotte						
1,2,3-Trichloropropane	ND	ug/kg	7.1	3.6	1	03/24/21 11:57	03/24/21 15:24	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/kg	7.1	1.9	1	03/24/21 11:57	03/24/21 15:24	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/kg	7.1	2.4	1	03/24/21 11:57	03/24/21 15:24	108-67-8	
Vinyl acetate	ND	ug/kg	70.5	5.1	1	03/24/21 11:57	03/24/21 15:24	108-05-4	
Vinyl chloride	ND	ug/kg	14.1	3.6	1	03/24/21 11:57	03/24/21 15:24	75-01-4	
Xylene (Total)	ND	ug/kg	14.1	4.0	1	03/24/21 11:57	03/24/21 15:24	1330-20-7	
m&p-Xylene	ND	ug/kg	14.1	4.8	1	03/24/21 11:57	03/24/21 15:24	179601-23-1	
o-Xylene	ND	ug/kg	7.1	3.1	1	03/24/21 11:57	03/24/21 15:24	95-47-6	
Surrogates									
Toluene-d8 (S)	99	%	70-130		1	03/24/21 11:57	03/24/21 15:24	2037-26-5	
4-Bromofluorobenzene (S)	96	%	69-134		1	03/24/21 11:57	03/24/21 15:24	460-00-4	
1,2-Dichloroethane-d4 (S)	93	%	70-130		1	03/24/21 11:57	03/24/21 15:24	17060-07-0	
Percent Moisture	Analytical	Method: SW	-846						
	Pace Anal	ytical Service	es - Charlotte						
Percent Moisture	14.7	%	0.10	0.10	1		03/17/21 14:13		N2



#### Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-24 (5.5-6.0)	Lab ID:	9252801102	20 Collected	d: 03/15/21	1 16:00	Received: 03/	16/21 11:45 Ma	atrix: Solid	
Results reported on a "dry weig	ght" basis and are	e adjusted fo	or percent mo	isture, sar	nple s	ize and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270E MSSV Microwave	Analytical	Method: EPA	A 8270E Prepa	aration Met	hod: E	PA 3546			
	Pace Anal	ytical Service	es - Charlotte						
Acenaphthene	ND	ua/ka	492	173	1	03/24/21 11:18	03/24/21 18:22	83-32-9	
Acenaphthylene	194J	ua/ka	492	173	1	03/24/21 11:18	03/24/21 18:22	208-96-8	
Aniline	ND	ua/ka	492	192	1	03/24/21 11:18	03/24/21 18:22	62-53-3	
Anthracene	ND	ua/ka	492	161	1	03/24/21 11:18	03/24/21 18:22	120-12-7	
Benzo(a)anthracene	172J	ua/ka	492	164	1	03/24/21 11:18	03/24/21 18:22	56-55-3	
Benzo(a)pyrene	184J	ua/ka	492	170	1	03/24/21 11:18	03/24/21 18:22	50-32-8	
Benzo(b)fluoranthene	306J	ua/ka	492	164	1	03/24/21 11:18	03/24/21 18:22	205-99-2	
Benzo(g,h,i)pervlene	224J	ua/ka	492	191	1	03/24/21 11:18	03/24/21 18:22	191-24-2	v1
Benzo(k)fluoranthene	ND	ua/ka	492	173	1	03/24/21 11:18	03/24/21 18:22	207-08-9	
Benzoic Acid	ND	ua/ka	2460	1060	1	03/24/21 11:18	03/24/21 18:22	65-85-0	
Benzvl alcohol	ND	ua/ka	984	373	1	03/24/21 11:18	03/24/21 18:22	100-51-6	
4-Bromophenvlphenvl ether	ND	ua/ka	492	189	1	03/24/21 11:18	03/24/21 18:22	101-55-3	
Butvlbenzvlphthalate	ND	ua/ka	492	207	1	03/24/21 11:18	03/24/21 18:22	85-68-7	v1
4-Chloro-3-methylphenol	ND	ua/ka	984	346	1	03/24/21 11:18	03/24/21 18:22	59-50-7	
4-Chloroaniline	ND	ua/ka	984	386	1	03/24/21 11:18	03/24/21 18:22	106-47-8	
bis(2-Chloroethoxy)methane	ND	ug/kg	492	204	1	03/24/21 11:18	03/24/21 18:22	111-91-1	
bis(2-Chloroethyl) ether	ND	ug/kg	492	185	1	03/24/21 11:18	03/24/21 18:22	111-44-4	
2-Chloronaphthalene	ND	ug/kg	492	195	1	03/24/21 11:18	03/24/21 18:22	91-58-7	
2-Chlorophenol	ND	ug/kg	492	185	1	03/24/21 11:18	03/24/21 18:22	95-57-8	
4-Chlorophenvlphenvl ether	ND	ua/ka	492	183	1	03/24/21 11:18	03/24/21 18:22	7005-72-3	
Chrysene	199J	ug/kg	492	179	1	03/24/21 11:18	03/24/21 18:22	218-01-9	
Dibenz(a,h)anthracene	ND	ug/kg	492	189	1	03/24/21 11:18	03/24/21 18:22	53-70-3	
Dibenzofuran	ND	ug/kg	492	177	1	03/24/21 11:18	03/24/21 18:22	132-64-9	
3,3'-Dichlorobenzidine	ND	ug/kg	984	332	1	03/24/21 11:18	03/24/21 18:22	91-94-1	IL
2,4-Dichlorophenol	ND	ug/kg	492	192	1	03/24/21 11:18	03/24/21 18:22	120-83-2	
Diethylphthalate	ND	ug/kg	492	180	1	03/24/21 11:18	03/24/21 18:22	84-66-2	
2,4-Dimethylphenol	ND	ug/kg	492	204	1	03/24/21 11:18	03/24/21 18:22	105-67-9	
Dimethylphthalate	ND	ug/kg	492	179	1	03/24/21 11:18	03/24/21 18:22	131-11-3	
Di-n-butylphthalate	ND	ug/kg	492	165	1	03/24/21 11:18	03/24/21 18:22	84-74-2	
4,6-Dinitro-2-methylphenol	ND	ug/kg	984	459	1	03/24/21 11:18	03/24/21 18:22	534-52-1	
2,4-Dinitrophenol	ND	ug/kg	2460	1520	1	03/24/21 11:18	03/24/21 18:22	51-28-5	
2,4-Dinitrotoluene	ND	ug/kg	492	189	1	03/24/21 11:18	03/24/21 18:22	121-14-2	
2,6-Dinitrotoluene	ND	ug/kg	492	180	1	03/24/21 11:18	03/24/21 18:22	606-20-2	
Di-n-octylphthalate	ND	ug/kg	492	194	1	03/24/21 11:18	03/24/21 18:22	117-84-0	v1
bis(2-Ethylhexyl)phthalate	ND	ug/kg	492	191	1	03/24/21 11:18	03/24/21 18:22	117-81-7	
Fluoranthene	267J	ug/kg	492	168	1	03/24/21 11:18	03/24/21 18:22	206-44-0	
Fluorene	ND	ug/kg	492	173	1	03/24/21 11:18	03/24/21 18:22	86-73-7	
Hexachlorobenzene	ND	ug/kg	492	192	1	03/24/21 11:18	03/24/21 18:22	118-74-1	
Hexachlorocyclopentadiene	ND	ug/kg	492	282	1	03/24/21 11:18	03/24/21 18:22	77-47-4	
Hexachloroethane	ND	ug/kg	492	188	1	03/24/21 11:18	03/24/21 18:22	67-72-1	
Indeno(1,2,3-cd)pyrene	209J	ug/kg	492	194	1	03/24/21 11:18	03/24/21 18:22	193-39-5	
Isophorone	ND	ug/kg	492	219	1	03/24/21 11:18	03/24/21 18:22	78-59-1	
1-Methylnaphthalene	ND	ug/kg	492	173	1	03/24/21 11:18	03/24/21 18:22	90-12-0	
2-Methylnaphthalene	ND	ug/kg	492	197	1	03/24/21 11:18	03/24/21 18:22	91-57-6	



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-24 (5.5-6.0)	Lab ID:	9252801102	20 Collected	d: 03/15/21	16:00	Received: 03/	16/21 11:45 Ma	atrix: Solid	
Results reported on a "dry weight"	" basis and are	e adjusted f	or percent mo	oisture, san	nple s	ize and any diluti	ions.		
		-	Report		-	-			
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270E MSSV Microwave	Analytical	Method: EP/	A 8270E Prepa	aration Met	hod: E	PA 3546			
	Pace Anal	ytical Servic	es - Charlotte						
2-Methylphenol(o-Cresol)	ND	ua/ka	492	201	1	03/24/21 11:18	03/24/21 18:22	95-48-7	
3&4-Methylphenol(m&p Cresol)	ND	ua/ka	492	198	1	03/24/21 11:18	03/24/21 18:22	15831-10-4	
2-Nitroaniline	ND	ua/ka	2460	402	1	03/24/21 11:18	03/24/21 18:22	88-74-4	
3-Nitroaniline	ND	ua/ka	2460	386	1	03/24/21 11:18	03/24/21 18:22	99-09-2	
4-Nitroaniline	ND	ua/ka	984	374	1	03/24/21 11:18	03/24/21 18:22	100-01-6	
Nitrobenzene	ND	ug/kg	492	228	1	03/24/21 11:18	03/24/21 18:22	98-95-3	
2-Nitrophenol	ND	ug/kg	492	213	1	03/24/21 11:18	03/24/21 18:22	88-75-5	
4-Nitrophenol	ND	ug/kg	2460	951	1	03/24/21 11:18	03/24/21 18:22	100-02-7	
N-Nitrosodimethylamine	ND	ug/kg	492	165	1	03/24/21 11:18	03/24/21 18:22	62-75-9	
N-Nitroso-di-n-propylamine	ND	ug/kg	492	185	1	03/24/21 11:18	03/24/21 18:22	621-64-7	
N-Nitrosodiphenylamine	ND	ug/kg	492	174	1	03/24/21 11:18	03/24/21 18:22	86-30-6	
2,2'-Oxybis(1-chloropropane)	ND	ug/kg	492	234	1	03/24/21 11:18	03/24/21 18:22	108-60-1	
Pentachlorophenol	ND	ug/kg	984	481	1	03/24/21 11:18	03/24/21 18:22	87-86-5	
Phenanthrene	ND	ug/kg	492	161	1	03/24/21 11:18	03/24/21 18:22	85-01-8	
Phenol	ND	ug/kg	492	219	1	03/24/21 11:18	03/24/21 18:22	108-95-2	
Pyrene	261J	ug/kg	492	200	1	03/24/21 11:18	03/24/21 18:22	129-00-0	
Pyridine	ND	ug/kg	492	155	1	03/24/21 11:18	03/24/21 18:22	110-86-1	
2,4,5-Trichlorophenol	ND	ug/kg	492	225	1	03/24/21 11:18	03/24/21 18:22	95-95-4	
2,4,6-Trichlorophenol	ND	ug/kg	492	203	1	03/24/21 11:18	03/24/21 18:22	88-06-2	
Nitrobenzene-d5 (S)	56	%	21-130		1	03/24/21 11.18	03/24/21 18.22	4165-60-0	
2-Eluorobiphenyl (S)	44	%	19-130		1	03/24/21 11:18	03/24/21 18:22	321-60-8	
Terphenyl-d14 (S)	75	%	15-130		1	03/24/21 11:18	03/24/21 18:22	1718-51-0	
Phenol-d6 (S)	53	%	18-130		1	03/24/21 11:18	03/24/21 18:22	13127-88-3	
2-Fluorophenol (S)	55	%	18-130		1	03/24/21 11:18	03/24/21 18:22	367-12-4	
2,4,6-Tribromophenol (S)	65	%	18-130		1	03/24/21 11:18	03/24/21 18:22	118-79-6	
8260D/5035A/5030B SC Volatiles	Analytical	Method: EP	A 8260D Prep	aration Met	hod: E	PA 5035A/5030B			
	Pace Anal	ytical Servic	es - Charlotte						
Acetone	273	ua/ka	222	71.2	1	03/24/21 11:57	03/24/21 15:42	67-64-1	
Benzene	5.7J	ug/kg	11.1	4.4	1	03/24/21 11:57	03/24/21 15:42	71-43-2	
Bromobenzene	ND	ug/kg	11.1	3.6	1	03/24/21 11:57	03/24/21 15:42	108-86-1	
Bromochloromethane	ND	ug/kg	11.1	3.3	1	03/24/21 11:57	03/24/21 15:42	74-97-5	
Bromodichloromethane	ND	ug/kg	11.1	4.3	1	03/24/21 11:57	03/24/21 15:42	75-27-4	
Bromoform	ND	ug/kg	11.1	3.9	1	03/24/21 11:57	03/24/21 15:42	75-25-2	
Bromomethane	ND	ug/kg	22.2	17.5	1	03/24/21 11:57	03/24/21 15:42	74-83-9	
2-Butanone (MEK)	117J	ug/kg	222	53.2	1	03/24/21 11:57	03/24/21 15:42	78-93-3	
n-Butylbenzene	ND	ug/kg	11.1	5.2	1	03/24/21 11:57	03/24/21 15:42	104-51-8	
sec-Butylbenzene	ND	ug/kg	11.1	4.9	1	03/24/21 11:57	03/24/21 15:42	135-98-8	
tert-Butylbenzene	ND	ug/kg	11.1	3.9	1	03/24/21 11:57	03/24/21 15:42	98-06-6	
Carbon tetrachloride	ND	ug/kg	11.1	4.1	1	03/24/21 11:57	03/24/21 15:42	56-23-5	
Chlorobenzene	17.2	ug/kg	11.1	2.1	1	03/24/21 11:57	03/24/21 15:42	108-90-7	
Chloroethane	ND	ug/kg	22.2	8.6	1	03/24/21 11:57	03/24/21 15:42	75-00-3	
Chloroform	ND	ug/kg	11.1	6.7	1	03/24/21 11:57	03/24/21 15:42	67-66-3	



#### Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-24 (5.5-6.0)	Lab ID:	9252801102	20 Collected	d: 03/15/21	1 16:00	) Received: 03/	16/21 11:45 Ma	atrix: Solid		
Results reported on a "dry weight"	" basis and are	e adjusted fo	or percent mo	oisture, sar	nple s	ize and any diluti	ions.			
			Report							
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA	A 8260D Prep	aration Met	hod: E	PA 5035A/5030B				
	Pace Anal	lytical Service	es - Charlotte							
Chloromethane	ND	ua/ka	22.2	9.3	1	03/24/21 11:57	03/24/21 15:42	74-87-3		
2-Chlorotoluene	ND	ua/ka	11.1	3.9	1	03/24/21 11:57	03/24/21 15:42	95-49-8		
4-Chlorotoluene	ND	ug/kg	11.1	2.0	1	03/24/21 11:57	03/24/21 15:42	106-43-4		
1.2-Dibromo-3-chloropropane	ND	ug/kg	11.1	4.3	1	03/24/21 11:57	03/24/21 15:42	96-12-8		
Dibromochloromethane	ND	ug/kg	11.1	6.2	1	03/24/21 11:57	03/24/21 15:42	124-48-1		
1.2-Dibromoethane (FDB)	ND	ug/kg	11.1	4.9	1	03/24/21 11:57	03/24/21 15:42	106-93-4		
Dibromomethane	ND	ug/kg	11 1	24	1	03/24/21 11:57	03/24/21 15:42	74-95-3		
1 2-Dichlorobenzene	ND	ug/kg	11 1	4.0	1	03/24/21 11:57	03/24/21 15:42	95-50-1		
1.3-Dichlorobenzene	ND	ug/kg	11 1	3.4	1	03/24/21 11:57	03/24/21 15:42	541-73-1		
1 4-Dichlorobenzene	ND	ug/kg	11.1	2 Q	1	03/24/21 11:57	03/24/21 15:42	106-46-7		
Dichlorodifluoromethane	ND	ug/kg	22.2	4.8	1	03/24/21 11:57	03/24/21 15:42	75-71-8		
1 1-Dichloroethane	ND	ug/kg	11 1	4.6	1	03/24/21 11:57	03/24/21 15:42	75-34-3		
1.2-Dichloroethane		ug/kg	11.1	73	1	03/24/21 11:57	03/24/21 15:42	107-06-2		
1 1-Dichloroethene		ug/kg	11.1	4.6	1	03/24/21 11:57	03/24/21 15:42	75-35-4		
cis-1 2-Dichloroethene		ug/kg	11.1	3.8	1	03/24/21 11:57	03/24/21 15:42	156-59-2		
trans-1 2-Dichloroethene		ug/kg	11.1	3.0	1	03/24/21 11:57	03/24/21 15:42	156-60-5		
1.2-Dichloropropage		ug/kg	11.1	33	1	03/24/21 11:57	03/24/21 15:42	78-87-5		
1.3-Dichloropropane		ug/kg	11.1	3.5	1	03/24/21 11:57	03/24/21 15:42	142-28-0		
2.2 Dichloropropane		ug/kg	11.1	3.5	1	03/24/21 11.57	03/24/21 15:42	504 20 7		
1 1 Dichloropropane		ug/kg	11.1	5.0	1	03/24/21 11.57	03/24/21 15:42	562 58 6		
ris 1.3 Dichloropropono		ug/kg	11.1	2.0	1	03/24/21 11.57	03/24/21 15:42	10061 01 5		
trans 1.3 Dichloropropono		ug/kg	11.1	2.0	1	03/24/21 11.57	03/24/21 15:42	10061-01-5		
Discorropyl other		ug/kg	11.1	2.0	1	03/24/21 11.57	03/24/21 15:42	10001-02-0		
	10.0	ug/kg	11.1	5.0	1	03/24/21 11.37	03/24/21 15.42	100-20-3		
	19.0	ug/kg	11.1	0.Z	1	03/24/21 11.37	03/24/21 15.42	100-41-4		
		ug/kg	22.2	10.1	1	03/24/21 11.37	03/24/21 15.42	07-00-3 E01 79 6		
	254	ug/kg	111	10.7	1	03/24/21 11.37	03/24/21 15.42	091-70-0		
isopropyidenzene (Cumene)	234	ug/kg	11.1	3.0 5.5	1	03/24/21 11:57	03/24/21 15:42	90-02-0		
p-isopropyiloidene	ND	ug/kg	11.1	5.5 20.4	1	03/24/21 11:57	03/24/21 15:42	99-07-0		
A Mathud 2 parton and (MIDIC)	ND	ug/kg	44.4	30.4	1	03/24/21 11:57	03/24/21 15:42	75-09-2		
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	111	10.7	1	03/24/21 11:57	03/24/21 15:42	108-10-1		
Methyl-tert-butyl ether		ug/kg	11.1	4.1	1	03/24/21 11:57	03/24/21 15:42	1634-04-4		
	1320	ug/kg	11.1	5.8	1	03/24/21 11:57	03/24/21 15:42	91-20-3		
n-Propyidenzene	16.1	ug/kg	11.1	3.9	1	03/24/21 11:57	03/24/21 15:42	103-65-1		
Styrene	ND	ug/kg	11.1	2.9	1	03/24/21 11:57	03/24/21 15:42	100-42-5		
1,1,1,2- letrachloroethane	ND	ug/kg	11.1	4.3	1	03/24/21 11:57	03/24/21 15:42	630-20-6		
1,1,2,2-letrachioroethane	ND	ug/kg	11.1	2.9	1	03/24/21 11:57	03/24/21 15:42	79-34-5		
	ND	ug/kg	11.1	3.5	1	03/24/21 11:57	03/24/21 15:42	127-18-4		
loluene	24.1	ug/kg	11.1	3.2	1	03/24/21 11:57	03/24/21 15:42	108-88-3		
1,2,3-Trichlorobenzene	ND	ug/kg	11.1	9.0	1	03/24/21 11:57	03/24/21 15:42	87-61-6		
1,2,4-Trichlorobenzene	ND	ug/kg	11.1	9.3	1	03/24/21 11:57	03/24/21 15:42	120-82-1		
1,1,1-Trichloroethane	ND	ug/kg	11.1	5.8	1	03/24/21 11:57	03/24/21 15:42	71-55-6		
1,1,2-Trichloroethane	ND	ug/kg	11.1	3.7	1	03/24/21 11:57	03/24/21 15:42	79-00-5		
Trichloroethene	ND	ug/kg	11.1	2.9	1	03/24/21 11:57	03/24/21 15:42	79-01-6		
Trichlorofluoromethane	ND	ug/kg	11.1	6.1	1	03/24/21 11:57	03/24/21 15:42	75-69-4		


## **ANALYTICAL RESULTS**

Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: RI-SB-24 (5.5-6.0)	Lab ID:	9252801102	20 Collected	I: 03/15/21	16:00	Received: 03/	/16/21 11:45 Ma	atrix: Solid	
Results reported on a "dry weight"	" basis and are	e adjusted f	or percent mo	isture, san	nple s	ize and any dilut	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A/5030B SC Volatiles	Analytical	Method: EP	A 8260D Prepa	aration Met	hod: E	PA 5035A/5030B			
	Pace Anal	ytical Servic	es - Charlotte						
1,2,3-Trichloropropane	ND	ug/kg	11.1	5.6	1	03/24/21 11:57	03/24/21 15:42	96-18-4	
1,2,4-Trimethylbenzene	69.3	ug/kg	11.1	3.0	1	03/24/21 11:57	03/24/21 15:42	95-63-6	
1,3,5-Trimethylbenzene	29.9	ug/kg	11.1	3.7	1	03/24/21 11:57	03/24/21 15:42	108-67-8	
Vinyl acetate	ND	ug/kg	111	8.1	1	03/24/21 11:57	03/24/21 15:42	108-05-4	
Vinyl chloride	ND	ug/kg	22.2	5.6	1	03/24/21 11:57	03/24/21 15:42	75-01-4	
Xylene (Total)	174	ug/kg	22.2	6.3	1	03/24/21 11:57	03/24/21 15:42	1330-20-7	
m&p-Xylene	94.2	ug/kg	22.2	7.6	1	03/24/21 11:57	03/24/21 15:42	179601-23-1	
o-Xylene	80.1	ug/kg	11.1	4.9	1	03/24/21 11:57	03/24/21 15:42	95-47-6	
Surrogates									
Toluene-d8 (S)	99	%	70-130		1	03/24/21 11:57	03/24/21 15:42	2037-26-5	
4-Bromofluorobenzene (S)	97	%	69-134		1	03/24/21 11:57	03/24/21 15:42	460-00-4	
1,2-Dichloroethane-d4 (S)	92	%	70-130		1	03/24/21 11:57	03/24/21 15:42	17060-07-0	
Percent Moisture	Analytical	Method: SW	/-846						
	Pace Anal	ytical Servic	es - Charlotte						
Percent Moisture	33.1	%	0.10	0.10	1		03/17/21 14:13		N2



## ANALYTICAL RESULTS

#### Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: TRIP BLANK	Lab ID:	92528011021	Collecte	d: 03/15/2	1 00:00	Received: 03	B/16/21 11:45 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Low Level SC	Analytical	Method: EPA 8	3260D						
	Pace Ana	lytical Services	- Charlotte						
Acetone	ND	ua/L	25.0	5.1	1		03/18/21 15:44	67-64-1	
Benzene	ND	ug/L	1.0	0.34	1		03/18/21 15:44	71-43-2	
Bromobenzene	ND	ug/L	1.0	0.29	1		03/18/21 15:44	108-86-1	
Bromochloromethane	ND	ug/L	1.0	0.47	1		03/18/21 15:44	74-97-5	
Bromodichloromethane	ND	ug/L	1.0	0.31	1		03/18/21 15:44	75-27-4	
Bromoform	ND	ug/L	1.0	0.34	1		03/18/21 15:44	75-25-2	
Bromomethane	ND	ug/L	2.0	1.7	1		03/18/21 15:44	74-83-9	
2-Butanone (MEK)	ND	ug/L	5.0	4.0	1		03/18/21 15:44	78-93-3	
Carbon tetrachloride	ND	ug/L	1.0	0.33	1		03/18/21 15:44	56-23-5	
Chlorobenzene	ND	ug/L	1.0	0.28	1		03/18/21 15:44	108-90-7	
Chloroethane	ND	ug/L	1.0	0.65	1		03/18/21 15:44	75-00-3	
Chloroform	ND	ug/L	5.0	1.6	1		03/18/21 15:44	67-66-3	
Chloromethane	ND	ug/L	1.0	0.54	1		03/18/21 15:44	74-87-3	
2-Chlorotoluene	ND	ug/L	1.0	0.32	1		03/18/21 15:44	95-49-8	
4-Chlorotoluene	ND	ug/L	1.0	0.32	1		03/18/21 15:44	106-43-4	
1,2-Dibromo-3-chloropropane	ND	ug/L	2.0	0.34	1		03/18/21 15:44	96-12-8	
Dibromochloromethane	ND	ug/L	1.0	0.36	1		03/18/21 15:44	124-48-1	
Dibromomethane	ND	ug/L	1.0	0.39	1		03/18/21 15:44	74-95-3	
1,2-Dichlorobenzene	ND	ug/L	1.0	0.34	1		03/18/21 15:44	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	1.0	0.34	1		03/18/21 15:44	541-73-1	
1,4-Dichlorobenzene	ND	ug/L	1.0	0.33	1		03/18/21 15:44	106-46-7	
Dichlorodifluoromethane	ND	ug/L	1.0	0.35	1		03/18/21 15:44	75-71-8	
1,1-Dichloroethane	ND	ug/L	1.0	0.37	1		03/18/21 15:44	75-34-3	
1,2-Dichloroethane	ND	ug/L	1.0	0.32	1		03/18/21 15:44	107-06-2	
1,1-Dichloroethene	ND	ug/L	1.0	0.35	1		03/18/21 15:44	75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.38	1		03/18/21 15:44	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.40	1		03/18/21 15:44	156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	0.36	1		03/18/21 15:44	78-87-5	
1,3-Dichloropropane	ND	ug/L	1.0	0.28	1		03/18/21 15:44	142-28-9	
2,2-Dichloropropane	ND	ug/L	1.0	0.39	1		03/18/21 15:44	594-20-7	
1,1-Dichloropropene	ND	ug/L	1.0	0.43	1		03/18/21 15:44	563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	1.0	0.36	1		03/18/21 15:44	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	0.36	1		03/18/21 15:44	10061-02-6	
Diisopropyl ether	ND	ug/L	1.0	0.31	1		03/18/21 15:44	108-20-3	
Ethylbenzene	ND	ug/L	1.0	0.30	1		03/18/21 15:44	100-41-4	
Hexachloro-1,3-butadiene	ND	ug/L	2.0	1.5	1		03/18/21 15:44	87-68-3	
2-Hexanone	ND	ug/L	5.0	0.48	1		03/18/21 15:44	591-78-6	
p-lsopropyltoluene	ND	ug/L	1.0	0.41	1		03/18/21 15:44	99-87-6	
Methylene Chloride	ND	ug/L	5.0	2.0	1		03/18/21 15:44	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	2.7	1		03/18/21 15:44	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	1.0	0.42	1		03/18/21 15:44	1634-04-4	
Naphthalene	ND	ug/L	1.0	0.64	1		03/18/21 15:44	91-20-3	
Styrene	ND	ug/L	1.0	0.29	1		03/18/21 15:44	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	0.31	1		03/18/21 15:44	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	0.22	1		03/18/21 15:44	79-34-5	



## ANALYTICAL RESULTS

#### Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Sample: TRIP BLANK	Lab ID:	92528011021	Collecte	d: 03/15/21	00:00	Received: 03	/16/21 11:45 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Low Level SC	Analytical	Method: EPA 8	260D						
	Pace Anal	vtical Services	- Charlotte						
Tetrachloroethene	ND	ug/L	1.0	0.29	1		03/18/21 15:44	127-18-4	
Toluene	ND	ug/L	1.0	0.48	1		03/18/21 15:44	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	0.81	1		03/18/21 15:44	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	0.64	1		03/18/21 15:44	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	0.33	1		03/18/21 15:44	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	0.32	1		03/18/21 15:44	79-00-5	
Trichloroethene	ND	ug/L	1.0	0.38	1		03/18/21 15:44	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	0.30	1		03/18/21 15:44	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	0.26	1		03/18/21 15:44	96-18-4	
Vinyl acetate	ND	ug/L	2.0	1.3	1		03/18/21 15:44	108-05-4	
Vinyl chloride	ND	ug/L	1.0	0.39	1		03/18/21 15:44	75-01-4	
Xylene (Total)	ND	ug/L	1.0	0.34	1		03/18/21 15:44	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	0.71	1		03/18/21 15:44	179601-23-1	
o-Xylene	ND	ug/L	1.0	0.34	1		03/18/21 15:44	95-47-6	
Surrogates									
4-Bromofluorobenzene (S)	100	%	70-130		1		03/18/21 15:44	460-00-4	
1,2-Dichloroethane-d4 (S)	100	%	70-130		1		03/18/21 15:44	17060-07-0	
Toluene-d8 (S)	101	%	70-130		1		03/18/21 15:44	2037-26-5	



Pace Analytical Services, LLC 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

## **QUALITY CONTROL DATA**

Project: BRAMLETTE J21030497

Pace Project No.: 92	528011
----------------------	--------

QC Batch:	607594		Analysis Met	hod: E	PA 8260D				
QC Batch Method:	EPA 8260D		Analysis Des	cription: 8	260 MSV Low Lev	vel SC			
			Laboratory:	F	Pace Analytical Services - Charlotte				
Associated Lab Sar	nples: 92528011021	l							
METHOD BLANK:	3200736		Matrix:	Water					
Associated Lab Sar	nples: 92528011021								
			Blank	Reporting					
Paran	neter	Units	Result	Limit	MDL	Analyzed	Qualifiers		
1 1 1 2 Totrachloroc	thana	ua/I		1.0	0.21	02/19/21 15:09			

						-,
1,1,1,2-Tetrachloroethane	ug/L	ND	1.0	0.31	03/18/21 15:08	
1,1,1-Trichloroethane	ug/L	ND	1.0	0.33	03/18/21 15:08	
1,1,2,2-Tetrachloroethane	ug/L	ND	1.0	0.22	03/18/21 15:08	
1,1,2-Trichloroethane	ug/L	ND	1.0	0.32	03/18/21 15:08	
1,1-Dichloroethane	ug/L	ND	1.0	0.37	03/18/21 15:08	
1,1-Dichloroethene	ug/L	ND	1.0	0.35	03/18/21 15:08	
1,1-Dichloropropene	ug/L	ND	1.0	0.43	03/18/21 15:08	
1,2,3-Trichlorobenzene	ug/L	ND	1.0	0.81	03/18/21 15:08	
1,2,3-Trichloropropane	ug/L	ND	1.0	0.26	03/18/21 15:08	
1,2,4-Trichlorobenzene	ug/L	ND	1.0	0.64	03/18/21 15:08	
1,2-Dibromo-3-chloropropane	ug/L	ND	2.0	0.34	03/18/21 15:08	
1,2-Dichlorobenzene	ug/L	ND	1.0	0.34	03/18/21 15:08	
1,2-Dichloroethane	ug/L	ND	1.0	0.32	03/18/21 15:08	
1,2-Dichloropropane	ug/L	ND	1.0	0.36	03/18/21 15:08	
1,3-Dichlorobenzene	ug/L	ND	1.0	0.34	03/18/21 15:08	
1,3-Dichloropropane	ug/L	ND	1.0	0.28	03/18/21 15:08	
1,4-Dichlorobenzene	ug/L	ND	1.0	0.33	03/18/21 15:08	
2,2-Dichloropropane	ug/L	ND	1.0	0.39	03/18/21 15:08	
2-Butanone (MEK)	ug/L	ND	5.0	4.0	03/18/21 15:08	
2-Chlorotoluene	ug/L	ND	1.0	0.32	03/18/21 15:08	
2-Hexanone	ug/L	ND	5.0	0.48	03/18/21 15:08	
4-Chlorotoluene	ug/L	ND	1.0	0.32	03/18/21 15:08	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	5.0	2.7	03/18/21 15:08	
Acetone	ug/L	ND	25.0	5.1	03/18/21 15:08	
Benzene	ug/L	ND	1.0	0.34	03/18/21 15:08	
Bromobenzene	ug/L	ND	1.0	0.29	03/18/21 15:08	
Bromochloromethane	ug/L	ND	1.0	0.47	03/18/21 15:08	
Bromodichloromethane	ug/L	ND	1.0	0.31	03/18/21 15:08	
Bromoform	ug/L	ND	1.0	0.34	03/18/21 15:08	
Bromomethane	ug/L	ND	2.0	1.7	03/18/21 15:08	
Carbon tetrachloride	ug/L	ND	1.0	0.33	03/18/21 15:08	
Chlorobenzene	ug/L	ND	1.0	0.28	03/18/21 15:08	
Chloroethane	ug/L	ND	1.0	0.65	03/18/21 15:08	
Chloroform	ug/L	ND	5.0	1.6	03/18/21 15:08	
Chloromethane	ug/L	ND	1.0	0.54	03/18/21 15:08	
cis-1,2-Dichloroethene	ug/L	ND	1.0	0.38	03/18/21 15:08	
cis-1,3-Dichloropropene	ug/L	ND	1.0	0.36	03/18/21 15:08	
Dibromochloromethane	ug/L	ND	1.0	0.36	03/18/21 15:08	
Dibromomethane	ug/L	ND	1.0	0.39	03/18/21 15:08	
Dichlorodifluoromethane	ug/L	ND	1.0	0.35	03/18/21 15:08	
	- 5					

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



## Project: BRAMLETTE J21030497

Pace Project No.: 92528011

METHOD BLANK: 3200736		Matrix:	Water			
Associated Lab Samples: 925280110	21					
		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Diisopropyl ether	ug/L	ND	1.0	0.31	03/18/21 15:08	
Ethylbenzene	ug/L	ND	1.0	0.30	03/18/21 15:08	
Hexachloro-1,3-butadiene	ug/L	ND	2.0	1.5	03/18/21 15:08	
m&p-Xylene	ug/L	ND	2.0	0.71	03/18/21 15:08	
Methyl-tert-butyl ether	ug/L	ND	1.0	0.42	03/18/21 15:08	
Methylene Chloride	ug/L	ND	5.0	2.0	03/18/21 15:08	
Naphthalene	ug/L	ND	1.0	0.64	03/18/21 15:08	
o-Xylene	ug/L	ND	1.0	0.34	03/18/21 15:08	
p-Isopropyltoluene	ug/L	ND	1.0	0.41	03/18/21 15:08	
Styrene	ug/L	ND	1.0	0.29	03/18/21 15:08	
Tetrachloroethene	ug/L	ND	1.0	0.29	03/18/21 15:08	
Toluene	ug/L	ND	1.0	0.48	03/18/21 15:08	
trans-1,2-Dichloroethene	ug/L	ND	1.0	0.40	03/18/21 15:08	
trans-1,3-Dichloropropene	ug/L	ND	1.0	0.36	03/18/21 15:08	
Trichloroethene	ug/L	ND	1.0	0.38	03/18/21 15:08	
Trichlorofluoromethane	ug/L	ND	1.0	0.30	03/18/21 15:08	
Vinyl acetate	ug/L	ND	2.0	1.3	03/18/21 15:08	
Vinyl chloride	ug/L	ND	1.0	0.39	03/18/21 15:08	
Xylene (Total)	ug/L	ND	1.0	0.34	03/18/21 15:08	
1,2-Dichloroethane-d4 (S)	%	99	70-130		03/18/21 15:08	
4-Bromofluorobenzene (S)	%	98	70-130		03/18/21 15:08	
Toluene-d8 (S)	%	100	70-130		03/18/21 15:08	

#### LABORATORY CONTROL SAMPLE: 3200737

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L		50.6	101	70-130	
1,1,1-Trichloroethane	ug/L	50	50.8	102	70-130	
1,1,2,2-Tetrachloroethane	ug/L	50	48.7	97	70-130	
1,1,2-Trichloroethane	ug/L	50	50.2	100	70-130	
1,1-Dichloroethane	ug/L	50	50.2	100	70-130	
1,1-Dichloroethene	ug/L	50	50.4	101	70-130	
1,1-Dichloropropene	ug/L	50	50.8	102	70-130	
1,2,3-Trichlorobenzene	ug/L	50	51.7	103	70-130	
1,2,3-Trichloropropane	ug/L	50	48.7	97	70-130	
1,2,4-Trichlorobenzene	ug/L	50	51.6	103	70-130	
1,2-Dibromo-3-chloropropane	ug/L	50	51.5	103	70-130	
1,2-Dichlorobenzene	ug/L	50	49.9	100	70-130	
1,2-Dichloroethane	ug/L	50	49.5	99	70-130	
1,2-Dichloropropane	ug/L	50	50.9	102	70-130	
1,3-Dichlorobenzene	ug/L	50	51.8	104	70-130	
1,3-Dichloropropane	ug/L	50	49.9	100	70-130	
1,4-Dichlorobenzene	ug/L	50	49.0	98	70-130	
2.2-Dichloropropane	ua/L	50	50.9	102	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



#### Project: BRAMLETTE J21030497

Pace Project No.: 92528011

LABORATORY CONTROL SAMPLE:	3200737					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
2-Butanone (MEK)	ug/L		97.1	97	70-130	
2-Chlorotoluene	ug/L	50	50.2	100	70-130	
2-Hexanone	ug/L	100	97.0	97	70-130	
4-Chlorotoluene	ug/L	50	50.2	100	70-130	
4-Methyl-2-pentanone (MIBK)	ug/L	100	97.1	97	70-130	
Acetone	ug/L	100	101	101	70-130	
Benzene	ug/L	50	49.7	99	70-130	
Bromobenzene	ug/L	50	49.8	100	70-130	
Bromochloromethane	ug/L	50	51.5	103	70-130	
Bromodichloromethane	ug/L	50	45.8	92	70-130	
Bromoform	ug/L	50	51.3	103	70-130	
Bromomethane	ug/L	50	50.5	101	70-130	
Carbon tetrachloride	ug/L	50	49.7	99	70-130	
Chlorobenzene	ug/L	50	50.7	101	70-130	
Chloroethane	ug/L	50	46.5	93	70-130	
Chloroform	ug/L	50	50.7	101	70-130	
Chloromethane	ug/L	50	43.9	88	70-130	
cis-1,2-Dichloroethene	ug/L	50	49.6	99	70-130	
cis-1,3-Dichloropropene	ug/L	50	50.3	101	70-130	
Dibromochloromethane	ug/L	50	51.2	102	70-130	
Dibromomethane	ug/L	50	51.3	103	70-130	
Dichlorodifluoromethane	ug/L	50	41.5	83	70-130	
Diisopropyl ether	ug/L	50	48.0	96	70-130	
Ethylbenzene	ug/L	50	49.8	100	70-130	
Hexachloro-1,3-butadiene	ug/L	50	51.6	103	70-130	
m&p-Xylene	ug/L	100	98.9	99	70-130	
Methyl-tert-butyl ether	ug/L	50	49.7	99	70-130	
Methylene Chloride	ug/L	50	49.1	98	70-130	
Naphthalene	ug/L	50	50.1	100	70-130	
o-Xylene	ug/L	50	50.0	100	70-130	
p-Isopropyltoluene	ug/L	50	50.5	101	70-130	
Styrene	ug/L	50	51.1	102	70-130	
Tetrachloroethene	ug/L	50	49.8	100	70-130	
Toluene	ug/L	50	49.7	99	70-130	
trans-1,2-Dichloroethene	ug/L	50	51.2	102	70-130	
trans-1,3-Dichloropropene	ug/L	50	49.9	100	70-130	
Trichloroethene	ug/L	50	50.4	101	70-130	
Trichlorofluoromethane	ug/L	50	47.0	94	70-130	
Vinyl acetate	ug/L	100	109	109	70-130	
Vinyl chloride	ug/L	50	47.5	95	70-130	
Xylene (Total)	ug/L	150	149	99	70-130	
1,2-Dichloroethane-d4 (S)	%			100	70-130	
4-Bromofluorobenzene (S)	%			102	70-130	
Toluene-d8 (S)	%			100	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

MATRIX SPIKE & MATRIX S	SPIKE DUP	LICATE: 3200	0738		3200739	1						
			MS	MSD								
		92527568014	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1,2-Tetrachloroethane	ug/L	ND	10000	10000	10300	9810	103	98	73-134	5	30	
1,1,1-Trichloroethane	ug/L	ND	10000	10000	10500	10300	105	103	82-143	1	30	
1,1,2,2-Tetrachloroethane	ug/L	ND	10000	10000	9890	9880	99	99	70-136	0	30	
1,1,2-Trichloroethane	ug/L	ND	10000	10000	10400	10300	104	103	70-135	1	30	
1,1-Dichloroethane	ug/L	ND	10000	10000	10200	9930	102	99	70-139	3	30	
1,1-Dichloroethene	ug/L	ND	10000	10000	10600	10300	106	103	70-154	3	30	
1,1-Dichloropropene	ug/L	ND	10000	10000	10500	10200	105	102	70-149	3	30	
1,2,3-Trichlorobenzene	ug/L	ND	10000	10000	10800	10300	108	103	70-135	5	30	
1,2,3-Trichloropropane	ug/L	ND	10000	10000	10400	10300	104	103	71-137	1	30	
1,2,4-Trichlorobenzene	ug/L	ND	10000	10000	10900	10500	109	105	73-140	4	30	
1,2-Dibromo-3-	ug/L	ND	10000	10000	10500	10600	105	106	65-134	2	30	
chloropropane												
1,2-Dichlorobenzene	ug/L	ND	10000	10000	10500	10100	105	101	70-133	4	30	
1,2-Dichloroethane	ug/L	ND	10000	10000	10200	9840	102	98	70-137	4	30	
1,2-Dichloropropane	ug/L	ND	10000	10000	10700	10400	107	104	70-140	3	30	
1,3-Dichlorobenzene	ug/L	ND	10000	10000	10700	10500	107	105	70-135	2	30	
1,3-Dichloropropane	ug/L	ND	10000	10000	10200	10200	102	102	70-143	1	30	
1,4-Dichlorobenzene	ug/L	ND	10000	10000	10200	9780	102	98	70-133	4	30	
2,2-Dichloropropane	ug/L	ND	10000	10000	9050	9080	91	91	61-148	0	30	
2-Butanone (MEK)	ug/L	ND	20000	20000	19800	20700	99	103	60-139	4	30	
2-Chlorotoluene	ug/L	ND	10000	10000	10700	10500	107	105	70-144	1	30	
2-Hexanone	ug/L	ND	20000	20000	20600	20100	103	101	65-138	2	30	
4-Chlorotoluene	ug/L	ND	10000	10000	10400	10100	104	101	70-137	3	30	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	20000	20000	20300	20100	101	100	65-135	1	30	
Acetone	ug/L	ND	20000	20000	20800	20500	104	102	60-148	2	30	
Benzene	ug/L	ND	10000	10000	10500	10100	105	101	70-151	4	30	
Bromobenzene	ug/L	ND	10000	10000	10400	10100	104	101	70-136	4	30	
Bromochloromethane	ug/L	ND	10000	10000	9990	10000	100	100	70-141	1	30	
Bromodichloromethane	ug/L	ND	10000	10000	9490	9180	95	92	70-138	3	30	
Bromoform	ug/L	ND	10000	10000	10000	9650	100	96	63-130	4	30	
Bromomethane	ug/L	ND	10000	10000	11100	10000	111	100	15-152	10	30	
Carbon tetrachloride	ug/L	ND	10000	10000	10600	10300	106	103	70-143	4	30	
Chlorobenzene	ug/L	ND	10000	10000	10600	10100	106	101	70-138	4	30	
Chloroethane	ug/L	ND	10000	10000	10200	9970	102	100	52-163	3	30	
Chloroform	ug/L	ND	10000	10000	10100	9940	101	99	70-139	2	30	
Chloromethane	ug/L	ND	10000	10000	8160	8450	82	85	41-139	4	30	
cis-1,2-Dichloroethene	ug/L	4170	10000	10000	13900	14000	97	98	70-141	1	30	
cis-1,3-Dichloropropene	ug/L	ND	10000	10000	9790	9850	98	98	70-137	1	30	
Dibromochloromethane	ug/L	ND	10000	10000	10300	9930	103	99	70-134	3	30	
Dibromomethane	ug/L	ND	10000	10000	10900	10700	109	107	70-138	2	30	
Dichlorodifluoromethane	ug/L	ND	10000	10000	8730	8550	87	86	47-155	2	30	
Diisopropyl ether	ug/L	ND	10000	10000	9670	9640	97	96	63-144	0	30	
Ethylbenzene	ug/L	ND	10000	10000	10400	10200	104	102	66-153	2	30	
Hexachloro-1,3-butadiene	ug/L	ND	10000	10000	10500	10400	105	104	65-149	1	30	
m&p-Xylene	ug/L	ND	20000	20000	20800	20300	104	102	69-152	2	30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3200738					3200739							
			MS	MSD								
		92527568014	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Methyl-tert-butyl ether	ug/L	ND	10000	10000	10000	9840	100	98	54-156	2	30	
Methylene Chloride	ug/L	ND	10000	10000	9700	9800	97	98	42-159	1	30	
Naphthalene	ug/L	ND	10000	10000	10900	10600	109	106	61-148	2	30	
o-Xylene	ug/L	ND	10000	10000	10300	9960	103	100	70-148	3	30	
p-Isopropyltoluene	ug/L	ND	10000	10000	10500	10100	105	101	70-146	4	30	
Styrene	ug/L	ND	10000	10000	10500	10000	105	100	70-135	4	30	
Tetrachloroethene	ug/L	ND	10000	10000	10600	10600	106	106	59-143	0	30	
Toluene	ug/L	ND	10000	10000	10500	10300	105	103	59-148	2	30	
trans-1,2-Dichloroethene	ug/L	ND	10000	10000	10500	10300	105	103	70-146	1	30	
trans-1,3-Dichloropropene	ug/L	ND	10000	10000	9890	9620	99	96	70-135	3	30	
Trichloroethene	ug/L	64700	10000	10000	74900	73300	101	86	70-147	2	30	
Trichlorofluoromethane	ug/L	ND	10000	10000	10000	9940	100	99	70-148	1	30	
Vinyl acetate	ug/L	ND	20000	20000	21700	21300	108	106	49-151	2	30	
Vinyl chloride	ug/L	ND	10000	10000	9450	9560	94	96	70-156	1	30	
Xylene (Total)	ug/L	ND	30000	30000	31100	30300	104	101	63-158	3	30	
1,2-Dichloroethane-d4 (S)	%						96	99	70-130			
4-Bromofluorobenzene (S)	%						99	98	70-130			
Toluene-d8 (S)	%						99	98	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Proj	ect:		BRAMLETTE J21030497
_	_		

Pace Project No .:	92528011
--------------------	----------

QC Batch Method:     EPA 5035A/5030B     Analysis Description:     28200 1003-82528011003     S2528011003-82528011003     S2528011003-82528011003     S2528011003-82528011003     S2528011003-82528011003     S2528011003-82528011003     S2528011003-82528011003     S2528011003-82528011003     S2528011003-82528011003     S2528011003-92528011003     S2528011003-92528011003     S2528011003-92528011003     S2528011003-92528011003     S2528011003-92528011003     S2528011003-92528011003     S2528011003-92528011003     S2528011003-92528011003     S2528011003-92528011003     S2528011003-9252801103     S2528011003-9252801103     S2528011003-9252801103     S252801103	QC Batch: 60735	6	Analysis Metho	od: E	PA 8260D		
Laboratory:     Pace Analytical Services - Charlotte       Associated Lab Samples:     92528011003, 92528011003, 92528011003, 92528011005, 92528011006, 92528011006, 92528011006, 92528011006, 92528011006, 92528011006, 92528011006, 92528011006, 92528011006, 92528011006, 92528011006, 92528011006, 92528011006, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 9252801107, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 92528011007, 9252801007, 9201701, 9201701	QC Batch Method: EPA 5	035A/5030B	Analysis Desc	ription: 82	260D 5035A 5030	B SC	
Associated Lab Sample:     92528011001, 92528011003, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 92528011005, 9258011005, 92528011005, 9252801101, 9251801000, 9251801000, 925180100, 92017011, 9251801000, 9201701, 9211701       1.1.2.1.5.1.5.5.5.5.5.5.5.5.5.5.5.5.5.5.			Laboratory:	P	ace Analytical Ser	vices - Charlotte	
METHOD BLANK:     3199767     Matrix:     Solid       Associated Lab Samples:     25228011002, 92528011010, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 92528011002, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 9252801102, 925280110, 92680, ND     5.0     1.2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	Associated Lab Samples:	92528011001, 92528011002, 92528011009, 92528011010,	92528011003, 925 92528011011, 925	528011004, 92 528011012	2528011005, 9252	28011006, 925280	11008,
Associated Lab Samples:     25228011001, 25228011002, 25228011002, 25228011005, 92528011006, 92528011008, 32528011007, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011001, 32528011001, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 32528011002, 325801102, 32528011002, 3258011002, 32580112, 325117, 311, 311, 311, 311, 311, 311, 311,	METHOD BLANK: 319976	7	Matrix: S	Solid			
Blank     Reporting     MDL     Analyzed     Qualifiers       1,1,1,2-Tetrachloroethane     ug/kg     ND     5.0     1.9     03/17/21 17:01       1,1,1-Tichloroethane     ug/kg     ND     5.0     1.8     03/17/21 17:01       1,1.2-Tichloroethane     ug/kg     ND     5.0     1.8     03/17/21 17:01       1,1.2-Trichloroethane     ug/kg     ND     5.0     2.1     03/17/21 17:01       1,1-Dichloroethane     ug/kg     ND     5.0     2.1     03/17/21 17:01       1,1-Dichloroethane     ug/kg     ND     5.0     2.0     03/17/21 17:01       1,2.3-Trichloroberzene     ug/kg     ND     5.0     2.0     03/17/21 17:01       1,2.4-Trinethylberzene     ug/kg     ND     5.0     1.4     03/17/21 17:01       1,2.4-Trinethylberzene     ug/kg     ND     5.0     1.4     03/17/21 17:01       1,2.4-Trinethylberzene     ug/kg     ND     5.0     1.8     03/17/21 17:01       1,2.4-Trinethylberzene     ug/kg     ND     5.0     1.5     03/1	Associated Lab Samples:	92528011001, 92528011002, 92528011009, 92528011010,	92528011003, 925 92528011011, 925	528011004, 92 528011012	2528011005, 9252	28011006, 925280	11008,
Parameter     Units     Result     Limit     MDL     Analyzed     Qualifiers       1,1,1,2-Tichtrachloroethane     ug/kg     ND     5.0     2.6     03/17/21 17.01       1,1,2-Tichtoroethane     ug/kg     ND     5.0     1.7     03/17/21 17.01       1,1,2-Tichtoroethane     ug/kg     ND     5.0     1.7     03/17/21 17.01       1,1-Dichtoroethane     ug/kg     ND     5.0     2.1     03/17/21 17.01       1,1-Dichtoroethane     ug/kg     ND     5.0     2.4     03/17/21 17.01       1,2.3-Tichtoropropane     ug/kg     ND     5.0     2.4     03/17/21 17.01       1,2.4-Trinethybenzene     ug/kg     ND     5.0     2.6     03/17/21 17.01       1,2.4-Trinethybenzene     ug/kg     ND     5.0     1.4     03/17/21 17.01       1,2-Dichtorobenzene     ug/kg     ND     5.0     1.8     03/17/21 17.01       1,2-Dichtorobenzene     ug/kg     ND     5.0     1.8     03/17/21 17.01       1,2-Dichtorobenzene     ug/kg     ND     5.0			Blank	Reporting			
1,1,1-Zrichloroethane   ug/kg   ND   5.0   1.9   03/17/21 17:01     1,1,1-Trichloroethane   ug/kg   ND   5.0   1.3   03/17/21 17:01     1,1,2-Trichloroethane   ug/kg   ND   5.0   1.3   03/17/21 17:01     1,1,2-Trichloroethane   ug/kg   ND   5.0   2.1   03/17/21 17:01     1,1-Dichloroethane   ug/kg   ND   5.0   2.1   03/17/21 17:01     1,1-Dichloroethane   ug/kg   ND   5.0   2.4   03/17/21 17:01     1,1-Dichloroethane   ug/kg   ND   5.0   4.0   03/17/21 17:01     1,2,3-Trichloropropane   ug/kg   ND   5.0   4.0   03/17/21 17:01     1,2,4-Trichlorobenzene   ug/kg   ND   5.0   4.0   03/17/21 17:01     1,2-Dichromo-thane (EDB)   ug/kg   ND   5.0   1.9   03/17/21 17:01     1,2-Dichromothane   ug/kg   ND   5.0   1.8   03/17/21 17:01     1,2-Dichromothane   ug/kg   ND   5.0   1.7   03/17/21 17:01     1,2-Dichromothane   ug/kg   ND <td< td=""><td>Parameter</td><td>Units</td><td>Result</td><td>Limit</td><td>MDL</td><td>Analyzed</td><td>Qualifiers</td></td<>	Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,1,1-Trichioroethane   ug/kg   ND   5.0   2.6   03/17/21 17:01     1,12,2-Tetrachioroethane   ug/kg   ND   5.0   1.7   03/17/21 17:01     1,12-Trichioroethane   ug/kg   ND   5.0   2.1   03/17/21 17:01     1,1-Dichioroethane   ug/kg   ND   5.0   2.1   03/17/21 17:01     1,1-Dichioroethane   ug/kg   ND   5.0   2.4   03/17/21 17:01     1,2-J-Trichiorobenzene   ug/kg   ND   5.0   2.4   03/17/21 17:01     1,2-J-Trichiorobenzene   ug/kg   ND   5.0   2.5   03/17/21 17:01     1,2-A-Trimethybenzene   ug/kg   ND   5.0   1.4   03/17/21 17:01     1,2-A-Trimethybenzene   ug/kg   ND   5.0   1.8   03/17/21 17:01     1,2-Dichiorobenzene   ug/kg   ND   5.0   1.8   03/17/21 17:01     1,2-Dichiorobenzene   ug/kg   ND   5.0   1.8   03/17/21 17:01     1,2-Dichioropropane   ug/kg   ND   5.0   1.6   03/17/21 17:01     1,3-Dichioropropane   ug/kg   ND	1,1,1,2-Tetrachloroethane	ug/kg	ND	5.0	1.9	03/17/21 17:01	
1,1,2Trinchioroethane   ug/kg   ND   5.0   1.3   03/17/21 17.01     1,1.2Trinchioroethane   ug/kg   ND   5.0   2.1   03/17/21 17.01     1,1-Dichloroethane   ug/kg   ND   5.0   2.1   03/17/21 17.01     1,1-Dichloropthene   ug/kg   ND   5.0   2.4   03/17/21 17.01     1,2.3Trichloroptopane   ug/kg   ND   5.0   4.0   03/17/21 17.01     1,2.3Trichloroptopane   ug/kg   ND   5.0   4.2   03/17/21 17.01     1,2.4Trichloroptopane   ug/kg   ND   5.0   4.2   03/17/21 17.01     1,2.4Trichloroptopane   ug/kg   ND   5.0   4.2   03/17/21 17.01     1,2.4.Dichlorobenzene   ug/kg   ND   5.0   1.4   03/17/21 17.01     1,2.Dichlorobenzene   ug/kg   ND   5.0   1.8   03/17/21 17.01     1,2.Dichlorobenzene   ug/kg   ND   5.0   1.5   03/17/21 17.01     1,2.Dichlorobenzene   ug/kg   ND   5.0   1.6   03/17/21 17.01     1,3.Dichlorobenzene   ug/kg   ND<	1,1,1-Trichloroethane	ug/kg	ND	5.0	2.6	03/17/21 17:01	
1,1,2-Trichloroethane   ug/kg   ND   5.0   1.7   03/17/21 17:01     1,1-Dichloroethene   ug/kg   ND   5.0   2.1   03/17/21 17:01     1,1-Dichloroethene   ug/kg   ND   5.0   2.4   03/17/21 17:01     1,1-Dichloroethene   ug/kg   ND   5.0   2.4   03/17/21 17:01     1,2.3-Trichlorobenzene   ug/kg   ND   5.0   4.0   03/17/21 17:01     1,2.4-Trinethylbenzene   ug/kg   ND   5.0   1.4   03/17/21 17:01     1,2-Dichorop-3-chloropropane   ug/kg   ND   5.0   1.4   03/17/21 17:01     1,2-Dichorobenzene   ug/kg   ND   5.0   1.4   03/17/21 17:01     1,2-Dichoropropane   ug/kg   ND   5.0   1.8   03/17/21 17:01     1,2-Dichoropropane   ug/kg   ND   5.0   1.8   03/17/21 17:01     1,2-Dichoropropane   ug/kg   ND   5.0   1.6   03/17/21 17:01     1,3-Dichoropropane   ug/kg   ND   5.0   1.6   03/17/21 17:01     1,3-Dichoropropane   ug/kg   ND   5	1,1,2,2-Tetrachloroethane	ug/kg	ND	5.0	1.3	03/17/21 17:01	
1,1-Dichloroethane   ug/kg   ND   5.0   2.1   03/17/21   17.01     1,1-Dichloropropene   ug/kg   ND   5.0   2.4   03/17/21   17.01     1,2-3-Trichloroppane   ug/kg   ND   5.0   2.4   03/17/21   17.01     1,2-3-Trichloroppane   ug/kg   ND   5.0   4.0   03/17/21   17.01     1,2-4-Trichlorobenzene   ug/kg   ND   5.0   4.2   03/17/21   17.01     1,2-4-Trichlorobenzene   ug/kg   ND   5.0   1.4   03/17/21   17.01     1,2-Dichoro-schloropropane   ug/kg   ND   5.0   1.9   03/17/21   17.01     1,2-Dichlorobenzene   ug/kg   ND   5.0   1.8   03/17/21   17.01     1,2-Dichloroponae   ug/kg   ND   5.0   1.8   03/17/21   17.01     1,3-Dichloroponae   ug/kg   ND   5.0   1.6   03/17/21   17.01     1,3-Dichloroponae   ug/kg   ND   5.0   1.6   03/17/21   17.01     1,3-Dichlorobenzene   ug/kg   ND   <	1,1,2-Trichloroethane	ug/kg	ND	5.0	1.7	03/17/21 17:01	
1,1-Dichloroptopene   ug/kg   ND   5.0   2.1   03/17/21   17.01     1,1-Dichloroptopene   ug/kg   ND   5.0   4.0   03/17/21   17.01     1,2.3-Trichloroptopane   ug/kg   ND   5.0   4.2   03/17/21   17.01     1,2.4-Trinchlorobenzene   ug/kg   ND   5.0   4.2   03/17/21   17.01     1,2.4-Trinchlytberzene   ug/kg   ND   5.0   1.4   03/17/21   17.01     1,2-Dichroros-chloropropane   ug/kg   ND   5.0   1.4   03/17/21   17.01     1,2-Dichroros-chloropropane   ug/kg   ND   5.0   1.8   03/17/21   17.01     1,2-Dichrorobenzene   ug/kg   ND   5.0   1.5   03/17/21   17.01     1,2-Dichroropane   ug/kg   ND   5.0   1.6   03/17/21   17.01     1,3-Dichroropropane   ug/kg   ND   5.0   1.6   03/17/21   17.01     1,3-Dichroropropane   ug/kg   ND   5.0   1.6   03/17/21   17.01     1,3-Dichroropropane   ug/kg	1,1-Dichloroethane	ug/kg	ND	5.0	2.1	03/17/21 17:01	
1,1-Dichloropropene   ug/kg   ND   5.0   2.4   03/17/21   17:01     1,2,3-Trichloropropane   ug/kg   ND   5.0   4.0   03/17/21   17:01     1,2,3-Trichloropropane   ug/kg   ND   5.0   4.2   03/17/21   17:01     1,2-Trichloropropane   ug/kg   ND   5.0   4.2   03/17/21   17:01     1,2-Dibromo-3-chloropropane   ug/kg   ND   5.0   1.4   03/17/21   17:01     1,2-Dibromo-3-chloropropane   ug/kg   ND   5.0   1.8   03/17/21   17:01     1,2-Dichloroptopane   ug/kg   ND   5.0   1.8   03/17/21   17:01     1,2-Dichloroptopane   ug/kg   ND   5.0   1.5   03/17/21   17:01     1,3-Dichloroptopane   ug/kg   ND   5.0   1.6   03/17/21   17:01     1,3-Dichloroptopane   ug/kg   ND   5.0   1.6   03/17/21   17:01     1,3-Dichloroptopane   ug/kg   ND   5.0   1.6   03/17/21   17:01     1,3-Dichloroptopane   ug/kg	1,1-Dichloroethene	ug/kg	ND	5.0	2.1	03/17/21 17:01	
1,2,3-Trichlorobenzene   ug/kg   ND   5.0   4.0   03/17/21   17:01     1,2,3-Trichloroptopane   ug/kg   ND   5.0   2.5   03/17/21   17:01     1,2,4-Trichlorobenzene   ug/kg   ND   5.0   1.4   03/17/21   17:01     1,2-Ditromo-3-chloroptopane   ug/kg   ND   5.0   1.9   03/17/21   17:01     1,2-Ditromo-schloroptopane   ug/kg   ND   5.0   2.2   03/17/21   17:01     1,2-Ditorobenzene   ug/kg   ND   5.0   1.8   03/17/21   17:01     1,2-Ditolroptopane   ug/kg   ND   5.0   1.8   03/17/21   17:01     1,3-Dichloroptopane   ug/kg   ND   5.0   1.6   03/17/21   17:01     1,3-Dichloroptopane   ug/kg   ND   5.0   1.6   03/17/21   17:01     1,3-Dichloroptopane   ug/kg   ND   5.0   1.6   03/17/21   17:01     1,3-Dichloroptopane   ug/kg   ND   5.0   1.8   03/17/21   17:01     1,4-Dichloroptopane   ug/kg   ND	1,1-Dichloropropene	ug/kg	ND	5.0	2.4	03/17/21 17:01	
1,2,3-Trichloropropane   ug/kg   ND   5.0   2.5   03/17/21   17:01     1,2,4-Trinethlorobenzene   ug/kg   ND   5.0   4.2   03/17/21   17:01     1,2-Dibromo-3-chloropropane   ug/kg   ND   5.0   1.4   03/17/21   17:01     1,2-Dibromoethane (EDB)   ug/kg   ND   5.0   2.2   03/17/21   17:01     1,2-Dichloropetnane   ug/kg   ND   5.0   3.8   03/17/21   17:01     1,2-Dichloroptopane   ug/kg   ND   5.0   1.8   03/17/21   17:01     1,2-Dichloroptopane   ug/kg   ND   5.0   1.5   03/17/21   17:01     1,3-Dichloroptopane   ug/kg   ND   5.0   1.6   03/17/21   17:01     1,3-Dichloroptopane   ug/kg   ND   5.0   1.6   03/17/21   17:01     1,4-Dichloroptopane   ug/kg   ND   5.0   1.8   03/17/21   17:01     2-Dichloroptopane   ug/kg   ND   5.0   1.8   03/17/21   17:01     2-Dichlorotoluene   ug/kg   ND	1,2,3-Trichlorobenzene	ug/kg	ND	5.0	4.0	03/17/21 17:01	
1.2.4-Trichlorobenzene   ug/kg   ND   5.0   4.2   03/17/21   17:01     1.2.4-Trimethylbenzene   ug/kg   ND   5.0   1.4   03/17/21   17:01     1.2-Dibromos-schloropropane   ug/kg   ND   5.0   1.9   03/17/21   17:01     1.2-Dibromosthane (EDB)   ug/kg   ND   5.0   1.8   03/17/21   17:01     1.2-Dichorobenzene   ug/kg   ND   5.0   1.8   03/17/21   17:01     1.2-Dichorobenzene   ug/kg   ND   5.0   1.5   03/17/21   17:01     1.3-Dichorobenzene   ug/kg   ND   5.0   1.6   03/17/21   17:01     1.3-Dichorobenzene   ug/kg   ND   5.0   1.6   03/17/21   17:01     1.3-Dichoropropane   ug/kg   ND   5.0   1.6   03/17/21   17:01     1.3-Dichoropropane   ug/kg   ND   5.0   1.8   03/17/21   17:01     1.4-Dichorobenzene   ug/kg   ND   5.0   1.8   03/17/21   17:01     2-Dichoropropane   ug/kg   ND   <	1.2.3-Trichloropropane	ua/ka	ND	5.0	2.5	03/17/21 17:01	
1.2.4-Trimethylbenzene   ug/kg   ND   5.0   1.4   03/17/21   17:01     1.2-Dibromo-3-chloropropane   ug/kg   ND   5.0   1.9   03/17/21   17:01     1.2-Dibromo-3-chloropropane   ug/kg   ND   5.0   2.2   03/17/21   17:01     1.2-Dichlorobenzene   ug/kg   ND   5.0   1.8   03/17/21   17:01     1.2-Dichlorobenzene   ug/kg   ND   5.0   1.5   03/17/21   17:01     1.3-Dichlorobenzene   ug/kg   ND   5.0   1.6   03/17/21   17:01     1.3-Dichlorobenzene   ug/kg   ND   5.0   1.6   03/17/21   17:01     1.3-Dichlorobenzene   ug/kg   ND   5.0   1.6   03/17/21   17:01     1.4-Dichlorobenzene   ug/kg   ND   5.0   1.6   03/17/21   17:01     1.4-Dichlorobenzene   ug/kg   ND   5.0   1.8   03/17/21   17:01     1.4-Dichlorobenzene   ug/kg   ND   5.0   4.8   03/17/21   17:01     2-Dichlorobune   ug/kg   ND	1.2.4-Trichlorobenzene	ua/ka	ND	5.0	4.2	03/17/21 17:01	
1.2-Dibromo-3-chloropropane     ug/kg     ND     5.0     1.9     03/17/21     17:01       1.2-Dibromoethane (EDB)     ug/kg     ND     5.0     2.2     03/17/21     17:01       1.2-Dichlorobenzene     ug/kg     ND     5.0     1.8     03/17/21     17:01       1.2-Dichlorobenzene     ug/kg     ND     5.0     1.5     03/17/21     17:01       1.3-Dichlorobenzene     ug/kg     ND     5.0     1.6     03/17/21     17:01       1.3-Dichlorobenzene     ug/kg     ND     5.0     1.6     03/17/21     17:01       1.3-Dichloropropane     ug/kg     ND     5.0     1.6     03/17/21     17:01       1.3-Dichloropropane     ug/kg     ND     5.0     1.6     03/17/21     17:01       1.4-Dichlorobenzene     ug/kg     ND     5.0     1.8     03/17/21     17:01       2.2-Dichloropropane     ug/kg     ND     5.0     4.8     03/17/21     17:01       2-Chlorotoluene     ug/kg     ND     5.0     4.8	1.2.4-Trimethylbenzene	ua/ka	ND	5.0	1.4	03/17/21 17:01	
1.2-Dibromoethane (EDB)   ug/kg   ND   5.0   2.2   03/17/21   17:01     1.2-Dichlorobenzene   ug/kg   ND   5.0   1.8   03/17/21   17:01     1.2-Dichlorobenzene   ug/kg   ND   5.0   3.3   03/17/21   17:01     1.2-Dichloroperpane   ug/kg   ND   5.0   1.5   03/17/21   17:01     1.3-Dichloroperpane   ug/kg   ND   5.0   1.6   03/17/21   17:01     1.3-Dichloroperpane   ug/kg   ND   5.0   1.6   03/17/21   17:01     1.3-Dichloroperpane   ug/kg   ND   5.0   1.6   03/17/21   17:01     1.4-Dichloroperpane   ug/kg   ND   5.0   1.6   03/17/21   17:01     2.2-Dichloropropane   ug/kg   ND   5.0   1.6   03/17/21   17:01     2.4-Blatanone   ug/kg   ND   5.0   1.8   03/17/21   17:01     2-Heanone (MEK)   ug/kg   ND   5.0   4.8   03/17/21   17:01     4-Chlorotoluene   ug/kg   ND   5.0	1.2-Dibromo-3-chloropropane	e ua/ka	ND	5.0	1.9	03/17/21 17:01	
1,2-Dichlorobenzene   ug/kg   ND   5.0   1.8   03/17/21 17:01     1,2-Dichloroethane   ug/kg   ND   5.0   3.3   03/17/21 17:01     1,2-Dichloropropane   ug/kg   ND   5.0   1.5   03/17/21 17:01     1,3-Dichloropropane   ug/kg   ND   5.0   1.6   03/17/21 17:01     1,3-Dichloropropane   ug/kg   ND   5.0   1.6   03/17/21 17:01     1,3-Dichloropropane   ug/kg   ND   5.0   1.6   03/17/21 17:01     1,4-Dichloropropane   ug/kg   ND   5.0   1.6   03/17/21 17:01     2,2-Dichloropropane   ug/kg   ND   5.0   1.8   03/17/21 17:01     2,2-Dichloropropane   ug/kg   ND   5.0   1.8   03/17/21 17:01     2-Dichloroburene   ug/kg   ND   5.0   4.8   03/17/21 17:01     2-Hexanone   ug/kg   ND   5.0   4.8   03/17/21 17:01     4-Methyl-2-pentanone (MIBK)   ug/kg   ND   5.0   0.48   03/17/21 17:01     4-Methyl-2-pentanone (MIBK)   ug/kg   ND   5.0 </td <td>1,2-Dibromoethane (EDB)</td> <td>ug/kg</td> <td>ND</td> <td>5.0</td> <td>2.2</td> <td>03/17/21 17:01</td> <td></td>	1,2-Dibromoethane (EDB)	ug/kg	ND	5.0	2.2	03/17/21 17:01	
1,2-Dichloroethane   ug/kg   ND   5.0   3.3   03/17/21   17:01     1,2-Dichloropropane   ug/kg   ND   5.0   1.5   03/17/21   17:01     1,3-Dichloropropane   ug/kg   ND   5.0   1.7   03/17/21   17:01     1,3-Dichlorobenzene   ug/kg   ND   5.0   1.6   03/17/21   17:01     1,3-Dichloroptopane   ug/kg   ND   5.0   1.6   03/17/21   17:01     1,4-Dichloroptopane   ug/kg   ND   5.0   1.6   03/17/21   17:01     2,2-Dichloroptopane   ug/kg   ND   5.0   1.6   03/17/21   17:01     2,2-Dichloroptopane   ug/kg   ND   5.0   1.8   03/17/21   17:01     2,-Chlorotoluene   ug/kg   ND   5.0   4.8   03/17/21   17:01     2-Hexanone   ug/kg   ND   5.0   4.8   03/17/21   17:01     4-Chlorotoluene   ug/kg   ND   5.0   4.8   03/17/21   17:01     4-Cetone   ug/kg   ND   5.0   1.6	1.2-Dichlorobenzene	ua/ka	ND	5.0	1.8	03/17/21 17:01	
1,2-Dichloropropane   ug/kg   ND   5.0   1.5   03/17/21   17:01     1,3-5-Trimethylbenzene   ug/kg   ND   5.0   1.7   03/17/21   17:01     1,3-Dichlorobenzene   ug/kg   ND   5.0   1.6   03/17/21   17:01     1,3-Dichlorobenzene   ug/kg   ND   5.0   1.6   03/17/21   17:01     1,4-Dichlorobenzene   ug/kg   ND   5.0   1.6   03/17/21   17:01     1,4-Dichlorobenzene   ug/kg   ND   5.0   1.6   03/17/21   17:01     2,2-Dichloropropane   ug/kg   ND   5.0   1.8   03/17/21   17:01     2-Chiorobluene   ug/kg   ND   5.0   1.8   03/17/21   17:01     2-Hexanone   ug/kg   ND   5.0   0.88   03/17/21   17:01     2-Hexanone   ug/kg   ND   5.0   0.88   03/17/21   17:01     2-Hexanone   ug/kg   ND   5.0   0.8   03/17/21   17:01     4-Methyl-2-pentanone (MIBK)   ug/kg   ND   5.0   1.0 </td <td>1.2-Dichloroethane</td> <td>ua/ka</td> <td>ND</td> <td>5.0</td> <td>3.3</td> <td>03/17/21 17:01</td> <td></td>	1.2-Dichloroethane	ua/ka	ND	5.0	3.3	03/17/21 17:01	
1,3,5-Trimethylbenzene   ug/kg   ND   5.0   1.7   03/17/21   17:01     1,3-Dichlorobenzene   ug/kg   ND   5.0   1.6   03/17/21   17:01     1,3-Dichlorobenzene   ug/kg   ND   5.0   1.6   03/17/21   17:01     1,4-Dichlorobenzene   ug/kg   ND   5.0   1.3   03/17/21   17:01     2,2-Dichloropropane   ug/kg   ND   5.0   1.6   03/17/21   17:01     2,2-Dichloropropane   ug/kg   ND   5.0   1.8   03/17/21   17:01     2-Shtanone (MEK)   ug/kg   ND   5.0   1.8   03/17/21   17:01     2-Chlorotoluene   ug/kg   ND   5.0   4.8   03/17/21   17:01     4-Chlorotoluene   ug/kg   ND   5.0   0.48   03/17/21   17:01     4-Chlorotoluene   ug/kg   ND   5.0   0.48   03/17/21   17:01     Acetone   ug/kg   ND   5.0   0.48   03/17/21   17:01     Bromochloromethane   ug/kg   ND   5.0   1.6	1.2-Dichloropropane	ua/ka	ND	5.0	1.5	03/17/21 17:01	
1.3-Dichlorobenzene   ug/kg   ND   5.0   1.6   03/17/21   17:01     1,3-Dichlorobenzene   ug/kg   ND   5.0   1.6   03/17/21   17:01     1,4-Dichlorobenzene   ug/kg   ND   5.0   1.6   03/17/21   17:01     2,2-Dichloropropane   ug/kg   ND   5.0   1.6   03/17/21   17:01     2-Butanone (MEK)   ug/kg   ND   5.0   1.8   03/17/21   17:01     2-Chlorotoluene   ug/kg   ND   5.0   1.8   03/17/21   17:01     2-Hexanone   ug/kg   ND   5.0   4.8   03/17/21   17:01     2-Hexanone   ug/kg   ND   5.0   4.8   03/17/21   17:01     4-Chlorotoluene   ug/kg   ND   5.0   0.88   03/17/21   17:01     Acetone   ug/kg   ND   5.0   0.88   03/17/21   17:01     Bromochloromethane   ug/kg   ND   5.0   1.6   03/17/21   17:01     Bromochloromethane   ug/kg   ND   5.0   1.6   03/17/21	1.3.5-Trimethylbenzene	ua/ka	ND	5.0	1.7	03/17/21 17:01	
1,3-Dichloropropane   ug/kg   ND   5.0   1.6   03/17/21   17:01     1,4-Dichloropropane   ug/kg   ND   5.0   1.3   03/17/21   17:01     2,2-Dichloropropane   ug/kg   ND   5.0   1.6   03/17/21   17:01     2-Butanone (MEK)   ug/kg   ND   100   24.0   03/17/21   17:01     2-Chlorotoluene   ug/kg   ND   5.0   1.8   03/17/21   17:01     2-Hexanone   ug/kg   ND   5.0   4.8   03/17/21   17:01     4-Chlorotoluene   ug/kg   ND   5.0   4.8   03/17/21   17:01     4-Methyl-2-pentanone (MIBK)   ug/kg   ND   50.0   4.8   03/17/21   17:01     4-Methyl-2-pentanone (MIBK)   ug/kg   ND   5.0   1.6   03/17/21   17:01     Benzene   ug/kg   ND   5.0   1.6   03/17/21   17:01     Bromochloromethane   ug/kg   ND   5.0   1.5   03/17/21   17:01     Bromochloromethane   ug/kg   ND   5.0   1.	1.3-Dichlorobenzene	ua/ka	ND	5.0	1.6	03/17/21 17:01	
1.4-Dichlorobenzene   ug/kg   ND   5.0   1.3   03/17/21   17:01     2.2-Dichloropropane   ug/kg   ND   5.0   1.6   03/17/21   17:01     2-Butanone (MEK)   ug/kg   ND   5.0   1.8   03/17/21   17:01     2-Chlorotoluene   ug/kg   ND   5.0   1.8   03/17/21   17:01     2-Hexanone   ug/kg   ND   5.0   4.8   03/17/21   17:01     4-Chlorotoluene   ug/kg   ND   5.0   4.8   03/17/21   17:01     4-Methyl-2-pentanone (MIBK)   ug/kg   ND   5.0   4.8   03/17/21   17:01     Acetone   ug/kg   ND   5.0   4.8   03/17/21   17:01     Acetone   ug/kg   ND   5.0   2.0   03/17/21   17:01     Bromobenzene   ug/kg   ND   5.0   1.6   03/17/21   17:01     Bromochloromethane   ug/kg   ND   5.0   1.5   03/17/21   17:01     Bromochloromethane   ug/kg   ND   5.0   1.9   03/17/21 <td>1.3-Dichloropropane</td> <td>ua/ka</td> <td>ND</td> <td>5.0</td> <td>1.6</td> <td>03/17/21 17:01</td> <td></td>	1.3-Dichloropropane	ua/ka	ND	5.0	1.6	03/17/21 17:01	
2,2-Dichloropropane   ug/kg   ND   5.0   1.6   03/17/21   17:01     2-Butanone (MEK)   ug/kg   ND   100   24.0   03/17/21   17:01     2-Chlorotoluene   ug/kg   ND   5.0   1.8   03/17/21   17:01     2-Hexanone   ug/kg   ND   5.0   4.8   03/17/21   17:01     4-Chlorotoluene   ug/kg   ND   5.0   0.88   03/17/21   17:01     4-Chlorotoluene   ug/kg   ND   5.0   0.88   03/17/21   17:01     4-Methyl-2-pentanone (MIBK)   ug/kg   ND   5.0   0.88   03/17/21   17:01     Acetone   ug/kg   ND   100   32.1   03/17/21   17:01     Benzene   ug/kg   ND   5.0   1.6   03/17/21   17:01     Bromochloromethane   ug/kg   ND   5.0   1.6   03/17/21   17:01     Bromochloromethane   ug/kg   ND   5.0   1.5   03/17/21   17:01     Bromochloromethane   ug/kg   ND   5.0   1.8   03/17	1.4-Dichlorobenzene	ua/ka	ND	5.0	1.3	03/17/21 17:01	
Lebendore (MEK)     ug/kg     ND     100     24.0     0.3/17/21     17:01       2-Chlorotoluene     ug/kg     ND     5.0     1.8     03/17/21     17:01       2-Hexanone (MEK)     ug/kg     ND     5.0     4.8     03/17/21     17:01       2-Hexanone     ug/kg     ND     5.0     4.8     03/17/21     17:01       4-Chlorotoluene     ug/kg     ND     5.0     0.88     03/17/21     17:01       4-Methyl-2-pentanone (MIBK)     ug/kg     ND     5.0     4.8     03/17/21     17:01       Acetone     ug/kg     ND     5.0     4.8     03/17/21     17:01       Benzene     ug/kg     ND     5.0     1.6     03/17/21     17:01       Bromobenzene     ug/kg     ND     5.0     1.5     03/17/21     17:01       Bromochloromethane     ug/kg     ND     5.0     1.9     03/17/21     17:01       Bromoform     ug/kg     ND     5.0     1.8     03/17/21     17:01  I	2.2-Dichloropropane	ua/ka	ND	5.0	1.6	03/17/21 17:01	
2-Chlorotoluene     ug/kg     ND     5.0     1.8     03/17/21     17:01       2-Hexanone     ug/kg     ND     5.0     4.8     03/17/21     17:01       4-Chlorotoluene     ug/kg     ND     5.0     0.88     03/17/21     17:01       4-Methyl-2-pentanone (MIBK)     ug/kg     ND     5.0     0.88     03/17/21     17:01       Acetone     ug/kg     ND     5.0     0.4.8     03/17/21     17:01       Acetone     ug/kg     ND     5.0     2.0     03/17/21     17:01       Benzene     ug/kg     ND     5.0     2.0     03/17/21     17:01       Bromobenzene     ug/kg     ND     5.0     1.6     03/17/21     17:01       Bromochloromethane     ug/kg     ND     5.0     1.5     03/17/21     17:01       Bromochloromethane     ug/kg     ND     5.0     1.8     03/17/21     17:01       Bromochloromethane     ug/kg     ND     5.0     1.8     03/17/21     17:01  <	2-Butanone (MEK)	ua/ka	ND	100	24.0	03/17/21 17:01	
2-Hexanone     ug/kg     ND     50.0     4.8     03/17/21     17:01       4-Chlorotoluene     ug/kg     ND     5.0     0.88     03/17/21     17:01       4-Methyl-2-pentanone (MIBK)     ug/kg     ND     50.0     4.8     03/17/21     17:01       Acetone     ug/kg     ND     100     32.1     03/17/21     17:01       Acetone     ug/kg     ND     5.0     2.0     03/17/21     17:01       Benzene     ug/kg     ND     5.0     2.0     03/17/21     17:01       Bromobenzene     ug/kg     ND     5.0     1.6     03/17/21     17:01       Bromochloromethane     ug/kg     ND     5.0     1.5     03/17/21     17:01       Bromoform     ug/kg     ND     5.0     1.8     03/17/21     17:01       Bromomethane     ug/kg     ND     5.0     1.8     03/17/21     17:01       Bromoform     ug/kg     ND     5.0     1.9     03/17/21     17:01       Chlor	2-Chlorotoluene	ua/ka	ND	5.0	1.8	03/17/21 17:01	
4-Chlorotoluene   ug/kg   ND   5.0   0.88   03/17/21   17:01     4-Methyl-2-pentanone (MIBK)   ug/kg   ND   50.0   4.8   03/17/21   17:01     Acetone   ug/kg   ND   100   32.1   03/17/21   17:01     Benzene   ug/kg   ND   5.0   2.0   03/17/21   17:01     Bromobenzene   ug/kg   ND   5.0   2.0   03/17/21   17:01     Bromochloromethane   ug/kg   ND   5.0   1.6   03/17/21   17:01     Bromochloromethane   ug/kg   ND   5.0   1.6   03/17/21   17:01     Bromochloromethane   ug/kg   ND   5.0   1.8   03/17/21   17:01     Bromochloromethane   ug/kg   ND   5.0   1.8   03/17/21   17:01     Bromochloromethane   ug/kg   ND   5.0   1.8   03/17/21   17:01     Bromochloromethane   ug/kg   ND   5.0   1.9   03/17/21   17:01     Carbon tetrachloride   ug/kg   ND   5.0   0.96	2-Hexanone	ua/ka	ND	50.0	4.8	03/17/21 17:01	
A-Methyl-2-pentanone (MIBK)   ug/kg   ND   50.0   4.8   03/17/21   17:01     Acetone   ug/kg   ND   100   32.1   03/17/21   17:01     Benzene   ug/kg   ND   5.0   2.0   03/17/21   17:01     Bromobenzene   ug/kg   ND   5.0   1.6   03/17/21   17:01     Bromochloromethane   ug/kg   ND   5.0   1.6   03/17/21   17:01     Bromochloromethane   ug/kg   ND   5.0   1.6   03/17/21   17:01     Bromochloromethane   ug/kg   ND   5.0   1.5   03/17/21   17:01     Bromochloromethane   ug/kg   ND   5.0   1.8   03/17/21   17:01     Bromoform   ug/kg   ND   5.0   1.8   03/17/21   17:01     Bromomethane   ug/kg   ND   5.0   1.9   03/17/21   17:01     Carbon tetrachloride   ug/kg   ND   5.0   1.9   03/17/21   17:01     Chlorobenzene   ug/kg   ND   5.0   0.96   03/17/21	4-Chlorotoluene	ua/ka	ND	5.0	0.88	03/17/21 17:01	
Acetone   ug/kg   ND   100   32.1   03/17/21   17:01     Benzene   ug/kg   ND   5.0   2.0   03/17/21   17:01     Bromobenzene   ug/kg   ND   5.0   1.6   03/17/21   17:01     Bromobenzene   ug/kg   ND   5.0   1.6   03/17/21   17:01     Bromochloromethane   ug/kg   ND   5.0   1.5   03/17/21   17:01     Bromochloromethane   ug/kg   ND   5.0   1.5   03/17/21   17:01     Bromodichloromethane   ug/kg   ND   5.0   1.9   03/17/21   17:01     Bromoform   ug/kg   ND   5.0   1.8   03/17/21   17:01     Bromomethane   ug/kg   ND   10.0   7.9   03/17/21   17:01     Carbon tetrachloride   ug/kg   ND   5.0   1.9   03/17/21   17:01     Chlorobenzene   ug/kg   ND   5.0   0.96   03/17/21   17:01     Chloroform   ug/kg   ND   5.0   3.0   03/17/21   17:01	4-Methyl-2-pentanone (MIBK	() ua/ka	ND	50.0	4.8	03/17/21 17:01	
Benzene   ug/kg   ND   5.0   2.0   03/17/21   17:01     Bromobenzene   ug/kg   ND   5.0   1.6   03/17/21   17:01     Bromochloromethane   ug/kg   ND   5.0   1.5   03/17/21   17:01     Bromochloromethane   ug/kg   ND   5.0   1.5   03/17/21   17:01     Bromochloromethane   ug/kg   ND   5.0   1.9   03/17/21   17:01     Bromochloromethane   ug/kg   ND   5.0   1.9   03/17/21   17:01     Bromochloromethane   ug/kg   ND   5.0   1.8   03/17/21   17:01     Bromoform   ug/kg   ND   10.0   7.9   03/17/21   17:01     Bromotetrachloride   ug/kg   ND   5.0   1.9   03/17/21   17:01     Carbon tetrachloride   ug/kg   ND   5.0   0.96   03/17/21   17:01     Chlorobenzene   ug/kg   ND   10.0   3.9   03/17/21   17:01     Chloroform   ug/kg   ND   5.0   3.0   03/17/21	Acetone	ua/ka	ND	100	32.1	03/17/21 17:01	
Bromobenzene   ug/kg   ND   5.0   1.6   03/17/21   17:01     Bromochloromethane   ug/kg   ND   5.0   1.5   03/17/21   17:01     Bromodichloromethane   ug/kg   ND   5.0   1.9   03/17/21   17:01     Bromodichloromethane   ug/kg   ND   5.0   1.9   03/17/21   17:01     Bromoform   ug/kg   ND   5.0   1.8   03/17/21   17:01     Bromothane   ug/kg   ND   5.0   1.8   03/17/21   17:01     Bromothane   ug/kg   ND   5.0   1.9   03/17/21   17:01     Bromothane   ug/kg   ND   5.0   1.9   03/17/21   17:01     Bromothane   ug/kg   ND   5.0   1.9   03/17/21   17:01     Carbon tetrachloride   ug/kg   ND   5.0   0.96   03/17/21   17:01     Chlorobenzene   ug/kg   ND   10.0   3.9   03/17/21   17:01     Chloroform   ug/kg   ND   5.0   3.0   03/17/21   17:01 </td <td>Benzene</td> <td>ug/kg</td> <td>ND</td> <td>5.0</td> <td>2.0</td> <td>03/17/21 17:01</td> <td></td>	Benzene	ug/kg	ND	5.0	2.0	03/17/21 17:01	
Bromochloromethane   ug/kg   ND   5.0   1.5   03/17/21   17:01     Bromodichloromethane   ug/kg   ND   5.0   1.9   03/17/21   17:01     Bromodichloromethane   ug/kg   ND   5.0   1.8   03/17/21   17:01     Bromoform   ug/kg   ND   5.0   1.8   03/17/21   17:01     Bromomethane   ug/kg   ND   5.0   1.8   03/17/21   17:01     Bromomethane   ug/kg   ND   5.0   1.9   03/17/21   17:01     Carbon tetrachloride   ug/kg   ND   5.0   1.9   03/17/21   17:01     Chlorobenzene   ug/kg   ND   5.0   0.96   03/17/21   17:01     Chlorobenzene   ug/kg   ND   10.0   3.9   03/17/21   17:01     Chloroform   ug/kg   ND   5.0   3.0   03/17/21   17:01     Chloromethane   ug/kg   ND   5.0   3.0   03/17/21   17:01     Chloromethane   ug/kg   ND   10.0   4.2   03/17/21	Bromobenzene	ua/ka	ND	5.0	1.6	03/17/21 17:01	
Bromodichloromethane   ug/kg   ND   5.0   1.9   03/17/21   17:01     Bromoform   ug/kg   ND   5.0   1.8   03/17/21   17:01     Bromomethane   ug/kg   ND   5.0   1.8   03/17/21   17:01     Bromomethane   ug/kg   ND   10.0   7.9   03/17/21   17:01     Carbon tetrachloride   ug/kg   ND   5.0   1.9   03/17/21   17:01     Chlorobenzene   ug/kg   ND   5.0   1.9   03/17/21   17:01     Chlorobenzene   ug/kg   ND   5.0   0.96   03/17/21   17:01     Chlorobenzene   ug/kg   ND   10.0   3.9   03/17/21   17:01     Chlorobenzene   ug/kg   ND   5.0   3.0   03/17/21   17:01     Chloroform   ug/kg   ND   5.0   3.0   03/17/21   17:01     Chloromethane   ug/kg   ND   10.0   4.2   03/17/21   17:01     cis-1.2-Dichloroethene   ug/kg   ND   5.0   1.7   03/17/21   <	Bromochloromethane	ua/ka	ND	5.0	1.5	03/17/21 17:01	
Bromoform   ug/kg   ND   5.0   1.8   03/17/21   17:01     Bromomethane   ug/kg   ND   10.0   7.9   03/17/21   17:01   IH, IK, v1     Carbon tetrachloride   ug/kg   ND   5.0   1.9   03/17/21   17:01   IH, IK, v1     Carbon tetrachloride   ug/kg   ND   5.0   1.9   03/17/21   17:01     Chlorobenzene   ug/kg   ND   5.0   0.96   03/17/21   17:01     Chlorobenzene   ug/kg   ND   10.0   3.9   03/17/21   17:01     Chloroform   ug/kg   ND   5.0   0.96   03/17/21   17:01     Chloroform   ug/kg   ND   5.0   3.0   03/17/21   17:01     Chloromethane   ug/kg   ND   5.0   3.0   03/17/21   17:01     Chloromethane   ug/kg   ND   10.0   4.2   03/17/21   17:01     cis-1.2-Dichloroethene   ug/kg   ND   5.0   1.7   03/17/21   17:01	Bromodichloromethane	ua/ka	ND	5.0	1.9	03/17/21 17:01	
Bromomethane   ug/kg   ND   10.0   7.9   03/17/21   17:01   IH, IK,v1     Carbon tetrachloride   ug/kg   ND   5.0   1.9   03/17/21   17:01   IH, IK,v1     Carbon tetrachloride   ug/kg   ND   5.0   1.9   03/17/21   17:01     Chlorobenzene   ug/kg   ND   5.0   0.96   03/17/21   17:01     Chlorobenzene   ug/kg   ND   10.0   3.9   03/17/21   17:01     Chlorobenzene   ug/kg   ND   5.0   0.96   03/17/21   17:01     Chlorobenzene   ug/kg   ND   10.0   3.9   03/17/21   17:01     Chlorobenzene   ug/kg   ND   5.0   3.0   03/17/21   17:01     Chlorobenzene   ug/kg   ND   10.0   4.2   03/17/21   17:01     Chlorobenzene   ug/kg   ND   5.0   1.7   03/17/21   17:01	Bromoform	ua/ka	ND	5.0	1.8	03/17/21 17:01	
Carbon tetrachloride   ug/kg   ND   5.0   1.9   03/17/21   17:01     Chlorobenzene   ug/kg   ND   5.0   0.96   03/17/21   17:01     Chlorobenzene   ug/kg   ND   10.0   3.9   03/17/21   17:01     Chlorobenzene   ug/kg   ND   10.0   3.9   03/17/21   17:01     Chlorobenzene   ug/kg   ND   10.0   3.9   03/17/21   17:01     Chlorobenzene   ug/kg   ND   5.0   3.0   03/17/21   17:01     Chlorobenzene   ug/kg   ND   5.0   3.0   03/17/21   17:01     Chlorobenzene   ug/kg   ND   10.0   4.2   03/17/21   17:01     Chlorobenzene   ug/kg   ND   5.0   1.7   03/17/21   17:01	Bromomethane	ua/ka	ND	10.0	7.9	03/17/21 17:01	IH.IK.v1
Chlorobenzene ug/kg ND 5.0 0.96 03/17/21 17:01   Chloroethane ug/kg ND 10.0 3.9 03/17/21 17:01   Chloroform ug/kg ND 5.0 3.0 03/17/21 17:01   Chloromethane ug/kg ND 5.0 3.0 03/17/21 17:01   Chloromethane ug/kg ND 10.0 4.2 03/17/21 17:01   cis-1.2-Dichloroethene ug/kg ND 5.0 1.7 03/17/21 17:01	Carbon tetrachloride	ug/kg	ND	5.0	1.0	03/17/21 17:01	····,•••,•
Chloroethane ug/kg ND 10.0 3.9 03/17/21 17:01   Chloroform ug/kg ND 5.0 3.0 03/17/21 17:01   Chloromethane ug/kg ND 10.0 4.2 03/17/21 17:01   cis-1.2-Dichloroethene ug/kg ND 5.0 1.7 03/17/21 17:01	Chlorobenzene	ua/ka	ND	5.0	0.96	03/17/21 17:01	
Chloroform     ug/kg     ND     5.0     3.0     03/17/21     17:01       Chloromethane     ug/kg     ND     10.0     4.2     03/17/21     17:01       cis-1.2-Dichloroethene     ug/kg     ND     5.0     1.7     03/17/21     17:01	Chloroethane	ua/ka	ND	10.0	3.9	03/17/21 17:01	
Chloromethane     ug/kg     ND     10.0     4.2     03/17/21     17:01       cis-1.2-Dichloroethene     ug/kg     ND     5.0     1.7     03/17/21     17:01	Chloroform	ug/kg		5.0	3.0	03/17/21 17:01	
cis-1.2-Dichloroethene ug/kg ND 5.0 1.7 03/17/21 17:01	Chloromethane	ua/ka	ND	10.0	4.2	03/17/21 17:01	
	cis-1.2-Dichloroethene	ug/ka	ND	5.0	1.7	03/17/21 17:01	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



#### Project: BRAMLETTE J21030497

Pace Project No.: 92528011

METHOD BLANK: 3199767		Matrix:	Solid			
Associated Lab Samples: 9	92528011001, 92528011002, 92528011009, 92528011010,	, 92528011003, 92 , 92528011011, 92	528011004, 9252 528011012	8011005, 9252	28011006, 925280	11008,
		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
cis-1,3-Dichloropropene	ug/kg	ND	5.0	1.4	03/17/21 17:01	
Dibromochloromethane	ug/kg	ND	5.0	2.8	03/17/21 17:01	
Dibromomethane	ug/kg	ND	5.0	1.1	03/17/21 17:01	
Dichlorodifluoromethane	ug/kg	ND	10.0	2.2	03/17/21 17:01	
Diisopropyl ether	ug/kg	ND	5.0	1.4	03/17/21 17:01	
Ethylbenzene	ug/kg	ND	5.0	2.3	03/17/21 17:01	
Hexachloro-1,3-butadiene	ug/kg	ND	10.0	8.2	03/17/21 17:01	IK
Isopropylbenzene (Cumene)	ug/kg	ND	5.0	1.7	03/17/21 17:01	
m&p-Xylene	ug/kg	ND	10.0	3.4	03/17/21 17:01	
Methyl-tert-butyl ether	ug/kg	ND	5.0	1.9	03/17/21 17:01	
Methylene Chloride	ug/kg	ND	20.0	13.7	03/17/21 17:01	
n-Butylbenzene	ug/kg	ND	5.0	2.4	03/17/21 17:01	
n-Propylbenzene	ug/kg	ND	5.0	1.8	03/17/21 17:01	
Naphthalene	ug/kg	ND	5.0	2.6	03/17/21 17:01	
o-Xylene	ug/kg	ND	5.0	2.2	03/17/21 17:01	
p-Isopropyltoluene	ug/kg	ND	5.0	2.5	03/17/21 17:01	
sec-Butylbenzene	ug/kg	ND	5.0	2.2	03/17/21 17:01	
Styrene	ug/kg	ND	5.0	1.3	03/17/21 17:01	
tert-Butylbenzene	ug/kg	ND	5.0	1.8	03/17/21 17:01	v2
Tetrachloroethene	ug/kg	ND	5.0	1.6	03/17/21 17:01	
Toluene	ug/kg	ND	5.0	1.4	03/17/21 17:01	
trans-1,2-Dichloroethene	ug/kg	ND	5.0	1.8	03/17/21 17:01	
trans-1,3-Dichloropropene	ug/kg	ND	5.0	1.7	03/17/21 17:01	
Trichloroethene	ug/kg	ND	5.0	1.3	03/17/21 17:01	
Trichlorofluoromethane	ug/kg	ND	5.0	2.8	03/17/21 17:01	
Vinyl acetate	ug/kg	ND	50.0	3.6	03/17/21 17:01	
Vinyl chloride	ug/kg	ND	10.0	2.5	03/17/21 17:01	
Xylene (Total)	ug/kg	ND	10.0	2.8	03/17/21 17:01	
1,2-Dichloroethane-d4 (S)	%	112	70-130		03/17/21 17:01	
4-Bromofluorobenzene (S)	%	93	69-134		03/17/21 17:01	
Toluene-d8 (S)	%	101	70-130		03/17/21 17:01	

#### LABORATORY CONTROL SAMPLE: 3199768

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	1250	1320	106	70-130	
1,1,1-Trichloroethane	ug/kg	1250	1210	97	70-130	
1,1,2,2-Tetrachloroethane	ug/kg	1250	1300	104	70-130	
1,1,2-Trichloroethane	ug/kg	1250	1360	108	70-130	
1,1-Dichloroethane	ug/kg	1250	1220	97	70-130	
1,1-Dichloroethene	ug/kg	1250	1270	101	70-130	
1,1-Dichloropropene	ug/kg	1250	1240	99	70-130	
1,2,3-Trichlorobenzene	ug/kg	1250	1310	105	65-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



#### Project: BRAMLETTE J21030497

Pace Project No.: 92528011

LABORATORY CONTROL SAMPLE:	3199768					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2,3-Trichloropropane	ug/kg	1250	1310	105	70-130	
1,2,4-Trichlorobenzene	ug/kg	1250	1340	107	68-130	
I,2,4-Trimethylbenzene	ug/kg	1250	1330	106	70-130	
,2-Dibromo-3-chloropropane	ug/kg	1250	1230	98	70-130	
,2-Dibromoethane (EDB)	ug/kg	1250	1340	107	70-130	
,2-Dichlorobenzene	ug/kg	1250	1380	110	70-130	
,2-Dichloroethane	ug/kg	1250	1160	93	63-130	
,2-Dichloropropane	ug/kg	1250	1340	107	70-130	
,3,5-Trimethylbenzene	ug/kg	1250	1340	107	70-130	
,3-Dichlorobenzene	ug/kg	1250	1350	108	70-130	
,3-Dichloropropane	ug/kg	1250	1360	109	70-130	
,4-Dichlorobenzene	ug/kg	1250	1310	105	70-130	
,2-Dichloropropane	ug/kg	1250	1330	106	66-130	
-Butanone (MEK)	ug/kg	2500	2260	90	70-130	
-Chlorotoluene	ug/kg	1250	1340	107	70-130	
-Hexanone	ug/kg	2500	2520	101	70-130	
-Chlorotoluene	ug/kg	1250	1390	111	70-130	
-Methyl-2-pentanone (MIBK)	ug/kg	2500	2490	99	70-130	
cetone	ug/kg	2500	2360	95	69-130	
enzene	ug/kg	1250	1310	105	70-130	
romobenzene	ug/kg	1250	1300	104	70-130	
omochloromethane	ug/kg	1250	1340	107	70-130	
omodichloromethane	ug/kg	1250	1200	96	69-130	
omoform	ug/kg	1250	1390	111	70-130	
omomethane	ug/kg	1250	1810	145	52-130	IH,IK,L1,v1
arbon tetrachloride	ug/kg	1250	1270	101	70-130	
lorobenzene	ug/kg	1250	1340	107	70-130	
nloroethane	ug/kg	1250	1270	102	65-130	
hloroform	ug/kg	1250	1240	99	70-130	
loromethane	ug/kg	1250	1350	108	55-130	
s-1,2-Dichloroethene	ug/kg	1250	1210	97	70-130	
s-1,3-Dichloropropene	ug/kg	1250	1340	108	70-130	
ibromochloromethane	ug/kg	1250	1390	111	70-130	
ibromomethane	ug/kg	1250	1350	108	70-130	
ichlorodifluoromethane	ug/kg	1250	1350	108	45-156	
iisopropyl ether	ug/kg	1250	1200	96	70-130	
thylbenzene	ug/kg	1250	1410	113	70-130	
exachloro-1,3-butadiene	ug/kg	1250	1450	116	66-130	IK
opropylbenzene (Cumene)	ug/kg	1250	1370	110	70-130	
&p-Xylene	ug/kg	2500	2690	107	70-130	
ethyl-tert-butyl ether	ug/kg	1250	1190	95	70-130	
ethylene Chloride	ug/kg	1250	1260	101	65-130	
Butylbenzene	ug/kg	1250	1390	111	67-130	
Propylbenzene	ug/kg	1250	1420	113	70-130	
aphthalene	ug/kg	1250	1250	100	70-130	
-Xylene	ug/kg	1250	1380	111	70-130	
-Isopropyltoluene	ug/kg	1250	1370	110	67-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



#### Project: BRAMLETTE J21030497

Pace Project No.: 92528011

#### LABORATORY CONTROL SAMPLE: 3199768

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
sec-Butylbenzene	ug/kg	1250	1340	107	69-130	
Styrene	ug/kg	1250	1410	112	70-130	
tert-Butylbenzene	ug/kg	1250	982	79	67-130	v3
Tetrachloroethene	ug/kg	1250	1360	109	70-130	
Toluene	ug/kg	1250	1250	100	70-130	
trans-1,2-Dichloroethene	ug/kg	1250	1280	103	70-130	
trans-1,3-Dichloropropene	ug/kg	1250	1320	105	68-130	
Trichloroethene	ug/kg	1250	1330	106	70-130	
Trichlorofluoromethane	ug/kg	1250	1260	101	70-130	
Vinyl acetate	ug/kg	2500	2950	118	70-130	
Vinyl chloride	ug/kg	1250	1280	103	61-130	
Xylene (Total)	ug/kg	3750	4070	109	70-130	
1,2-Dichloroethane-d4 (S)	%			89	70-130	
4-Bromofluorobenzene (S)	%			97	69-134	
Toluene-d8 (S)	%			99	70-130	

MATRIX SPIKE SAMPLE:	3200136						
		92528011003	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	ND	696	637	92	70-131	
1,1,1-Trichloroethane	ug/kg	ND	696	635	91	65-133	
1,1,2,2-Tetrachloroethane	ug/kg	ND	696	602	86	66-130	
1,1,2-Trichloroethane	ug/kg	ND	696	671	96	66-133	
1,1-Dichloroethane	ug/kg	ND	696	641	92	65-130	
1,1-Dichloroethene	ug/kg	ND	696	638	92	10-158	
1,1-Dichloropropene	ug/kg	ND	696	643	92	68-133	
1,2,3-Trichlorobenzene	ug/kg	ND	696	563	81	27-138	
1,2,3-Trichloropropane	ug/kg	ND	696	599	86	67-130	
1,2,4-Trichlorobenzene	ug/kg	ND	696	570	82	51-134	
1,2,4-Trimethylbenzene	ug/kg	11.0	696	637	90	63-136	
1,2-Dibromo-3-chloropropane	ug/kg	ND	696	502	72	32-130	
1,2-Dibromoethane (EDB)	ug/kg	ND	696	648	93	70-130	
1,2-Dichlorobenzene	ug/kg	ND	696	652	94	69-130	
1,2-Dichloroethane	ug/kg	ND	696	624	90	59-130	
1,2-Dichloropropane	ug/kg	ND	696	685	98	70-130	
1,3,5-Trimethylbenzene	ug/kg	ND	696	632	91	65-137	
1,3-Dichlorobenzene	ug/kg	ND	696	628	90	70-130	
1,3-Dichloropropane	ug/kg	ND	696	669	96	70-130	
1,4-Dichlorobenzene	ug/kg	ND	696	626	90	68-130	
2,2-Dichloropropane	ug/kg	ND	696	622	89	32-130	
2-Butanone (MEK)	ug/kg	ND	1390	1010	73	10-136	
2-Chlorotoluene	ug/kg	ND	696	630	90	69-141	
2-Hexanone	ug/kg	ND	1390	759	55	10-144	
4-Chlorotoluene	ug/kg	ND	696	632	91	70-132	
4-Methyl-2-pentanone (MIBK)	ug/kg	ND	1390	1180	85	25-143	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



#### Project: BRAMLETTE J21030497

Pace Project No.: 92528011

MATRIX SPIKE SAMPLE:	3200136						
		92528011003	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Acetone	ug/kg	ND	1390	826	59	10-130	
Benzene	ug/kg	ND	696	683	98	67-130	
Bromobenzene	ug/kg	ND	696	616	88	70-130	
Bromochloromethane	ug/kg	ND	696	658	95	69-134	
Bromodichloromethane	ug/kg	ND	696	589	85	64-130	
Bromoform	ug/kg	ND	696	611	88	62-130	
Bromomethane	ug/kg	ND	696	617	89	20-176	IH,IK,v1
Carbon tetrachloride	ug/kg	ND	696	625	90	65-140	
Chlorobenzene	ug/kg	ND	696	644	92	70-130	
Chloroethane	ug/kg	ND	696	203	29	10-130	
Chloroform	ug/kg	ND	696	663	95	63-130	
Chloromethane	ug/kg	ND	696	833	120	58-130	
cis-1,2-Dichloroethene	ug/kg	ND	696	651	94	66-130	
cis-1,3-Dichloropropene	ug/kg	ND	696	629	90	67-130	
Dibromochloromethane	ug/kg	ND	696	618	89	67-130	
Dibromomethane	ug/kg	ND	696	666	96	63-131	
Dichlorodifluoromethane	ug/kg	ND	696	683	98	44-180	
Diisopropyl ether	ug/kg	ND	696	624	90	63-130	
Ethylbenzene	ug/kg	ND	696	658	94	66-130	
Hexachloro-1,3-butadiene	ug/kg	ND	696	629	90	64-150	IK
Isopropylbenzene (Cumene)	ug/kg	ND	696	645	93	69-135	
m&p-Xylene	ug/kg	20.5	1390	1250	88	60-133	
Methyl-tert-butyl ether	ug/kg	ND	696	631	91	65-130	
Methylene Chloride	ug/kg	ND	696	703	101	61-130	
n-Butylbenzene	ug/kg	ND	696	590	85	65-140	
n-Propylbenzene	ug/kg	ND	696	639	92	67-140	
Naphthalene	ug/kg	29.7	696	577	79	15-145	
o-Xylene	ug/kg	12.0	696	648	91	66-133	
p-Isopropyltoluene	ug/kg	ND	696	621	89	56-147	
sec-Butylbenzene	ug/kg	ND	696	623	89	65-139	
Styrene	ug/kg	ND	696	643	92	70-132	
tert-Butylbenzene	ug/kg	ND	696	490	70	62-135	v3
Tetrachloroethene	ug/kg	ND	696	587	84	70-135	
Toluene	ug/kg	12.8	696	634	89	67-130	
trans-1,2-Dichloroethene	ug/kg	ND	696	672	96	69-130	
trans-1,3-Dichloropropene	ug/kg	ND	696	611	88	62-130	
Trichloroethene	ug/kg	ND	696	682	98	70-135	
Trichlorofluoromethane	ug/kg	ND	696	240	34	10-130	
Vinyl acetate	ug/kg	ND	1390	1380	99	53-130	
Vinyl chloride	ug/kg	ND	696	684	98	61-148	
Xylene (Total)	ug/kg	32.5	2090	1890	89	63-132	
1,2-Dichloroethane-d4 (S)	%				123	70-130	
4-Bromofluorobenzene (S)	%				94	69-134	
Toluene-d8 (S)	%				99	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



#### Project: BRAMLETTE J21030497

Pace Project No.: 92528011

SAMPLE DUPLICATE: 3199769						
		92528011001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg		ND		30	
1,1,1-Trichloroethane	ug/kg	ND	ND		30	
1.1.2.2-Tetrachloroethane	ua/ka	ND	ND		30	
1.1.2-Trichloroethane	ua/ka	ND	ND		30	
1.1-Dichloroethane	ua/ka	ND	ND		30	
1.1-Dichloroethene	ua/ka	ND	ND		30	
1.1-Dichloropropene	ua/ka	ND	ND		30	
1 2 3-Trichlorobenzene	ug/kg	ND	ND		30	
1.2.3-Trichloropropane	ug/kg	ND	ND		30	
1 2 4-Trichlorobenzene	ug/kg	ND	ND		30	
1 2 4-Trimethylbenzene	ug/kg	ND	ND		30	
1 2-Dibromo-3-chloropropane	ug/kg	ND	ND		30	
1 2-Dibromoethane (FDR)	ug/kg				30 20	
1 2-Dichlorobenzene	ug/kg				20 20	
1.2-Dichloroethane	ug/kg				30	
1.2-Dichloropropage	ug/kg				30	
1.25 Trimothylbonzono	ug/kg				30	
	ug/kg				30	
1,3-Dichloropenzene	ug/kg		ND		30	
1,3-Dichloropropane	ug/kg		ND		30	
1,4-Dichlorobenzene	ug/kg		ND		30	
2,2-Dichloropropane	ug/kg		ND		30	
2-Butanone (MEK)	ug/kg	ND	ND		30	
2-Chlorotoluene	ug/kg	ND	ND		30	
2-Hexanone	ug/kg	ND	ND		30	
4-Chlorotoluene	ug/kg	ND	ND		30	
4-Methyl-2-pentanone (MIBK)	ug/kg	ND	ND		30	
Acetone	ug/kg	ND	ND		30	
Benzene	ug/kg	ND	ND		30	
Bromobenzene	ug/kg	ND	ND		30	
Bromochloromethane	ug/kg	ND	ND		30	
Bromodichloromethane	ug/kg	ND	ND		30	
Bromoform	ug/kg	ND	ND		30	
Bromomethane	ug/kg	ND	ND		30	IH,IK,v1
Carbon tetrachloride	ug/kg	ND	ND		30	
Chlorobenzene	ug/kg	ND	ND		30	
Chloroethane	ug/kg	ND	ND		30	
Chloroform	ug/kg	ND	ND		30	
Chloromethane	ug/kg	ND	ND		30	
cis-1,2-Dichloroethene	ug/kg	ND	ND		30	
cis-1,3-Dichloropropene	ug/kg	ND	ND		30	
Dibromochloromethane	ug/kg	ND	ND		30	
Dibromomethane	ug/kg	ND	ND		30	
Dichlorodifluoromethane	ug/kg	ND	ND		30	
Diisopropyl ether	ug/kg	ND	ND		30	
Ethylbenzene	ug/kg	ND	ND		30	
Hexachloro-1,3-butadiene	ug/kg	ND	ND		30	IK
Isopropylbenzene (Cumene)	ug/kg	ND	ND		30	
· · · · · · · · · · · · · · · · · · ·						

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



#### Project: BRAMLETTE J21030497

Pace Project No.: 92528011

## SAMPLE DUPLICATE: 3199769

9	92528011001	Dup		Max	
Parameter Units	Result	Result	RPD	RPD	Qualifiers
m&p-Xylene ug/kg	ND	ND		30	)
Methyl-tert-butyl ether ug/kg	ND	ND		30	)
Methylene Chloride ug/kg	ND	ND		30	)
n-Butylbenzene ug/kg	ND	ND		30	)
n-Propylbenzene ug/kg	ND	ND		30	)
Naphthalene ug/kg	ND	ND		30	)
o-Xylene ug/kg	ND	ND		30	)
p-lsopropyltoluene ug/kg	ND	ND		30	)
sec-Butylbenzene ug/kg	ND	ND		30	)
Styrene ug/kg	ND	ND		30	)
tert-Butylbenzene ug/kg	ND	ND		30	) v2
Tetrachloroethene ug/kg	ND	ND		30	)
Toluene ug/kg	ND	ND		30	)
trans-1,2-Dichloroethene ug/kg	ND	ND		30	)
trans-1,3-Dichloropropene ug/kg	ND	ND		30	)
Trichloroethene ug/kg	ND	ND		30	)
Trichlorofluoromethane ug/kg	ND	ND		30	)
Vinyl acetate ug/kg	ND	ND		30	)
Vinyl chloride ug/kg	ND	ND		30	)
Xylene (Total) ug/kg	ND	ND		30	)
1,2-Dichloroethane-d4 (S) %	108	108			
4-Bromofluorobenzene (S) %	96	94			
Toluene-d8 (S) %	102	99			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



Pace Analytical Services, LLC 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

## **QUALITY CONTROL DATA**

Project: BRAMLETTE J21030497

Pace Proje	ect No.:	9252
------------	----------	------

oject No.:	92528011
oject No.:	92528011

QC Batch: 607623		Analysis Methor	d: EPA	8260D			
QC Batch Method: EPA 5035A/5030B		Analysis Descri	ption: 826	8260D 5035A 5030B SC			
		Laboratory.	Pac	e Analytical Ser			
Associated Lab Samples: 9252801100	)7	Laboratory	1 40				
METHOD BLANK: 3200879		Matrix: So	olid				
Associated Lab Samples: 9252801100	)7						
		Blank	Reporting				
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers	
	0						
1,1,1,2-Tetrachioroethane	ug/kg	ND	5.0	1.9	03/18/21 17:44		
1,1,1-Trichloroethane	ug/kg	ND	5.0	2.6	03/18/21 17:44		
1,1,2,2- letrachioroethane	ug/kg	ND	5.0	1.3	03/18/21 17:44		
1,1,2-I richloroethane	ug/kg	ND	5.0	1.7	03/18/21 17:44		
	ug/kg	ND	5.0	2.1	03/18/21 17:44		
1,1-Dichloroethene	ug/kg	ND	5.0	2.1	03/18/21 17:44		
1,1-Dichloropropene	ug/kg	ND	5.0	2.4	03/18/21 17:44		
1,2,3-Irichlorobenzene	ug/kg	ND	5.0	4.0	03/18/21 17:44		
1,2,3-Trichloropropane	ug/kg	ND	5.0	2.5	03/18/21 17:44		
1,2,4-Irichlorobenzene	ug/kg	ND	5.0	4.2	03/18/21 17:44		
1,2,4-Trimethylbenzene	ug/kg	ND	5.0	1.4	03/18/21 17:44		
1,2-Dibromo-3-chloropropane	ug/kg	ND	5.0	1.9	03/18/21 17:44		
1,2-Dibromoethane (EDB)	ug/kg	ND	5.0	2.2	03/18/21 17:44		
1,2-Dichlorobenzene	ug/kg	ND	5.0	1.8	03/18/21 17:44		
1,2-Dichloroethane	ug/kg	ND	5.0	3.3	03/18/21 17:44		
1,2-Dichloropropane	ug/kg	ND	5.0	1.5	03/18/21 17:44		
1,3,5-Trimethylbenzene	ug/kg	ND	5.0	1.7	03/18/21 17:44		
1,3-Dichlorobenzene	ug/kg	ND	5.0	1.6	03/18/21 17:44		
1,3-Dichloropropane	ug/kg	ND	5.0	1.6	03/18/21 17:44		
1,4-Dichlorobenzene	ug/kg	ND	5.0	1.3	03/18/21 17:44		
2,2-Dichloropropane	ug/kg	ND	5.0	1.6	03/18/21 17:44		
2-Butanone (MEK)	ug/kg	ND	100	24.0	03/18/21 17:44		
2-Chlorotoluene	ug/kg	ND	5.0	1.8	03/18/21 17:44		
2-Hexanone	ug/kg	ND	50.0	4.8	03/18/21 17:44		
4-Chlorotoluene	ug/kg	ND	5.0	0.88	03/18/21 17:44		
4-Methyl-2-pentanone (MIBK)	ug/kg	ND	50.0	4.8	03/18/21 17:44		
Acetone	ug/kg	ND	100	32.1	03/18/21 17:44		
Benzene	ug/kg	ND	5.0	2.0	03/18/21 17:44		
Bromobenzene	ug/kg	ND	5.0	1.6	03/18/21 17:44		
Bromochloromethane	ug/kg	ND	5.0	1.5	03/18/21 17:44		
Bromodichloromethane	ug/kg	ND	5.0	1.9	03/18/21 17:44		
Bromoform	ug/kg	ND	5.0	1.8	03/18/21 17:44		
Bromomethane	ug/kg	ND	10.0	7.9	03/18/21 17:44	IH,IK,v1	
Carbon tetrachloride	ua/ka	ND	5.0	1.9	03/18/21 17:44		
Chlorobenzene	ug/kg	ND	5.0	0.96	03/18/21 17:44		
Chloroethane	ug/ka	ND	10.0	3.9	03/18/21 17:44		
Chloroform	ug/ka	ND	5.0	3.0	03/18/21 17:44		
Chloromethane	ua/ka	ND	10.0	4.2	03/18/21 17:44		
cis-1.2-Dichloroethene	ug/ka	ND	5.0	1.7	03/18/21 17:44		
cis-1,3-Dichloropropene	ug/ka	ND	5.0	1.4	03/18/21 17:44		
	0.0			-			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



## Project: BRAMLETTE J21030497

Pace Project No.: 92528011

METHOD BLANK: 3200879		Matrix:	Solid			
Associated Lab Samples: 925280	11007					
		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Dibromochloromethane	ug/kg	ND	5.0	2.8	03/18/21 17:44	
Dibromomethane	ug/kg	ND	5.0	1.1	03/18/21 17:44	
Dichlorodifluoromethane	ug/kg	ND	10.0	2.2	03/18/21 17:44	
Diisopropyl ether	ug/kg	ND	5.0	1.4	03/18/21 17:44	
Ethylbenzene	ug/kg	ND	5.0	2.3	03/18/21 17:44	
Hexachloro-1,3-butadiene	ug/kg	ND	10.0	8.2	03/18/21 17:44	IK
Isopropylbenzene (Cumene)	ug/kg	ND	5.0	1.7	03/18/21 17:44	
m&p-Xylene	ug/kg	ND	10.0	3.4	03/18/21 17:44	
Methyl-tert-butyl ether	ug/kg	ND	5.0	1.9	03/18/21 17:44	
Methylene Chloride	ug/kg	ND	20.0	13.7	03/18/21 17:44	
n-Butylbenzene	ug/kg	ND	5.0	2.4	03/18/21 17:44	
n-Propylbenzene	ug/kg	ND	5.0	1.8	03/18/21 17:44	
Naphthalene	ug/kg	ND	5.0	2.6	03/18/21 17:44	
o-Xylene	ug/kg	ND	5.0	2.2	03/18/21 17:44	
p-Isopropyltoluene	ug/kg	ND	5.0	2.5	03/18/21 17:44	
sec-Butylbenzene	ug/kg	ND	5.0	2.2	03/18/21 17:44	
Styrene	ug/kg	ND	5.0	1.3	03/18/21 17:44	
tert-Butylbenzene	ug/kg	ND	5.0	1.8	03/18/21 17:44	v2
Tetrachloroethene	ug/kg	ND	5.0	1.6	03/18/21 17:44	
Toluene	ug/kg	ND	5.0	1.4	03/18/21 17:44	
trans-1,2-Dichloroethene	ug/kg	ND	5.0	1.8	03/18/21 17:44	
trans-1,3-Dichloropropene	ug/kg	ND	5.0	1.7	03/18/21 17:44	
Trichloroethene	ug/kg	ND	5.0	1.3	03/18/21 17:44	
Trichlorofluoromethane	ug/kg	ND	5.0	2.8	03/18/21 17:44	
Vinyl acetate	ug/kg	ND	50.0	3.6	03/18/21 17:44	
Vinyl chloride	ug/kg	ND	10.0	2.5	03/18/21 17:44	
Xylene (Total)	ug/kg	ND	10.0	2.8	03/18/21 17:44	
1,2-Dichloroethane-d4 (S)	%	112	70-130		03/18/21 17:44	
4-Bromofluorobenzene (S)	%	92	69-134		03/18/21 17:44	
Toluene-d8 (S)	%	101	70-130		03/18/21 17:44	

#### LABORATORY CONTROL SAMPLE: 3200880

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1.1.1.2-Tetrachloroethane	ua/ka		1280		70-130	
1,1,1-Trichloroethane	ug/kg	1250	1180	95	70-130	
1,1,2,2-Tetrachloroethane	ug/kg	1250	1280	102	70-130	
1,1,2-Trichloroethane	ug/kg	1250	1310	105	70-130	
1,1-Dichloroethane	ug/kg	1250	1200	96	70-130	
1,1-Dichloroethene	ug/kg	1250	1240	99	70-130	
1,1-Dichloropropene	ug/kg	1250	1200	96	70-130	
1,2,3-Trichlorobenzene	ug/kg	1250	1240	99	65-130	
1,2,3-Trichloropropane	ug/kg	1250	1280	102	70-130	
1,2,4-Trichlorobenzene	ug/kg	1250	1290	103	68-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



#### Project: BRAMLETTE J21030497

Pace Project No.: 92528011

LABORATORY CONTROL SAMPLE:	3200880					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2,4-Trimethylbenzene	ug/kg	1250	1290	103	70-130	
1,2-Dibromo-3-chloropropane	ug/kg	1250	1170	94	70-130	
1,2-Dibromoethane (EDB)	ug/kg	1250	1320	105	70-130	
1,2-Dichlorobenzene	ug/kg	1250	1330	106	70-130	
1,2-Dichloroethane	ug/kg	1250	1150	92	63-130	
1,2-Dichloropropane	ug/kg	1250	1290	103	70-130	
1,3,5-Trimethylbenzene	ug/kg	1250	1270	102	70-130	
1,3-Dichlorobenzene	ug/kg	1250	1300	104	70-130	
1,3-Dichloropropane	ug/kg	1250	1300	104	70-130	
1,4-Dichlorobenzene	ug/kg	1250	1280	103	70-130	
2,2-Dichloropropane	ug/kg	1250	1270	101	66-130	
2-Butanone (MEK)	ug/kg	2500	2270	91	70-130	
2-Chlorotoluene	ug/kg	1250	1290	103	70-130	
2-Hexanone	ug/kg	2500	2490	99	70-130	
4-Chlorotoluene	ug/kg	1250	1340	107	70-130	
4-Methyl-2-pentanone (MIBK)	ug/kg	2500	2420	97	70-130	
Acetone	ug/kg	2500	2310	93	69-130	
Benzene	ug/kg	1250	1260	101	70-130	
Bromobenzene	ug/kg	1250	1240	99	70-130	
Bromochloromethane	ug/kg	1250	1320	106	70-130	
Bromodichloromethane	ug/kg	1250	1160	93	69-130	
Bromoform	ug/kg	1250	1360	109	70-130	
Bromomethane	ug/kg	1250	1820	146	52-130	IH,IK,L1,v1
Carbon tetrachloride	ug/kg	1250	1220	98	70-130	/
Chlorobenzene	ug/kg	1250	1290	103	70-130	
Chloroethane	ug/kg	1250	1270	102	65-130	
Chloroform	ug/kg	1250	1190	95	70-130	
Chloromethane	ug/kg	1250	1330	107	55-130	
cis-1,2-Dichloroethene	ug/kg	1250	1190	95	70-130	
cis-1,3-Dichloropropene	ug/kg	1250	1260	101	70-130	
Dibromochloromethane	ug/kg	1250	1360	109	70-130	
Dibromomethane	ug/kg	1250	1270	102	70-130	
Dichlorodifluoromethane	ug/kg	1250	1340	108	45-156	
Diisopropyl ether	ug/kg	1250	1200	96	70-130	
Ethylbenzene	ug/kg	1250	1340	107	70-130	
Hexachloro-1,3-butadiene	ug/kg	1250	1370	109	66-130	IK
Isopropylbenzene (Cumene)	ua/ka	1250	1310	105	70-130	
m&p-Xylene	ua/ka	2500	2600	104	70-130	
Methyl-tert-butyl ether	ua/ka	1250	1180	95	70-130	
Methylene Chloride	ua/ka	1250	1240	99	65-130	
n-Butylbenzene	ua/ka	1250	1330	107	67-130	
n-Propylbenzene	ua/ka	1250	1330	107	70-130	
Naphthalene	ua/ka	1250	1200	96	70-130	
o-Xvlene	ua/ka	1250	1330	107	70-130	
p-Isopropyltoluene	ua/ka	1250	1300	104	67-130	
sec-Butylbenzene	ua/ka	1250	1280	102	69-130	
Styrene	ua/ka	1250	1350	108	70-130	
,	~9/1.9	1200	1000	100	10 100	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



#### Project: BRAMLETTE J21030497

Pace Project No.: 92528011

#### LABORATORY CONTROL SAMPLE: 3200880

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
tert-Butylbenzene	ug/kg	1250	923	74	67-130	v2
Tetrachloroethene	ug/kg	1250	1290	103	70-130	
Toluene	ug/kg	1250	1190	95	70-130	
trans-1,2-Dichloroethene	ug/kg	1250	1260	101	70-130	
trans-1,3-Dichloropropene	ug/kg	1250	1260	101	68-130	
Trichloroethene	ug/kg	1250	1280	102	70-130	
Trichlorofluoromethane	ug/kg	1250	1230	98	70-130	
Vinyl acetate	ug/kg	2500	2920	117	70-130	
Vinyl chloride	ug/kg	1250	1250	100	61-130	
Xylene (Total)	ug/kg	3750	3940	105	70-130	
1,2-Dichloroethane-d4 (S)	%			92	70-130	
4-Bromofluorobenzene (S)	%			97	69-134	
Toluene-d8 (S)	%			97	70-130	

MATRIX SPIKE SAMPLE:	3200882						
		92528353002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	ND	1690	1890	112	70-131	
1,1,1-Trichloroethane	ug/kg	ND	1690	1860	110	65-133	
1,1,2,2-Tetrachloroethane	ug/kg	ND	1690	1820	108	66-130	
1,1,2-Trichloroethane	ug/kg	ND	1690	1970	117	66-133	
1,1-Dichloroethane	ug/kg	ND	1690	1910	113	65-130	
1,1-Dichloroethene	ug/kg	ND	1690	1950	115	10-158	
1,1-Dichloropropene	ug/kg	ND	1690	1860	110	68-133	
1,2,3-Trichlorobenzene	ug/kg	ND	1690	1610	95	27-138	
1,2,3-Trichloropropane	ug/kg	ND	1690	1770	105	67-130	
1,2,4-Trichlorobenzene	ug/kg	ND	1690	1710	101	51-134	
1,2,4-Trimethylbenzene	ug/kg	ND	1690	1890	112	63-136	
1,2-Dibromo-3-chloropropane	ug/kg	ND	1690	1430	85	32-130	
1,2-Dibromoethane (EDB)	ug/kg	ND	1690	1890	112	70-130	
1,2-Dichlorobenzene	ug/kg	ND	1690	2020	120	69-130	
1,2-Dichloroethane	ug/kg	ND	1690	1820	108	59-130	
1,2-Dichloropropane	ug/kg	ND	1690	1990	118	70-130	
1,3,5-Trimethylbenzene	ug/kg	ND	1690	1880	111	65-137	
1,3-Dichlorobenzene	ug/kg	ND	1690	1890	112	70-130	
1,3-Dichloropropane	ug/kg	ND	1690	1980	118	70-130	
1,4-Dichlorobenzene	ug/kg	ND	1690	1880	111	68-130	
2,2-Dichloropropane	ug/kg	ND	1690	1810	107	32-130	
2-Butanone (MEK)	ug/kg	ND	3370	2940	87	10-136	
2-Chlorotoluene	ug/kg	ND	1690	1930	115	69-141	
2-Hexanone	ug/kg	ND	3370	3140	93	10-144	
4-Chlorotoluene	ug/kg	ND	1690	1970	117	70-132	
4-Methyl-2-pentanone (MIBK)	ug/kg	ND	3370	3340	99	25-143	
Acetone	ug/kg	ND	3370	2430	72	10-130	
Benzene	ug/kg	ND	1690	1960	116	67-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



#### Project: BRAMLETTE J21030497

Pace Project No.: 92528011

MATRIX SPIKE SAMPLE:	3200882						
		92528353002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Bromobenzene	ug/kg	ND	1690	1900	112	70-130	
Bromochloromethane	ug/kg	ND	1690	2100	125	69-134	
Bromodichloromethane	ug/kg	ND	1690	1710	101	64-130	
Bromoform	ug/kg	ND	1690	1780	106	62-130	
Bromomethane	ug/kg	ND	1690	1990	118	20-176	IH,IK,v1
Carbon tetrachloride	ug/kg	ND	1690	1790	106	65-140	
Chlorobenzene	ug/kg	ND	1690	1950	116	70-130	
Chloroethane	ug/kg	ND	1690	713	42	10-130	
Chloroform	ug/kg	ND	1690	1940	115	63-130	
Chloromethane	ug/kg	ND	1690	2290	136	58-130	M1
cis-1,2-Dichloroethene	ug/kg	ND	1690	1880	112	66-130	
cis-1,3-Dichloropropene	ug/kg	ND	1690	1860	110	67-130	
Dibromochloromethane	ug/kg	ND	1690	1860	110	67-130	
Dibromomethane	ug/kg	ND	1690	1890	112	63-131	
Dichlorodifluoromethane	ug/kg	ND	1690	2000	118	44-180	
Diisopropyl ether	ug/kg	ND	1690	1850	110	63-130	
Ethylbenzene	ug/kg	9.2J	1690	2030	120	66-130	
Hexachloro-1,3-butadiene	ug/kg	ND	1690	1920	114	64-150	IK
Isopropylbenzene (Cumene)	ug/kg	ND	1690	1920	114	69-135	
m&p-Xylene	ug/kg	65.9	3370	3890	113	60-133	
Methyl-tert-butyl ether	ug/kg	ND	1690	1800	106	65-130	
Methylene Chloride	ug/kg	ND	1690	1990	118	61-130	
n-Butylbenzene	ug/kg	ND	1690	1880	111	65-140	
n-Propylbenzene	ug/kg	ND	1690	1960	116	67-140	
Naphthalene	ug/kg	ND	1690	1460	86	15-145	
o-Xylene	ug/kg	24.0	1690	1950	114	66-133	
p-Isopropyltoluene	ug/kg	ND	1690	1870	111	56-147	
sec-Butylbenzene	ug/kg	ND	1690	1900	113	65-139	
Styrene	ug/kg	ND	1690	1990	118	70-132	
tert-Butylbenzene	ug/kg	ND	1690	1400	83	62-135	v2
Tetrachloroethene	ug/kg	ND	1690	1840	109	70-135	
Toluene	ug/kg	ND	1690	1810	107	67-130	
trans-1,2-Dichloroethene	ug/kg	ND	1690	2000	119	69-130	
trans-1,3-Dichloropropene	ug/kg	ND	1690	1750	104	62-130	
Trichloroethene	ug/kg	ND	1690	1990	118	70-135	
Trichlorofluoromethane	ug/kg	ND	1690	800	47	10-130	
Vinyl acetate	ug/kg	ND	3370	4030	120	53-130	
Vinyl chloride	ug/kg	ND	1690	1930	115	61-148	
Xylene (Total)	ug/kg	89.9	5060	5840	114	63-132	
1,2-Dichloroethane-d4 (S)	%				126	70-130	
4-Bromofluorobenzene (S)	%				97	69-134	
Toluene-d8 (S)	%				99	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



#### Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Bits     Sizes     Dup     Max     Qualifiers       11,1-17-indrosentane     ug/kg     ND     ND     30       11,1-17-indrosentane     ug/kg     ND     ND     30       11,12-7-indrosentane     ug/kg     ND     ND     30       11,12-7-indrosentane     ug/kg     ND     ND     30       1,1-Dehlorosentane     ug/kg     ND     ND     30       1,1-Dehlorosentane     ug/kg     ND     ND     30       1,1-Dehlorosentane     ug/kg     ND     ND     30       1,2-3-Trichlorosentane     ug/kg     ND     ND     30       1,2-Dehlorosentane     ug/kg     ND </th <th>SAMPLE DUPLICATE: 3200881</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	SAMPLE DUPLICATE: 3200881						
Parameter     Units     Result     Result     RPD     RPD     Qualifiers       1,1,12-Tetrachloroethane     ug/kg     ND     ND     30       1,1,22-Tetrachloroethane     ug/kg     ND     ND     30       1,1,22-Tetrachloroethane     ug/kg     ND     ND     30       1,1-Dichloroethane     ug/kg     ND     ND     30       1,1-Dichloroethane     ug/kg     ND     ND     30       1,1-Dichloroethane     ug/kg     ND     ND     30       1,2,3-Trichoropane     ug/kg     ND     ND     30       1,2,4-Trinethylbenzene     ug/kg     ND     ND     30       1,2-Dichoroethane     ug/kg     ND     ND     30       1,2-Dichloroethane     ug/kg     ND     ND     30       1,2-Artimethylbenzene     ug/kg     ND     ND     30       1,2-Dichloroethane     ug/kg     ND     ND     30       1,2-Dichloroephane     ug/kg     ND     ND     30       1,2-Dichloroephane			92528011007	Dup		Max	
1,1,1-2-Tetrachloroethane     ug/kg     ND     ND     30       1,1,1-Trichloroethane     ug/kg     ND     ND     30       1,1,2-2-Tetrachloroethane     ug/kg     ND     ND     30       1,1,2-Tichloroethane     ug/kg     ND     ND     30       1,1-Dichloroethane     ug/kg     ND     ND     30       1,1-Dichloroethane     ug/kg     ND     ND     30       1,1-Dichloroethane     ug/kg     ND     ND     30       1,2.3-Trichloroethane     ug/kg     ND     ND     30       1,2.3-Trichloropropane     ug/kg     ND     ND     30       1,2.4-Trichloropropane     ug/kg     ND     ND     30       1,2-Dichlorobenzene     ug/kg     ND     ND     30       1,2-Dichloroponae     ug/kg <td< td=""><td>Parameter</td><td>Units</td><td>Result</td><td>Result</td><td>RPD</td><td>RPD</td><td>Qualifiers</td></td<>	Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,1-1     Ug/kg     ND     ND     30       1,1.2.2-Tetrachloroethane     Ug/kg     ND     ND     30       1,1.2.2-Trichloroethane     Ug/kg     ND     ND     30       1,1.2-Dichloroethane     Ug/kg     ND     ND     30       1,1-Dichloroethane     Ug/kg     ND     ND     30       1,1-Dichloroethane     Ug/kg     ND     ND     30       1,2.3-Trichloropropane     Ug/kg     ND     ND     30       1,2.4-Trichloropropane     Ug/kg     ND     ND     30       1,2.4-Trichloropropane     Ug/kg     ND     ND     30       1,2-Dichloroberzene     Ug/kg     ND	1.1.1.2-Tetrachloroethane	ua/ka		ND		30	
1,1,2-Tetrachloroethane     ug/kg     ND     ND     30       1,1,2-Tichloroethane     ug/kg     ND     ND     30       1,1-Dichloroethane     ug/kg     ND     ND     30       1,1-Dichloroethane     ug/kg     ND     ND     30       1,1-Dichloroptene     ug/kg     ND     ND     30       1,2,3-Tichloroptene     ug/kg     ND     ND     30       1,2,4-Trichlorobenzene     ug/kg     ND     ND     30       1,2,4-Trichlorobenzene     ug/kg     ND     ND     30       1,2,4-Trinterbytbenzene     ug/kg     ND     ND     30       1,2-Dichlorobenzene     ug/kg     ND     ND     30       1,2-Dichlorobenzene     ug/kg     ND     ND     30       1,3-Dichloropropane     ug/kg     ND <td>1.1.1-Trichloroethane</td> <td>ua/ka</td> <td>ND</td> <td>ND</td> <td></td> <td>30</td> <td>1</td>	1.1.1-Trichloroethane	ua/ka	ND	ND		30	1
1,12-Trichloroethane     ug/kg     ND     ND     30       1,1-Dichloroethane     ug/kg     ND     ND     30       1,1-Dichloroethane     ug/kg     ND     ND     30       1,1-Dichloroptopene     ug/kg     ND     ND     30       1,2.3-Trichloroberzene     ug/kg     ND     ND     30       1,2.4-Trinichtoroberzene     ug/kg     NJ     2.5.3     30       1,2.4-Trinichtyberzene     ug/kg     ND     ND     30       1,2.Dibromo-3-chloropropane     ug/kg     ND     ND     30       1,2.Dibromeshane (EDB)     ug/kg     ND     ND     30       1,2.Dibromoshane (EDB)     ug/kg     ND     ND     30       1,2.Dichloroberzene     ug/kg     ND     ND     30       1,3.5-Trimethylberzene     ug/kg     ND     ND     30       1,3.5-Trimethylberzene     ug/kg     ND     ND     30       1,3.5-Trimethylberzene     ug/kg     ND     ND     30       2,2-Dichloropopane     ug/kg	1.1.2.2-Tetrachloroethane	ua/ka	ND	ND		30	1
1,1-Dichlorosethane     ug/kg     ND     ND     30       1,1-Dichloroptene     ug/kg     ND     ND     30       1,1-Dichloroptene     ug/kg     ND     ND     30       1,2.3-Tichloroptenzene     ug/kg     ND     ND     30       1,2.4-Trichlorobenzene     ug/kg     ND     ND     30       1,2.4-Trichlorobenzene     ug/kg     ND     ND     30       1,2.4-Trintertlybenzene     ug/kg     ND     ND     30       1,2.2-Dichoro-Schloropropane     ug/kg     ND     ND     30       1,2-Dichorobenzene     ug/kg     ND     ND     30       1,2-Dichorobenzene     ug/kg     ND     ND     30       1,2-Dichloropopane     ug/kg     ND     ND     30       1,2-Dichlorobenzene     ug/kg     ND <td>1 1 2-Trichloroethane</td> <td>ug/kg</td> <td>ND</td> <td>ND</td> <td></td> <td>30</td> <td>1</td>	1 1 2-Trichloroethane	ug/kg	ND	ND		30	1
1,1-Dichloredneneug/kgNDND301,1-Dichloroptopeneug/kgNDND301,2.3-Trichlorobezeneug/kgNDND301,2.3-Trichlorobezeneug/kgNDND301,2.3-Trichlorobezeneug/kgNDND301,2.4-Trichlorobezeneug/kgNDND301,2.4-Trichlorobezeneug/kgNDND301,2-Dibromedhane (EDB)ug/kgNDND301,2-Dibromedhane (EDB)ug/kgNDND301,2-Dibromedhane (EDB)ug/kgNDND301,2-Dibromedhane (EDB)ug/kgNDND301,2-Dibromedhane (EDB)ug/kgNDND301,2-Dichlorobethaneug/kgNDND301,3-Dichloroberzeneug/kgNDND301,3-Dichloroberzeneug/kgNDND301,3-Dichloroberzeneug/kgNDND302,2-Dichoroberzeneug/kgNDND302,2-Dichoroberzeneug/kgNDND302,2-Dichoroberzeneug/kgNDND302,2-Dichoroberzeneug/kgNDND302,2-Dichoroberzeneug/kgNDND302,2-Dichoroberzeneug/kgNDND302,2-Dichoroberzeneug/kgNDND302,2-Dichoroberzeneug/kgNDND30 <td< td=""><td>1.1-Dichloroethane</td><td>ug/kg</td><td>ND</td><td>ND</td><td></td><td>30</td><td>1</td></td<>	1.1-Dichloroethane	ug/kg	ND	ND		30	1
1.1     Display     ND     ND     30       1,2,3-Trichloropropane     ug/kg     ND     ND     30       1,2,3-Trichloropropane     ug/kg     ND     ND     30       1,2,4-Trichloropropane     ug/kg     ND     ND     30       1,2,4-Trichlorobenzene     ug/kg     ND     ND     30       1,2,4-Trichlorobenzene     ug/kg     ND     ND     30       1,2-Dibromosthane (EDB)     ug/kg     ND     ND     30       1,2-Dibromosthane (EDB)     ug/kg     ND     ND     30       1,2-Dibromosthane (EDB)     ug/kg     ND     ND     30       1,2-Dibriorobenzene     ug/kg     ND     ND     30       1,2-Dibrioropropane     ug/kg     ND     ND     30       1,3-Dichloropropane     ug/kg     ND     ND     30       1,4-Dichloropropane     ug/kg     ND     ND     30       2,2-Dichloropropane     ug/kg     ND     ND     30       2,2-Dichloropropane     ug/kg     ND </td <td>1 1-Dichloroethene</td> <td>ug/kg</td> <td>ND</td> <td>ND</td> <td></td> <td>30</td> <td>1</td>	1 1-Dichloroethene	ug/kg	ND	ND		30	1
1.2.3-Trichloropropane     ug/kg     ND     ND     30       1.2.3-Trichloropropane     ug/kg     ND     ND     30       1.2.4-Trichloropropane     ug/kg     ND     ND     30       1.2.4-Trichloropropane     ug/kg     ND     ND     30       1.2.4-Trichloropropane     ug/kg     ND     ND     30       1.2.5-Dibromoshane (EDB)     ug/kg     ND     ND     30       1.2-Dibromoshane (EDB)     ug/kg     ND     ND     30       1.2-Dichlorophrane     ug/kg     ND     ND     30       1.2-Dichlorobenzene     ug/kg     ND     ND     30       1.3-5-Trimethylbenzene     ug/kg     ND     ND     30       1.3-5-Trimethylbenzene     ug/kg     ND     ND     30       2.3-5-Chloropropane     ug/kg     ND     ND     30       2.4-2-Chloropropane     ug/kg     ND     ND     30       2.4-2-Chloropropane     ug/kg     ND     ND     30       2.4-Dichlorobenzene     ug/kg	1 1-Dichloropropene	ug/kg	ND	ND		30	1
A.B. Stabilization     ug/kg     ND     ND     30       1,2,4-Trinchloroberzene     ug/kg     ND     ND     30       1,2,4-Trinchlyberzene     ug/kg     ND     ND     30       1,2-Dichloroberzene     ug/kg     ND     ND     30       1,2-Dichloropropane     ug/kg     ND     ND     30       1,3-Dichloropropane     ug/kg     ND     ND     30       1,3-Dichloropropane     ug/kg     ND     ND     30       1,4-Dichloropropane     ug/kg     ND     ND     30       2,2-Dichloropropane     ug/kg     ND     ND     30       2,2-Dichloropropane     ug/kg     ND     ND     30       2,4-Dichloropropane     ug/kg     ND     ND     30       2-Abiotoropropane     ug/kg     ND	1 2 3-Trichlorobenzene	ug/kg	ND	ND		30	
Instruction operation     operation <thoperation< th=""></thoperation<>	1 2 3-Trichloropropane	ug/kg	ND	ND		30	
I.AY minimulation     ug/kg     NJ     ND     ND       1.2-Dibromo-3-chloropropane     ug/kg     ND     ND     ND       1.2-Dibromo-3-chloropropane     ug/kg     ND     ND     ND       1.2-Dibromo-thane (EDB)     ug/kg     ND     ND     ND       1.2-Dichlorobenzene     ug/kg     ND     ND     30       1.2-Dichloropropane     ug/kg     ND     ND     30       1.3-Dichloropropane     ug/kg     ND     ND     30       1.3-Dichloropropane     ug/kg     ND     ND     30       1.4-Dichlorobenzene     ug/kg     ND     ND     30       2.2-Dichloropropane     ug/kg     ND     ND     30       2.4-Dichlorobuene     ug/kg     ND     ND     30       2.4-Dichorobuene     ug/kg     ND	1.2.4-Trichlorobenzene	ug/kg	ND			30	
1,2-bitmenery-achieveug/kgNDND301,2-bitoronos-3-chieropropaneug/kgNDND301,2-bitoronos-3-chieropropaneug/kgNDND301,2-bitoronos-3-chieropropaneug/kgNDND301,2-bitoronosthane (EDB)ug/kgNDND301,2-bitoropropaneug/kgNDND301,2-bitoropropaneug/kgNDND301,3-bitolioropropaneug/kgNDND301,3-bitolioropropaneug/kgNDND301,3-bitolioropropaneug/kgNDND302,2-bitolioropropaneug/kgNDND302,2-bitolioropropaneug/kgNDND302,2-bitolioropropaneug/kgNDND302,2-bitolioropropaneug/kgNDND302,2-bitolioropropaneug/kgNDND302,2-bitolioreneug/kgNDND302,2-bitolioreneug/kgNDND302-bitolioreneug/kgNDND302-bitolioreneug/kgNDND302-bitolioreneug/kgNDND302-bitolioreneug/kgNDND302-bitolioreneug/kgNDND302-bitolioreneug/kgNDND302-bitolioreneug/kgNDND302-bitolioreneu	1.2.4-Trimethylbenzene	ug/kg	341	251		30	
1,2-bitomolection     ND     ND     ND     ND       1,2-bitchlorobenzene     ug/kg     ND     ND     ND     30       1,2-bitchlorobenzene     ug/kg     ND     ND     30       1,2-bitchlorobenzene     ug/kg     ND     ND     30       1,3-bitchlorobenzene     ug/kg     ND     ND     30       1,3-bitchloropropane     ug/kg     ND     ND     30       1,3-bitchloropropane     ug/kg     ND     ND     30       1,4-bitchlorobenzene     ug/kg     ND     ND     30       2-bitchloropropane     ug/kg     ND	1.2 Dibromo 3 chloropropano	ug/kg		2.00 ND		30	
L2-biolocobenzeneug/kgNDND301,2-biolocobenzeneug/kgNDND301,2-biolocobenzeneug/kgNDND301,2-biolocobenzeneug/kgNDND301,3-biolocobenzeneug/kgNDND301,3-biolocobenzeneug/kgNDND301,3-biolocobenzeneug/kgNDND302,2-biolocobenzeneug/kgNDND302,2-biolocobenzeneug/kgNDND302,2-biolocobenzeneug/kgNDND302,2-biolocobenzeneug/kgNDND302,2-biolocobenzeneug/kgNDND302,2-biolocobenzeneug/kgNDND302,2-biolocobenzeneug/kgNDND302,2-biolocobenzeneug/kgNDND302,2-biolocobenzeneug/kgNDND302-biorocobenzeneug/kgNDND302-biorocobenzeneug/kgNDND302-biorocobenzeneug/kgNDND302-biorocobenzeneug/kgNDND302-biorocobenzeneug/kgNDND302-biorocobenzeneug/kgNDND302-biorocobenzeneug/kgNDND302-biorocobenzeneug/kgNDND302-biorocobenzeneug/kgNDND <td>1.2 Dibromosthano (EDR)</td> <td>ug/kg</td> <td></td> <td></td> <td></td> <td>30</td> <td></td>	1.2 Dibromosthano (EDR)	ug/kg				30	
La-Union uberitationug/kgNDND301,2-Dichloropropaneug/kgNDND301,3.5-Timethylbenzeneug/kgNDND301,3.5-Timethylbenzeneug/kgNDND301,3-Dichlorobenzeneug/kgNDND301,3-Dichlorobenzeneug/kgNDND301,4-Dichlorobenzeneug/kgNDND302-Dichloropropaneug/kgNDND302-Dichlorobenzeneug/kgNDND302-Dichloropropaneug/kgNDND302-Dichloropropaneug/kgNDND302-Dichloropropaneug/kgNDND302-Dichloropropaneug/kgNDND302-Dichloropropaneug/kgNDND302-Dichloropropaneug/kgNDND302-Dichloropropaneug/kgNDND302-Dichloropropaneug/kgNDND302-Dichloropropaneug/kgNDND302-Dichloropropaneug/kgNDND302-Dichloropropaneug/kgNDND30Bromochloromethaneug/kgNDND30Bromochloromethaneug/kgNDND30Bromochloromethaneug/kgNDND30Bromochloromethaneug/kgNDND30 <trr<tr>Bromochloromethaneug/kg<td>1.2 Dichlorobonzonc</td><td>ug/kg</td><td></td><td></td><td></td><td>30</td><td></td></trr<tr>	1.2 Dichlorobonzonc	ug/kg				30	
La-Union vention venti		ug/kg				30	
I,2-DichlorophypatieUg/kgNDND301,3-Dichlorobenzeneug/kgNDND301,3-Dichlorobenzeneug/kgNDND301,3-Dichlorobenzeneug/kgNDND301,3-Dichloropropaneug/kgNDND302,2-Dichloropropaneug/kgNDND302,2-Dichloropropaneug/kgNDND302-Butanone (MEK)ug/kgNDND302-Hexanoneug/kgNDND302-Hotanone (MIBK)ug/kgNDND302-Hexanoneug/kgNDND302-Hexanoneug/kgNDND302-Hexanoneug/kgNDND302-Hexanoneug/kgNDND302-Hexanoneug/kgNDND302-Hexanoneug/kgNDND302-Hexanoneug/kgNDND303-Hexeneug/kgNDND303-Hexeneug/kgNDND303-Dichloromethaneug/kgNDND303-Dichloromethaneug/kgNDND303-Dichloromethaneug/kgNDND303-Dichloroformug/kgNDND303-Dichloroformug/kgNDND302-Dichloroformug/kgNDND302-Dichloroforpeneug/kgND <t< td=""><td></td><td>ug/kg</td><td></td><td></td><td></td><td>30</td><td></td></t<>		ug/kg				30	
1,3,3-finitedryteentarieug/kgNDND301,3-bichlorobenzeneug/kgNDND301,3-bichlorobenzeneug/kgNDND302,2-bichloropropaneug/kgNDND302,2-bichlorobenzeneug/kgNDND302,2-bichloropropaneug/kgNDND302,2-bichlorobroeneug/kgNDND302-bitanone (MEK)ug/kgNDND302-thexanoneug/kgNDND304-Methyl-2-pentanone (MIBK)ug/kgNDND304-Methyl-2-pentanone (MIBK)ug/kgNDND30Benzeneug/kgNDND30Bromobenzeneug/kgNDND30Bromothoromethaneug/kgNDND30Bromothoromethaneug/kgNDND30Bromothaneug/kgNDND30Bromothaneug/kgNDND30Chlorothaneug/kgNDND30Bromothaneug/kgNDND30Chlorothaneug/kgNDND30Chlorothaneug/kgNDND30Chlorothaneug/kgNDND30Chlorothaneug/kgNDND30Chlorothaneug/kgNDND30Chlorothaneug/kgNDND30Chlorothaneug/kg </td <td>1,2-Dichloropropane</td> <td>ug/kg</td> <td><b>ט</b>או סוא</td> <td></td> <td></td> <td>30</td> <td></td>	1,2-Dichloropropane	ug/kg	<b>ט</b> או סוא			30	
1,Dichloroberizeneug/kgNDNDND301,4-Dichloropropaneug/kgNDNDND302,-Dichloropropaneug/kgNDNDND302,-Dichloropropaneug/kgNDND302,-Dichloropropaneug/kgNDND302-Butanone (MEK)ug/kgNDND302-Hexanoneug/kgNDND302-Hexanoneug/kgNDND302-Hexanoneug/kgNDND304-Chiorotolueneug/kgNDND304-Methyl-2-pentanone (MIBK)ug/kgNDND30Benzeneug/kgNDND30Bromochioromethaneug/kgNDND30Bromochioromethaneug/kgNDND30Bromochioromethaneug/kgNDND30Bromodichloromethaneug/kgNDND30Bromochioromethaneug/kgNDND30Chlorobenzeneug/kgNDND30Chlorobenzeneug/kgNDND30Chlorobenzeneug/kgNDND30Chlorobenzeneug/kgNDND30Chlorobenzeneug/kgNDND30Chlorobenzeneug/kgNDND30Chlorobenzeneug/kgNDND30Chlorobenzeneug/kgNDND30<	1,3,5-Trimethylbenzene	ug/kg		ND		30	
1,4-DichloroberzeneUg/kgNDND301,4-Dichloroberzeneug/kgNDND302,2-Dichloropropaneug/kgNDND302-Butanone (MEK)ug/kgNDND302-Chlorotolueneug/kgNDND302-Hexanoneug/kgNDND304-Chlorotolueneug/kgNDND304-Chlorotolueneug/kgNDND304-Methyl-2-pentanone (MIBK)ug/kgNDND30Benzeneug/kgNDND30Benzeneug/kgNDND30Bromobenzeneug/kgNDND30Bromothloromethaneug/kgNDND30Bromothloromethaneug/kgNDND30Bromothloromethaneug/kgNDND30Bromotherug/kgNDND30Bromotherug/kgNDND30Bromothaneug/kgNDND30Bromotherug/kgNDND30Bromotherug/kgNDND30Bromotherug/kgNDND30Bromotherug/kgNDND30Bromotherug/kgNDND30Bromotherug/kgNDND30Chlorothaneug/kgNDND30Chlorothaneug/kgNDND30D	1,3-Dichlorobenzene	ug/kg		ND		30	
1,4-Dichoroberizenteug/kgNDND302,2-Dichloropropaneug/kgNDND302,2-Dichloropropaneug/kgNDND302-Elutanone (MEK)ug/kgNDND302-Hexanoneug/kgNDND304-Chlorotolueneug/kgNDND304-Chlorotolueneug/kgNDND304-Chlorotolueneug/kgNDND304-Methyl-2-pentanone (MIBK)ug/kgNDND30Acetoneug/kgNDND30Bromochloromethaneug/kgNDND30Bromochloromethaneug/kgNDND30Bromodichloromethaneug/kgNDND30Bromochloromethaneug/kgNDND30Bromodichloromethaneug/kgNDND30Bromodichloromethaneug/kgNDND30Bromodichloromethaneug/kgNDND30Chlorobenzeneug/kgNDND30Chlorobenzeneug/kgNDND30Chlorobenzeneug/kgNDND30Chlorobenzeneug/kgNDND30Chlorobenzeneug/kgNDND30Chlorobenzeneug/kgNDND30Chlorobenzeneug/kgNDND30Chlorobenzeneug/kgNDND30Dib	1,3-Dichloropropane	ug/kg	ND	ND		30	
2,2-Dichoropropaneug/kgNDND302-Butanone (MEK)ug/kgNDND302-Chlorotolueneug/kgNDND302-Hexanoneug/kgNDND304-Chlorotolueneug/kgNDND304-Adhorotolueneug/kgNDND304-Adhorotolueneug/kgNDND304-Adhorotolueneug/kgNDND30Acetoneug/kgNDND30Benzeneug/kgNDND30Bromobenzeneug/kgNDND30Bromochiloromethaneug/kgNDND30Bromodichloromethaneug/kgNDND30Bromodichloromethaneug/kgNDND30Bromodichloromethaneug/kgNDND30Bromodichloromethaneug/kgNDND30Chlorobenzeneug/kgNDND30Chlorobenzeneug/kgNDND30Chlorobertaneug/kgNDND30Chlorobertaneug/kgNDND30Chlorobertaneug/kgNDND30Chlorobertaneug/kgNDND30Chlorobertaneug/kgNDND30Chlorobertaneug/kgNDND30Chlorobertaneug/kgNDND30Chlorobertaneug/kgND<		ug/kg		ND		30	
2-Butanone (MEK)Ug/kgNDND302-Chlorotolueneug/kgNDND302-Chlorotolueneug/kgNDND304-Chlorotolueneug/kgNDND304-Chlorotolueneug/kgNDND304-Methyl-2-pentanone (MIBK)ug/kgNDND30Acetoneug/kgNDND30Benzeneug/kgNDND30Bromobenzeneug/kgNDND30Bromochloromethaneug/kgNDND30Bromothloromethaneug/kgNDND30Bromothhaneug/kgNDND30Bromothhaneug/kgNDND30Bromothhaneug/kgNDND30Chlorobenzeneug/kgNDND30Chlorobenzeneug/kgNDND30Chlorobenzeneug/kgNDND30Chlorobenzeneug/kgNDND30Chloroformug/kgNDND30Chloroformug/kgNDND30Chlorobenzeneug/kgNDND30Chloroformug/kgNDND30Chloroformug/kgNDND30Chloroformug/kgNDND30Dibromothaneug/kgNDND30Dibromothaneug/kgNDND30Dib	2,2-Dichloropropane	ug/ĸg	ND	ND		30	
2-Chiorotolueneug/kgNDND302-Hexanoneug/kgNDNDND304-Chiorotolueneug/kgNDND304-Methyl-2-pentanone (MIBK)ug/kgNDND30Acetoneug/kgNDND30Benzeneug/kgNDND30Bromobenzeneug/kgNDND30Bromochloromethaneug/kgNDND30Bromodichloromethaneug/kgNDND30Bromodichloromethaneug/kgNDND30Bromodichloromethaneug/kgNDND30Bromotoformug/kgNDND30Bromotoformug/kgNDND30Bromotoformug/kgNDND30Bromotoformug/kgNDND30Bromotoformug/kgNDND30Chioroethaneug/kgNDND30Chioroethaneug/kgNDND30Chioroethaneug/kgNDND30Chioroethaneug/kgNDND30Dibromochloromethaneug/kgNDND30Dibromochloromethaneug/kgNDND30Dibromochloromethaneug/kgNDND30Dibromochloromethaneug/kgNDND30Dibromochloromethaneug/kgNDND30Dibromochloromethane	2-Butanone (MEK)	ug/kg	ND	ND		30	
2-Hexanoneug/kgNDND304-Chlorotolueneug/kgNDNDND304-Methyl-2-pentanone (MIBK)ug/kgNDNDND30Acetoneug/kgNDNDND30Benzeneug/kgNDND30Bromobenzeneug/kgNDND30Bromothoromethaneug/kgNDND30Bromodichloromethaneug/kgNDND30Bromothoromethaneug/kgNDND30Bromothoromethaneug/kgNDND30Bromotichloromethaneug/kgNDND30Bromotichloromethaneug/kgNDND30Bromotichloromethaneug/kgNDND30Bromotichloromethaneug/kgNDND30Bromotichloromethaneug/kgNDND30Chloroformug/kgNDND30Chloroformug/kgNDND30Chloroformug/kgNDND30Chloroformug/kgNDND30Chloroformug/kgNDND30Dibromochloromethaneug/kgNDND30Dibromochloromethaneug/kgNDND30Dibromochloromethaneug/kgNDND30Dibromochloromethaneug/kgNDND30Dibromochloromethaneug/kgNDND </td <td>2-Chlorotoluene</td> <td>ug/kg</td> <td>ND</td> <td>ND</td> <td></td> <td>30</td> <td></td>	2-Chlorotoluene	ug/kg	ND	ND		30	
4-Chioroblueneug/kgNDND304-Methyl-2-pentanone (MIBK)ug/kgNDNDND30Acetoneug/kgNDNDND30Benzeneug/kgNDND30Bromobenzeneug/kgNDND30Bromochloromethaneug/kgNDND30Bromodichloromethaneug/kgNDND30Bromodichloromethaneug/kgNDND30Bromodichloromethaneug/kgNDND30Bromothaneug/kgNDND30Bromothaneug/kgNDND30Bromothaneug/kgNDND30Bromothaneug/kgNDND30Chlorobenzeneug/kgNDND30Chlorobenzeneug/kgNDND30Chlorothaneug/kgNDND30Chlorothaneug/kgNDND30Chlorothaneug/kgNDND30Chlorothaneug/kgNDND30Chlorothoromethaneug/kgNDND30Dibromochloromethaneug/kgNDND30Dibromochloromethaneug/kgNDND30Dibromochloromethaneug/kgNDND30Dibromochloromethaneug/kgNDND30Dibromochloromethaneug/kgNDND30Dibromochl	2-Hexanone	ug/kg	ND	ND		30	
4-Methyl-2-pentanone (MIBK)     ug/kg     ND     ND     ND     30       Acetone     ug/kg     ND     ND     ND     30       Benzene     ug/kg     ND     ND     30       Bromobenzene     ug/kg     ND     ND     30       Bromobenzene     ug/kg     ND     ND     30       Bromodichloromethane     ug/kg     ND     ND     30       Bromodichloromethane     ug/kg     ND     ND     30       Bromotichloromethane     ug/kg     ND     ND     30       Chlorobenzene     ug/kg     ND     ND     30       Chlorobenzene     ug/kg     ND     ND     30       Chlorobenzene     ug/kg     ND     ND     30       Chloroform     ug/kg     ND     ND	4-Chlorotoluene	ug/kg	ND	ND		30	
Acetoneug/kgNDND30Benzeneug/kgNDND30Bromobenzeneug/kgNDND30Bromochloromethaneug/kgNDND30Bromochloromethaneug/kgNDND30Bromodichloromethaneug/kgNDND30Bromodichloromethaneug/kgNDND30Bromoformug/kgNDND30Bromoformug/kgNDND30Carbon tetrachlorideug/kgNDND30Chlorobenzeneug/kgNDND30Chloroethaneug/kgNDND30Chloroethaneug/kgNDND30Chloroethaneug/kgNDND30Chloroethaneug/kgNDND30Chloroethaneug/kgNDND30Chloroetheneug/kgNDND30Chloroetheneug/kgNDND30Cisi-1,2-Dichloroetheneug/kgNDND30Dibromochloromethaneug/kgNDND30Dibromomethaneug/kgNDND30Dibromomethaneug/kgNDND30Dibromomethaneug/kgNDND30Dibromomethaneug/kgNDND30Dibromomethaneug/kgNDND30Dibromomethaneug/kgNDND	4-Methyl-2-pentanone (MIBK)	ug/kg	ND	ND		30	
Benzeneug/kgNDNDND30Bromobenzeneug/kgNDNDND30Bromochloromethaneug/kgNDND30Bromodichloromethaneug/kgNDND30Bromodichloromethaneug/kgNDND30Bromoformug/kgNDND30Bromoformug/kgNDND30Bromoformug/kgNDND30Carbon tetrachlorideug/kgNDND30Chlorobenzeneug/kgNDND30Chloroethaneug/kgNDND30Chloroethaneug/kgNDND30Chloroethaneug/kgNDND30Chloroethaneug/kgNDND30Chloroethaneug/kgNDND30Chloroethaneug/kgNDND30Chloroetheneug/kgNDND30Chloroetheneug/kgNDND30Dibromochloromethaneug/kgNDND30Dibromomethaneug/kgNDND30Dibromothaneug/kgNDND30Dibromothaneug/kgNDND30Dibromothaneug/kgNDND30Dibromothaneug/kgNDND30Dibromothaneug/kgNDND30Dibromothaneug/kgNDND <td< td=""><td>Acetone</td><td>ug/kg</td><td>ND</td><td>ND</td><td></td><td>30</td><td></td></td<>	Acetone	ug/kg	ND	ND		30	
Bromobenzeneug/kgNDND30Bromochloromethaneug/kgNDND30Bromodichloromethaneug/kgNDND30Bromodichloromethaneug/kgNDND30Bromoformug/kgNDND30Bromothaneug/kgNDND30Carbon tetrachlorideug/kgNDND30Chlorobenzeneug/kgNDND30Chlorobenzeneug/kgNDND30Chloroformug/kgNDND30Chloroethaneug/kgNDND30Chloroethaneug/kgNDND30Chloroethaneug/kgNDND30Chloromethaneug/kgNDND30Chloroethaneug/kgNDND30Chloroethaneug/kgNDND30Chloroetheneug/kgNDND30Chloroethaneug/kgNDND30Chloroethaneug/kgNDND30Dibromochloromethaneug/kgNDND30Dibromothaneug/kgNDND30Dibromothaneug/kgNDND30Dibromothaneug/kgNDND30Dibromothaneug/kgNDND30Dibromothaneug/kgNDND30Dibromothaneug/kgNDND30 <t< td=""><td>Benzene</td><td>ug/kg</td><td>ND</td><td>ND</td><td></td><td>30</td><td></td></t<>	Benzene	ug/kg	ND	ND		30	
Bromochloromethane     ug/kg     ND     ND     30       Bromodichloromethane     ug/kg     ND     ND     30       Bromoform     ug/kg     ND     ND     30       Bromomethane     ug/kg     ND     ND     30       Bromomethane     ug/kg     ND     ND     30       Carbon tetrachloride     ug/kg     ND     ND     30       Chlorobenzene     ug/kg     ND     ND     30       Chlorothane     ug/kg     ND     ND     30       Chlorothene     ug/kg     ND     ND     30       Dibromochloromethane     ug/kg     ND     ND     30       Dibromomethane	Bromobenzene	ug/kg	ND	ND		30	1
Bromodichloromethaneug/kgNDND30Bromoformug/kgNDND30Bromomethaneug/kgNDND30Carbon tetrachlorideug/kgNDND30Chlorobenzeneug/kgNDND30Chlorothaneug/kgNDND30Chloroformug/kgNDND30Chloroformug/kgNDND30Chlorothaneug/kgNDND30Chloroformug/kgNDND30Chlorothaneug/kgNDND30Chlorothaneug/kgNDND30Chloromethaneug/kgNDND30Chloromethaneug/kgNDND30Chloromethaneug/kgNDND30Dibromochloromethaneug/kgNDND30Dibromochloromethaneug/kgNDND30Dibromothaneug/kgNDND30Dibromothaneug/kgNDND30Dibromothaneug/kgNDND30Dibromothaneug/kgNDND30Dibromothaneug/kgNDND30Dibromothaneug/kgNDND30Dibromothaneug/kgNDND30Dibromothaneug/kgNDND30Dibromothaneug/kgNDND30Dibro	Bromochloromethane	ug/kg	ND	ND		30	1
Bromoform     ug/kg     ND     ND     30       Bromomethane     ug/kg     ND     ND     30 IH,IK,v1       Carbon tetrachloride     ug/kg     ND     ND     30       Chlorobenzene     ug/kg     ND     ND     30       Chlorobenzene     ug/kg     ND     ND     30       Chloroethane     ug/kg     ND     ND     30       Chloroform     ug/kg     ND     ND     30       Chloromethane     ug/kg     ND     ND     30       Chloromethane     ug/kg     ND     ND     30       Chloromethane     ug/kg     ND     ND     30       Cis-1,2-Dichloroethene     ug/kg     ND     ND     30       Dibromochloromethane     ug/kg     ND     ND     30       Dibromothrane     ug/kg     ND     ND     30       Dibromothrane     ug/kg     ND     ND     30       Dibromothrane     ug/kg     ND     ND     30       Dibio	Bromodichloromethane	ug/kg	ND	ND		30	1
Bromomethaneug/kgNDND30 IH,IK,v1Carbon tetrachlorideug/kgNDND30Chlorobenzeneug/kgNDND30Chloroethaneug/kgNDND30Chlorooformug/kgNDND30Chloromethaneug/kgNDND30Chloromethaneug/kgNDND30Cis-1,2-Dichloroetheneug/kgNDND30cis-1,3-Dichloropropeneug/kgNDND30Dibromochloromethaneug/kgNDND30Dibromochloromethaneug/kgNDND30Dibromochloromethaneug/kgNDND30Dibromochloromethaneug/kgNDND30Dibromorthaneug/kgNDND30Disopropyl etherug/kgNDND30Ethylbenzeneug/kgNDND30Hexachloro-1,3-butadieneug/kgNDND30Isopropylbenzene (Cumene)ug/kgNDND30	Bromoform	ug/kg	ND	ND		30	1
Carbon tetrachlorideug/kgNDND30Chlorobenzeneug/kgNDND30Chloroethaneug/kgNDND30Chloroformug/kgNDND30Chloromethaneug/kgNDND30Chloromethaneug/kgNDND30Cis-1,2-Dichloroetheneug/kgNDND30Dibromochloromethaneug/kgNDND30Dibromochloromethaneug/kgNDND30Dibromochloromethaneug/kgNDND30Dibromochloromethaneug/kgNDND30Dibromothlaneug/kgNDND30Dibromothlaneug/kgNDND30Dibromothlaneug/kgNDND30Disopropyl etherug/kgNDND30Ethylbenzeneug/kgNDND30Hexachloro-1,3-butadieneug/kgNDND30Isopropylbenzene (Cumene)ug/kgNDND30	Bromomethane	ug/kg	ND	ND		30	IH,IK,v1
Chlorobenzeneug/kgNDND30Chloroethaneug/kgNDND30Chloroformug/kgNDND30Chloromethaneug/kgNDND30Chloropteneneug/kgNDND30cis-1,2-Dichloroetheneug/kgNDND30Dibromochloromethaneug/kgNDND30Dibromochloromethaneug/kgNDND30Dibromochloromethaneug/kgNDND30Dibromochloromethaneug/kgNDND30Dibromothaneug/kgNDND30Dibromothaneug/kgNDND30Dibromothaneug/kgNDND30Disopropyl etherug/kgNDND30Ethylbenzeneug/kgNDND30Hexachloro-1,3-butadieneug/kgNDND30Isopropylbenzene (Cumene)ug/kgNDND30	Carbon tetrachloride	ug/kg	ND	ND		30	1
Chloroethaneug/kgNDND30Chloroformug/kgNDND30Chloromethaneug/kgNDND30cis-1,2-Dichloroetheneug/kgNDND30cis-1,3-Dichloropropeneug/kgNDND30Dibromochloromethaneug/kgNDND30Dibromochloromethaneug/kgNDND30Dibromochloromethaneug/kgNDND30Dibromothaneug/kgNDND30Dibromothaneug/kgNDND30Disopropyl etherug/kgNDND30Ethylbenzeneug/kgNDND30Hexachloro-1,3-butadieneug/kgNDND30Isopropylbenzene (Cumene)ug/kgNDND30	Chlorobenzene	ug/kg	ND	ND		30	1
Chloroformug/kgNDND30Chloromethaneug/kgNDND30cis-1,2-Dichloroetheneug/kgNDND30cis-1,3-Dichloropropeneug/kgNDND30Dibromochloromethaneug/kgNDND30Dibromochloromethaneug/kgNDND30Dibromothaneug/kgNDND30Dibromothaneug/kgNDND30Disopropyl etherug/kgNDND30Ethylbenzeneug/kgNDND30Hexachloro-1,3-butadieneug/kgNDND30Isopropylbenzene (Cumene)ug/kgNDND30	Chloroethane	ug/kg	ND	ND		30	1
Chloromethaneug/kgNDND30cis-1,2-Dichloroetheneug/kgNDND30cis-1,3-Dichloropropeneug/kgNDND30Dibromochloromethaneug/kgNDND30Dibromoethaneug/kgNDND30Dichlorodifluoromethaneug/kgNDND30Dichlorodifluoromethaneug/kgNDND30Disopropyl etherug/kgNDND30Ethylbenzeneug/kgNDND30Hexachloro-1,3-butadieneug/kgNDND30Isopropylbenzene (Cumene)ug/kgNDND30	Chloroform	ug/kg	ND	ND		30	I
cis-1,2-Dichloroethene     ug/kg     ND     ND     30       cis-1,3-Dichloropropene     ug/kg     ND     ND     30       Dibromochloromethane     ug/kg     ND     ND     30       Dibromochloromethane     ug/kg     ND     ND     30       Dibromomethane     ug/kg     ND     ND     30       Dichlorodifluoromethane     ug/kg     ND     ND     30       Disopropyl ether     ug/kg     ND     ND     30       Ethylbenzene     ug/kg     ND     ND     30       Hexachloro-1,3-butadiene     ug/kg     ND     ND     30       Isopropylbenzene (Cumene)     ug/kg     ND     ND     30	Chloromethane	ug/kg	ND	ND		30	I
cis-1,3-Dichloropropene     ug/kg     ND     ND     30       Dibromochloromethane     ug/kg     ND     ND     30       Dibromomethane     ug/kg     ND     ND     30       Dibromomethane     ug/kg     ND     ND     30       Dichlorodifluoromethane     ug/kg     ND     ND     30       Disopropyl ether     ug/kg     ND     ND     30       Ethylbenzene     ug/kg     ND     ND     30       Hexachloro-1,3-butadiene     ug/kg     ND     ND     30       Isopropylbenzene (Cumene)     ug/kg     ND     ND     30	cis-1,2-Dichloroethene	ug/kg	ND	ND		30	1
Dibromochloromethane     ug/kg     ND     ND     30       Dibromomethane     ug/kg     ND     ND     30       Dichlorodifluoromethane     ug/kg     ND     ND     30       Dichlorodifluoromethane     ug/kg     ND     ND     30       Disopropyl ether     ug/kg     ND     ND     30       Ethylbenzene     ug/kg     ND     ND     30       Hexachloro-1,3-butadiene     ug/kg     ND     ND     30       Isopropylbenzene (Cumene)     ug/kg     ND     ND     30	cis-1,3-Dichloropropene	ug/kg	ND	ND		30	1
Dibromomethane     ug/kg     ND     ND     30       Dichlorodifluoromethane     ug/kg     ND     ND     30       Disopropyl ether     ug/kg     ND     ND     30       Ethylbenzene     ug/kg     ND     ND     30       Hexachloro-1,3-butadiene     ug/kg     ND     ND     30       Isopropylbenzene (Cumene)     ug/kg     ND     ND     30	Dibromochloromethane	ug/kg	ND	ND		30	1
Dichlorodifluoromethaneug/kgNDND30Diisopropyl etherug/kgNDND30Ethylbenzeneug/kgNDND30Hexachloro-1,3-butadieneug/kgNDND30Isopropylbenzene (Cumene)ug/kgNDND30	Dibromomethane	ug/kg	ND	ND		30	1
Diisopropyl etherug/kgNDND30Ethylbenzeneug/kgNDND30Hexachloro-1,3-butadieneug/kgNDND30Isopropylbenzene (Cumene)ug/kgNDND30	Dichlorodifluoromethane	ug/kg	ND	ND		30	1
Ethylbenzeneug/kgNDND30Hexachloro-1,3-butadieneug/kgNDND30 IKIsopropylbenzene (Cumene)ug/kgNDND30	Diisopropyl ether	ug/kg	ND	ND		30	I
Hexachloro-1,3-butadieneug/kgNDND30 IKIsopropylbenzene (Cumene)ug/kgNDND30	Ethylbenzene	ug/kg	ND	ND		30	1
Isopropylbenzene (Cumene) ug/kg ND ND 30	Hexachloro-1,3-butadiene	ug/kg	ND	ND		30	IK
	Isopropylbenzene (Cumene)	ug/kg	ND	ND		30	1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



#### Project: BRAMLETTE J21030497

Pace Project No.: 92528011

#### SAMPLE DUPLICATE: 3200881

		92528011007	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
m&p-Xylene	ug/kg		8.5J			30
Methyl-tert-butyl ether	ug/kg	ND	ND			30
Methylene Chloride	ug/kg	ND	ND			30
n-Butylbenzene	ug/kg	ND	ND			30
n-Propylbenzene	ug/kg	ND	ND			30
Naphthalene	ug/kg	7.8	7.7	1		30
o-Xylene	ug/kg	ND	ND			30
p-Isopropyltoluene	ug/kg	ND	ND			30
sec-Butylbenzene	ug/kg	ND	ND			30
Styrene	ug/kg	ND	ND			30
tert-Butylbenzene	ug/kg	ND	ND			30 v2
Tetrachloroethene	ug/kg	ND	ND			30
Toluene	ug/kg	9.7	8.8	9		30
trans-1,2-Dichloroethene	ug/kg	ND	ND			30
trans-1,3-Dichloropropene	ug/kg	ND	ND			30
Trichloroethene	ug/kg	ND	ND			30
Trichlorofluoromethane	ug/kg	ND	ND			30
Vinyl acetate	ug/kg	ND	ND			30
Vinyl chloride	ug/kg	ND	ND			30
Xylene (Total)	ug/kg	10.5J	ND			30
1,2-Dichloroethane-d4 (S)	%	108	108			
4-Bromofluorobenzene (S)	%	91	93			
Toluene-d8 (S)	%	102	102			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



Project.	BRAMIETTE	121020/07
		321030437

Pace Project No.:	92528011
-------------------	----------

QC Batch: 608883		Analysis Meth	nod: E	PA 8260D			
QC Batch Method: EPA 5035A/5	030B	Analysis Desc	cription: 8	3260D 5035A 5030	B SC		
		Laboratory:	F	Pace Analytical Ser	vices - Charlotte		
Associated Lab Samples: 02528	011017 02528011018	02528011010 02	528011020		video onanotto		
Associated Lab Samples. 92520	511017, 52520011010	, 92320011019, 92	520011020				
METHOD BLANK: 3206984		Matrix:	Solid				
Associated Lab Samples: 92528	011017, 92528011018	, 92528011019, 92	528011020				
		Blank	Reporting				
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers	
1,1,1,2-Tetrachloroethane	ug/kg		5.0	0 1.9	03/24/21 11:29		
1,1,1-Trichloroethane	ug/kg	ND	5.0	2.6	03/24/21 11:29		
1,1,2,2-Tetrachloroethane	ug/kg	ND	5.0	) 1.3	03/24/21 11:29		
1,1,2-Trichloroethane	ug/kg	ND	5.0	) 1.7	03/24/21 11:29		
1,1-Dichloroethane	ug/kg	ND	5.0	) 2.1	03/24/21 11:29		
1,1-Dichloroethene	ug/kg	ND	5.0	) 2.1	03/24/21 11:29		
1,1-Dichloropropene	ug/kg	ND	5.0	) 2.4	03/24/21 11:29		
1,2,3-Trichlorobenzene	ug/kg	ND	5.0	) 4.0	03/24/21 11:29		
1,2,3-Trichloropropane	ug/kg	ND	5.0	) 2.5	03/24/21 11:29		
1,2,4-Trichlorobenzene	ug/kg	ND	5.0	) 4.2	03/24/21 11:29		
1,2,4-Trimethylbenzene	ug/kg	ND	5.0	) 1.4	03/24/21 11:29		
1.2-Dibromo-3-chloropropane	ua/ka	ND	5.0	) 1.9	03/24/21 11:29		
1.2-Dibromoethane (EDB)	ua/ka	ND	5.0	) 2.2	03/24/21 11:29		
1.2-Dichlorobenzene	ua/ka	ND	5.0	) 1.8	03/24/21 11:29		
1.2-Dichloroethane	ua/ka	ND	5.0	) 3.3	03/24/21 11:29		
1.2-Dichloropropane	ua/ka	ND	5.0	) 1.5	03/24/21 11:29		
1.3.5-Trimethylbenzene	ua/ka	ND	5.0	) 1.7	03/24/21 11:29		
1.3-Dichlorobenzene	ua/ka	ND	5.0	) 1.6	03/24/21 11:29		
1.3-Dichloropropane	ua/ka	ND	5.0	) 1.6	03/24/21 11:29		
1,4-Dichlorobenzene	ug/kg	ND	5.0	) 1.3	03/24/21 11:29		
2.2-Dichloropropane	ua/ka	ND	5.0	) 1.6	03/24/21 11:29		
2-Butanone (MEK)	ua/ka	ND	100	) 24.0	03/24/21 11:29		
2-Chlorotoluene	ua/ka	ND	5.0	) 1.8	03/24/21 11:29		
2-Hexanone	ua/ka	ND	50.0	) 4.8	03/24/21 11:29		
4-Chlorotoluene	ua/ka	ND	5.0	0.88	03/24/21 11:29		
4-Methyl-2-pentanone (MIBK)	ua/ka	ND	50.0	) 4.8	03/24/21 11:29		
Acetone	ua/ka	ND	100	) 32.1	03/24/21 11:29		
Benzene	ua/ka	ND	5.0	) 2.0	03/24/21 11:29		
Bromobenzene	ua/ka	ND	5.0	) 1.6	03/24/21 11:29		
Bromochloromethane	ua/ka	ND	5.0	) 1.5	03/24/21 11:29		
Bromodichloromethane	ua/ka	ND	5.0	) 1.9	03/24/21 11:29		
Bromoform	ua/ka	ND	5.0	) 1.8	03/24/21 11:29		
Bromomethane	ua/ka	ND	10.0	) 7.9	03/24/21 11:29		
Carbon tetrachloride	ua/ka	ND	5.0	) 1.9	03/24/21 11:29		
Chlorobenzene	ua/ka	ND	5.0	0.96	03/24/21 11:29		
Chloroethane	ua/ka	ND	10.0	) 3.9	03/24/21 11:29		
Chloroform	ua/ka	ND	5 (	) 30	03/24/21 11:29		
Chloromethane	ua/ka	ND	10 (	) 42	03/24/21 11 29		
cis-1.2-Dichloroethene	ua/ka	ND	5 (	) 17	03/24/21 11 29		
cis-1,3-Dichloropropene	ug/kg	ND	5.0	) 1.4	03/24/21 11:29		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



#### Project: BRAMLETTE J21030497

Pace Project No.: 92528011

METHOD BLANK: 3206984		Matrix:	Solid			
Associated Lab Samples: 925280	011017, 92528011018	, 92528011019, 92	528011020			
		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Dibromochloromethane	ug/kg	ND	5.0	2.8	03/24/21 11:29	
Dibromomethane	ug/kg	ND	5.0	1.1	03/24/21 11:29	
Dichlorodifluoromethane	ug/kg	ND	10.0	2.2	03/24/21 11:29	
Diisopropyl ether	ug/kg	ND	5.0	1.4	03/24/21 11:29	
Ethylbenzene	ug/kg	ND	5.0	2.3	03/24/21 11:29	
Hexachloro-1,3-butadiene	ug/kg	ND	10.0	8.2	03/24/21 11:29	
Isopropylbenzene (Cumene)	ug/kg	ND	5.0	1.7	03/24/21 11:29	
m&p-Xylene	ug/kg	ND	10.0	3.4	03/24/21 11:29	
Methyl-tert-butyl ether	ug/kg	ND	5.0	1.9	03/24/21 11:29	
Methylene Chloride	ug/kg	ND	20.0	13.7	03/24/21 11:29	
n-Butylbenzene	ug/kg	ND	5.0	2.4	03/24/21 11:29	
n-Propylbenzene	ug/kg	ND	5.0	1.8	03/24/21 11:29	
Naphthalene	ug/kg	ND	5.0	2.6	03/24/21 11:29	
o-Xylene	ug/kg	ND	5.0	2.2	03/24/21 11:29	
p-Isopropyltoluene	ug/kg	ND	5.0	2.5	03/24/21 11:29	
sec-Butylbenzene	ug/kg	ND	5.0	2.2	03/24/21 11:29	
Styrene	ug/kg	ND	5.0	1.3	03/24/21 11:29	
tert-Butylbenzene	ug/kg	ND	5.0	1.8	03/24/21 11:29	
Tetrachloroethene	ug/kg	ND	5.0	1.6	03/24/21 11:29	
Toluene	ug/kg	ND	5.0	1.4	03/24/21 11:29	
trans-1,2-Dichloroethene	ug/kg	ND	5.0	1.8	03/24/21 11:29	
trans-1,3-Dichloropropene	ug/kg	ND	5.0	1.7	03/24/21 11:29	
Trichloroethene	ug/kg	ND	5.0	1.3	03/24/21 11:29	
Trichlorofluoromethane	ug/kg	ND	5.0	2.8	03/24/21 11:29	
Vinyl acetate	ug/kg	ND	50.0	3.6	03/24/21 11:29	
Vinyl chloride	ug/kg	ND	10.0	2.5	03/24/21 11:29	
Xylene (Total)	ug/kg	ND	10.0	2.8	03/24/21 11:29	
1,2-Dichloroethane-d4 (S)	%	94	70-130		03/24/21 11:29	
4-Bromofluorobenzene (S)	%	97	69-134		03/24/21 11:29	
Toluene-d8 (S)	%	98	70-130		03/24/21 11:29	

#### LABORATORY CONTROL SAMPLE: 3206985

Deremeter	Linito	Spike	LCS Boowlt	LCS	% Rec	Qualifiara
Parameter	Units		Result	% Rec		Quaimers
1,1,1,2-Tetrachloroethane	ug/kg	1250	1220	98	70-130	
1,1,1-Trichloroethane	ug/kg	1250	1100	88	70-130	
1,1,2,2-Tetrachloroethane	ug/kg	1250	1150	92	70-130	
1,1,2-Trichloroethane	ug/kg	1250	1200	96	70-130	
1,1-Dichloroethane	ug/kg	1250	1070	85	70-130	
1,1-Dichloroethene	ug/kg	1250	1100	88	70-130	
1,1-Dichloropropene	ug/kg	1250	1100	88	70-130	
1,2,3-Trichlorobenzene	ug/kg	1250	1240	100	65-130	
1,2,3-Trichloropropane	ug/kg	1250	1140	91	70-130	
1,2,4-Trichlorobenzene	ug/kg	1250	1220	98	68-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



#### Project: BRAMLETTE J21030497

Pace Project No.: 92528011

LABORATORY CONTROL SAMPLE:	3206985					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2,4-Trimethylbenzene	ug/kg	1250	1200	96	70-130	
1,2-Dibromo-3-chloropropane	ug/kg	1250	1260	100	70-130	
1,2-Dibromoethane (EDB)	ug/kg	1250	1230	98	70-130	
1,2-Dichlorobenzene	ug/kg	1250	1210	97	70-130	
1,2-Dichloroethane	ug/kg	1250	1060	85	63-130	
1,2-Dichloropropane	ug/kg	1250	1160	93	70-130	
1,3,5-Trimethylbenzene	ug/kg	1250	1160	93	70-130	
1,3-Dichlorobenzene	ug/kg	1250	1170	93	70-130	
1,3-Dichloropropane	ug/kg	1250	1200	96	70-130	
1,4-Dichlorobenzene	ug/kg	1250	1210	97	70-130	
2,2-Dichloropropane	ug/kg	1250	1040	83	66-130	
2-Butanone (MEK)	ug/kg	2500	2100	84	70-130	
2-Chlorotoluene	ug/kg	1250	1180	94	70-130	
2-Hexanone	ug/kg	2500	2300	92	70-130	
4-Chlorotoluene	ug/kg	1250	1140	91	70-130	
4-Methyl-2-pentanone (MIBK)	ug/kg	2500	2230	89	70-130	
Acetone	ug/kg	2500	2120	85	69-130	
Benzene	ug/kg	1250	1180	95	70-130	
Bromobenzene	ug/kg	1250	1220	98	70-130	
Bromochloromethane	ug/kg	1250	1190	95	70-130	
Bromodichloromethane	ug/kg	1250	1080	87	69-130	
Bromoform	ug/kg	1250	1280	102	70-130	
Bromomethane	ug/kg	1250	1300	104	52-130	
Carbon tetrachloride	ug/kg	1250	1210	97	70-130	
Chlorobenzene	ug/kg	1250	1190	95	70-130	
Chloroethane	ug/kg	1250	1150	92	65-130	
Chloroform	ug/kg	1250	1020	81	70-130	
Chloromethane	ua/ka	1250	953	76	55-130	
cis-1.2-Dichloroethene	ua/ka	1250	1040	83	70-130	
cis-1,3-Dichloropropene	ug/kg	1250	1170	94	70-130	
Dibromochloromethane	ua/ka	1250	1290	104	70-130	
Dibromomethane	ua/ka	1250	1270	102	70-130	
Dichlorodifluoromethane	ua/ka	1250	1190	95	45-156	
Diisopropyl ether	ua/ka	1250	971	78	70-130	
Ethylbenzene	ug/kg	1250	1130	90	70-130	
Hexachloro-1,3-butadiene	ug/kg	1250	1270	101	66-130	
Isopropylbenzene (Cumene)	ua/ka	1250	1170	94	70-130	
m&p-Xvlene	ua/ka	2500	2340	93	70-130	
Methyl-tert-butyl ether	ua/ka	1250	1040	83	70-130	
Methylene Chloride	ug/kg	1250	1040	83	65-130	
n-Butylbenzene	ua/ka	1250	1150	92	67-130	
n-Propylbenzene	ua/ka	1250	1160	93	70-130	
Naphthalene	ua/ka	1250	1230	98	70-130	
o-Xylene	ua/ka	1250	1180	94	70-130	
p-Isopropyltoluene	ua/ka	1250	1180	94	67-130	
sec-Butvlbenzene	ua/ka	1250	1130	90	69-130	
Styrene	ua/ka	1250	1240	99	70-130	
	3		. = . 5			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



#### Project: BRAMLETTE J21030497

Pace Project No.: 92528011

#### LABORATORY CONTROL SAMPLE: 3206985

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
tert-Butylbenzene	ug/kg	1250	1120	90	67-130	
Tetrachloroethene	ug/kg	1250	1210	97	70-130	
Toluene	ug/kg	1250	1180	94	70-130	
trans-1,2-Dichloroethene	ug/kg	1250	1050	84	70-130	
trans-1,3-Dichloropropene	ug/kg	1250	1170	93	68-130	
Trichloroethene	ug/kg	1250	1210	97	70-130	
Trichlorofluoromethane	ug/kg	1250	1170	94	70-130	
Vinyl acetate	ug/kg	2500	2390	96	70-130	
Vinyl chloride	ug/kg	1250	1080	86	61-130	
Xylene (Total)	ug/kg	3750	3510	94	70-130	
1,2-Dichloroethane-d4 (S)	%			82	70-130	
4-Bromofluorobenzene (S)	%			95	69-134	
Toluene-d8 (S)	%			98	70-130	

MATRIX SPIKE SAMPLE:	3206987						
		92528011018	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	ND	881	1080	122	70-131	
1,1,1-Trichloroethane	ug/kg	ND	881	910	103	65-133	
1,1,2,2-Tetrachloroethane	ug/kg	ND	881	856	97	66-130	
1,1,2-Trichloroethane	ug/kg	ND	881	929	105	66-133	
1,1-Dichloroethane	ug/kg	ND	881	765	87	65-130	
1,1-Dichloroethene	ug/kg	ND	881	988	112	10-158	
1,1-Dichloropropene	ug/kg	ND	881	897	102	68-133	
1,2,3-Trichlorobenzene	ug/kg	ND	881	1030	117	27-138	
1,2,3-Trichloropropane	ug/kg	ND	881	819	93	67-130	
1,2,4-Trichlorobenzene	ug/kg	ND	881	989	112	51-134	
1,2,4-Trimethylbenzene	ug/kg	ND	881	937	106	63-136	
1,2-Dibromo-3-chloropropane	ug/kg	ND	881	879	100	32-130	
1,2-Dibromoethane (EDB)	ug/kg	ND	881	1150	131	70-130	M1
1,2-Dichlorobenzene	ug/kg	ND	881	964	109	69-130	
1,2-Dichloroethane	ug/kg	ND	881	889	101	59-130	
1,2-Dichloropropane	ug/kg	ND	881	952	108	70-130	
1,3,5-Trimethylbenzene	ug/kg	ND	881	948	108	65-137	
1,3-Dichlorobenzene	ug/kg	ND	881	915	104	70-130	
1,3-Dichloropropane	ug/kg	ND	881	938	106	70-130	
1,4-Dichlorobenzene	ug/kg	ND	881	935	106	68-130	
2,2-Dichloropropane	ug/kg	ND	881	800	91	32-130	
2-Butanone (MEK)	ug/kg	ND	1760	1560	88	10-136	
2-Chlorotoluene	ug/kg	ND	881	947	107	69-141	
2-Hexanone	ug/kg	ND	1760	1560	88	10-144	
4-Chlorotoluene	ug/kg	ND	881	895	102	70-132	
4-Methyl-2-pentanone (MIBK)	ug/kg	ND	1760	1640	93	25-143	
Acetone	ug/kg	ND	1760	1310	74	10-130	
Benzene	ug/kg	ND	881	961	109	67-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



#### Project: BRAMLETTE J21030497

Pace Project No.: 92528011

MATRIX SPIKE SAMPLE:	3206987						
		92528011018	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Bromobenzene	ug/kg	ND	881	962	109	70-130	
Bromochloromethane	ug/kg	ND	881	930	106	69-134	
Bromodichloromethane	ug/kg	ND	881	826	94	64-130	
Bromoform	ug/kg	ND	881	837	95	62-130	
Bromomethane	ug/kg	ND	881	1110	126	20-176	
Carbon tetrachloride	ug/kg	ND	881	894	101	65-140	
Chlorobenzene	ug/kg	ND	881	915	104	70-130	
Chloroethane	ug/kg	ND	881	386	44	10-130	
Chloroform	ug/kg	ND	881	778	88	63-130	
Chloromethane	ug/kg	ND	881	876	99	58-130	
cis-1,2-Dichloroethene	ug/kg	ND	881	806	91	66-130	
cis-1,3-Dichloropropene	ug/kg	ND	881	909	103	67-130	
Dibromochloromethane	ug/kg	ND	881	905	103	67-130	
Dibromomethane	ug/kg	ND	881	985	112	63-131	
Dichlorodifluoromethane	ug/kg	ND	881	951	108	44-180	
Diisopropyl ether	ug/kg	ND	881	785	89	63-130	
Ethylbenzene	ug/kg	5.4J	881	897	101	66-130	
Hexachloro-1,3-butadiene	ug/kg	ND	881	1130	128	64-150	
Isopropylbenzene (Cumene)	ua/ka	ND	881	968	110	69-135	
m&p-Xylene	ug/kg	ND	1760	2120	120	60-133	
Methyl-tert-butyl ether	ug/kg	ND	881	810	92	65-130	
Methylene Chloride	ua/ka	ND	881	872	99	61-130	
n-Butvlbenzene	ua/ka	ND	881	939	107	65-140	
n-Propylbenzene	ua/ka	ND	881	957	109	67-140	
Naphthalene	ua/ka	21.0	881	956	106	15-145	
o-Xvlene	ua/ka	ND	881	937	106	66-133	
p-Isopropyltoluene	ua/ka	ND	881	1050	119	56-147	
sec-Butvlbenzene	ua/ka	ND	881	1230	139	65-139	
Styrene	ua/ka	ND	881	960	109	70-132	
tert-Butylbenzene	ug/kg	ND	881	963	109	62-135	
Tetrachloroethene	ug/kg	ND	881	900	102	70-135	
Toluene	ua/ka	8.1J	881	970	109	67-130	
trans-1,2-Dichloroethene	ug/kg	ND	881	854	97	69-130	
trans-1,3-Dichloropropene	ug/kg	ND	881	886	101	62-130	
Trichloroethene	ug/kg	ND	881	965	110	70-135	
Trichlorofluoromethane	ug/kg	ND	881	393	45	10-130	
Vinyl acetate	ug/kg	ND	1760	1760	100	53-130	
Vinvl chloride	ua/ka	ND	881	868	99	61-148	
Xylene (Total)	ua/ka	ND	2640	3060	116	63-132	
1,2-Dichloroethane-d4 (S)	%				110	70-130	
4-Bromofluorobenzene (S)	%				93	69-134	
Toluene-d8 (S)	%				99	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



#### Project: BRAMLETTE J21030497

Pace Project No.: 92528011

SAMPLE DUPLICATE: 3206986						
		92528011017	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg		ND		30	
1.1.1-Trichloroethane	ua/ka	ND	ND		30	
1.1.2.2-Tetrachloroethane	ua/ka	ND	ND		30	
1.1.2-Trichloroethane	ua/ka	ND	ND		30	
1,1-Dichloroethane	ug/kg	ND	ND		30	
1.1-Dichloroethene	ua/ka	ND	ND		30	
1.1-Dichloropropene	ua/ka	ND	ND		30	
1.2.3-Trichlorobenzene	ua/ka	ND	ND		30	
1.2.3-Trichloropropane	ua/ka	ND	ND		30	
1,2,4-Trichlorobenzene	ug/kg	ND	ND		30	
1.2.4-Trimethylbenzene	ua/ka	ND	ND		30	
1.2-Dibromo-3-chloropropane	ua/ka	ND	ND		30	
1.2-Dibromoethane (EDB)	ua/ka	ND	ND		30	
1.2-Dichlorobenzene	ua/ka	ND	ND		30	
1.2-Dichloroethane	ua/ka	ND	ND		30	
1.2-Dichloropropane	ua/ka	ND	ND		30	
1.3.5-Trimethylbenzene	ua/ka	ND	ND		30	
1.3-Dichlorobenzene	ua/ka	ND	ND		30	
1.3-Dichloropropane	ug/kg	ND	ND		30	
1.4-Dichlorobenzene	ug/kg	ND	ND		30	
2 2-Dichloropropane	ug/kg	ND	ND		30	
2-Butanone (MEK)	ug/kg	ND	ND		30	
2-Chlorotoluene	ug/kg	ND	ND		30	
2-Hexanone	ug/kg	ND	ND		30	
4-Chlorotoluene	ug/kg	ND	ND		30	
4-Methyl-2-pentanone (MIBK)	ug/kg	ND	ND		30	
Acetone	ug/kg	ND	ND		30	
Benzene	ug/kg	ND			30	
Bromobenzene	ug/kg	ND			30	
Bromochloromethane	ug/kg	ND	ND		30	
Bromodichloromethane	ug/kg	ND			30	
Bromoform	ug/kg				30 30	
Bromomethane	ug/kg	ND			30	
Carbon tetrachloride	ug/kg				30	
Chlorobenzene	ug/kg Ua/ka	ND			30 30	
Chloroethane	ug/kg	ND			30 20	
Chloroform	ug/kg				30 30	
Chloromethane	ug/kg	ND			30	
cis-1 2-Dichloroethene	ug/kg				30	
cis-1 3-Dichloropropene	ug/kg ug/kg				20 20	
Dibromochloromethane	ug/kg		<b>ח</b> וא חוא		30	
Dibromomethane	ug/kg				30	
Dichlorodifluoromethana	ug/kg	סא	<b>ט</b> או חוא		30	
	ug/kg				30	
Ethylbonzono	ug/kg				30	
Heveobloro-1 3-butadiana	ug/kg				30	
	ug/kg				30	
isopropyidenzene (Cumene)	ug/kg	ND	ND		30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



#### Project: BRAMLETTE J21030497

Pace Project No.: 92528011

#### SAMPLE DUPLICATE: 3206986

		92528011017	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
m&p-Xylene	ug/kg	ND	ND		30	
Methyl-tert-butyl ether	ug/kg	ND	ND		30	
Methylene Chloride	ug/kg	ND	ND		30	
n-Butylbenzene	ug/kg	ND	ND		30	
n-Propylbenzene	ug/kg	ND	ND		30	
Naphthalene	ug/kg	ND	ND		30	
o-Xylene	ug/kg	ND	ND		30	
p-Isopropyltoluene	ug/kg	ND	ND		30	
sec-Butylbenzene	ug/kg	ND	ND		30	
Styrene	ug/kg	ND	ND		30	
tert-Butylbenzene	ug/kg	ND	ND		30	
Tetrachloroethene	ug/kg	ND	ND		30	
Toluene	ug/kg	ND	ND		30	
trans-1,2-Dichloroethene	ug/kg	ND	ND		30	
trans-1,3-Dichloropropene	ug/kg	ND	ND		30	
Trichloroethene	ug/kg	ND	ND		30	
Trichlorofluoromethane	ug/kg	ND	ND		30	
Vinyl acetate	ug/kg	ND	ND		30	
Vinyl chloride	ug/kg	ND	ND		30	
Xylene (Total)	ug/kg	ND	ND		30	
1,2-Dichloroethane-d4 (S)	%	91	93			
4-Bromofluorobenzene (S)	%	97	96			
Toluene-d8 (S)	%	99	98			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



Project: BRAMLETTE J21030497

Pace Project No.:	92528011
-------------------	----------

QC Batch:	607315	5	Analysis Metho	od: EPA	8270E				
QC Batch Method:	Method: EPA 3546		Analysis Description:		8270E Solid MSSV Microwave				
			Laboratory:	Pace	Pace Analytical Services - Charlotte				
Associated Lab Sam	ples:	92528011001. 92528011002.	92528011003, 925	28011004. 9252	8011005. 9252	8011006. 925280	11007.		
	1.001	92528011008, 92528011009,	92528011010, 925	28011011, 9252	8011012	,	,		
METHOD BLANK:	3199476	3	Matrix: S	olid					
Associated Lab Sam	ples:	92528011001. 92528011002.	92528011003. 925	28011004. 9252	8011005. 9252	8011006. 925280	11007.		
		92528011008, 92528011009,	92528011010, 925	28011011, 9252	8011012	, 020200			
			Blank	Reporting					
Param	eter	Units	Result	Limit	MDL	Analyzed	Qualifiers		
1-Methylnaphthalene	)	ug/kg		331	116	03/18/21 07:40			
2,2'-Oxybis(1-chlorop	propane)	ug/kg	ND	331	158	03/18/21 07:40			
2,4,5-Trichloropheno	. ,	ug/kg	ND	331	152	03/18/21 07:40			
2,4,6-Trichloropheno	1	ug/kg	ND	331	136	03/18/21 07:40			
2,4-Dichlorophenol		ug/kg	ND	331	129	03/18/21 07:40			
2,4-Dimethylphenol		ug/kg	ND	331	137	03/18/21 07:40			
2,4-Dinitrophenol		ug/kg	ND	1660	1020	03/18/21 07:40			
2,4-Dinitrotoluene		ug/kg	ND	331	127	03/18/21 07:40			
2,6-Dinitrotoluene		ug/kg	ND	331	121	03/18/21 07:40			
2-Chloronaphthalene	)	ug/kg	ND	331	131	03/18/21 07:40			
2-Chlorophenol		ug/kg	ND	331	124	03/18/21 07:40			
2-Methylnaphthalene	)	ug/kg	ND	331	132	03/18/21 07:40			
2-Methylphenol(o-Cro	esol)	ug/kg	ND	331	135	03/18/21 07:40			
2-Nitroaniline		ug/kg	ND	1660	271	03/18/21 07:40			
2-Nitrophenol		ug/kg	ND	331	143	03/18/21 07:40			
3&4-Methylphenol(m	&p Cres	ol) ug/kg	ND	331	133	03/18/21 07:40			
3,3'-Dichlorobenzidin	ne	ug/kg	ND	662	224	03/18/21 07:40	IL		
3-Nitroaniline		ug/kg	ND	1660	260	03/18/21 07:40			
4,6-Dinitro-2-methylp	henol	ug/kg	ND	662	309	03/18/21 07:40			
4-Bromophenylpheny	yl ether	ug/kg	ND	331	127	03/18/21 07:40			
4-Chloro-3-methylpho	enol	ug/kg	ND	662	233	03/18/21 07:40			
4-Chloroaniline		ug/kg	ND	662	260	03/18/21 07:40			
4-Chlorophenylpheny	yl ether	ug/kg	ND	331	123	03/18/21 07:40			
4-Nitroaniline		ug/kg	ND	662	252	03/18/21 07:40			
4-Nitrophenol		ug/kg	ND	1660	640	03/18/21 07:40			
Acenaphthene		ug/kg	ND	331	116	03/18/21 07:40			
Acenaphthylene		ug/kg	ND	331	116	03/18/21 07:40			
Aniline		ug/kg	ND	331	129	03/18/21 07:40			
Anthracene		ug/kg	ND	331	108	03/18/21 07:40			
Benzo(a)anthracene		ug/kg	ND	331	110	03/18/21 07:40			
Benzo(a)pyrene		ug/kg	ND	331	114	03/18/21 07:40			
Benzo(b)fluoranthene	е	ug/kg	ND	331	110	03/18/21 07:40			
Benzo(g,h,i)perylene		ug/kg	ND	331	128	03/18/21 07:40			
Benzo(k)fluoranthene	е	ug/kg	ND	331	116	03/18/21 07:40			
Benzoic Acid		ug/kg	ND	1660	711	03/18/21 07:40			
Benzyl alcohol		ug/kg	ND	662	251	03/18/21 07:40			
bis(2-Chloroethoxy)m	nethane	ug/kg	ND	331	137	03/18/21 07:40			
bis(2-Chloroethyl) eth	her	ug/kg	ND	331	124	03/18/21 07:40			
bis(2-Ethylhexyl)phth	nalate	ug/kg	ND	331	128	03/18/21 07:40			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: BRAMLETTE J21030497

Pace Project No.: 92528011

METHOD BLANK: 31994	76 Matrix: Solid
Associated Lab Samples:	92528011001, 92528011002, 92528011003, 92528011004, 92528011005, 92528011006, 92528011007, 92528011008, 92528011009, 92528011010, 92528011011, 92528011012
	Blank Reporting

		Dialik	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Butylbenzylphthalate	ug/kg	ND	331	139	03/18/21 07:40	
Chrysene	ug/kg	ND	331	120	03/18/21 07:40	
Di-n-butylphthalate	ug/kg	ND	331	111	03/18/21 07:40	
Di-n-octylphthalate	ug/kg	ND	331	130	03/18/21 07:40	
Dibenz(a,h)anthracene	ug/kg	ND	331	127	03/18/21 07:40	
Dibenzofuran	ug/kg	ND	331	119	03/18/21 07:40	
Diethylphthalate	ug/kg	ND	331	121	03/18/21 07:40	
Dimethylphthalate	ug/kg	ND	331	120	03/18/21 07:40	
Fluoranthene	ug/kg	ND	331	113	03/18/21 07:40	
Fluorene	ug/kg	ND	331	116	03/18/21 07:40	
Hexachlorobenzene	ug/kg	ND	331	129	03/18/21 07:40	
Hexachlorocyclopentadiene	ug/kg	ND	331	190	03/18/21 07:40	
Hexachloroethane	ug/kg	ND	331	126	03/18/21 07:40	
Indeno(1,2,3-cd)pyrene	ug/kg	ND	331	130	03/18/21 07:40	
Isophorone	ug/kg	ND	331	147	03/18/21 07:40	
N-Nitroso-di-n-propylamine	ug/kg	ND	331	124	03/18/21 07:40	
N-Nitrosodimethylamine	ug/kg	ND	331	111	03/18/21 07:40	
N-Nitrosodiphenylamine	ug/kg	ND	331	117	03/18/21 07:40	
Nitrobenzene	ug/kg	ND	331	154	03/18/21 07:40	
Pentachlorophenol	ug/kg	ND	662	324	03/18/21 07:40	
Phenanthrene	ug/kg	ND	331	108	03/18/21 07:40	
Phenol	ug/kg	ND	331	147	03/18/21 07:40	
Pyrene	ug/kg	ND	331	134	03/18/21 07:40	
Pyridine	ug/kg	ND	331	104	03/18/21 07:40	
2,4,6-Tribromophenol (S)	%	85	18-130		03/18/21 07:40	
2-Fluorobiphenyl (S)	%	75	19-130		03/18/21 07:40	
2-Fluorophenol (S)	%	77	18-130		03/18/21 07:40	
Nitrobenzene-d5 (S)	%	81	21-130		03/18/21 07:40	
Phenol-d6 (S)	%	83	18-130		03/18/21 07:40	
Terphenyl-d14 (S)	%	118	15-130		03/18/21 07:40	

LABORATORY CONTROL SAMPLE: 3199477

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/kg	1670	1400	83	54-130	
2,2'-Oxybis(1-chloropropane)	ug/kg	1670	1310	78	38-130	
2,4,5-Trichlorophenol	ug/kg	1670	1390	83	49-130	
2,4,6-Trichlorophenol	ug/kg	1670	1360	81	50-130	
2,4-Dichlorophenol	ug/kg	1670	1520	91	51-130	
2,4-Dimethylphenol	ug/kg	1670	1520	91	53-130	
2,4-Dinitrophenol	ug/kg	8360	6280	75	39-130	
2,4-Dinitrotoluene	ug/kg	1670	1450	87	53-130	
2,6-Dinitrotoluene	ug/kg	1670	1410	85	55-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



#### Project: BRAMLETTE J21030497

Pace Project No.: 92528011

## LABORATORY CONTROL SAMPLE: 3199477

Parameter	l Inits	Spike	LCS Result	LCS % Rec	% Rec	Qualifiers
	ug/kg	1670	1350	81	48-130	
2-Chiorophenoi	ug/kg	1670	1350	81	54-130	
	ug/kg	1670	1410	84	57-130	
2-Methylphenol(o-Cresol)	ug/kg	1670	1440	86	50-130	
2-Nitroaniline	ug/kg	3340	2870	86	49-130	
2-Nitrophenol	ug/kg	1670	1510	90	50-130	
3&4-Methylphenol(m&p Cresol)	ug/kg	1670	1460	87	50-130	
3,3'-Dichlorobenzidine	ug/kg	3340	2510	75	47-130 I	L
3-Nitroaniline	ug/kg	3340	2430	73	45-130	
4,6-Dinitro-2-methylphenol	ug/kg	3340	2740	82	50-142	
4-Bromophenylphenyl ether	ug/kg	1670	1400	84	55-130	
4-Chloro-3-methylphenol	ug/kg	3340	3020	90	52-130	
4-Chloroaniline	ug/kg	3340	2640	79	49-130	
4-Chlorophenylphenyl ether	ug/kg	1670	1480	88	53-130	
4-Nitroaniline	ug/kg	3340	2740	82	51-130	
4-Nitrophenol	ug/kg	8360	7360	88	40-130	
Acenaphthene	ug/kg	1670	1400	84	56-130	
Acenaphthylene	ug/kg	1670	1390	83	58-130	
Aniline	ug/kg	1670	1250	74	44-130	
Anthracene	ug/kg	1670	1450	86	60-130	
Benzo(a)anthracene	ug/kg	1670	1500	90	59-130	
Benzo(a)pyrene	ug/kg	1670	1500	89	57-130	
Benzo(b)fluoranthene	ug/kg	1670	1470	88	54-130	
Benzo(g,h,i)perylene	ug/kg	1670	1300	78	59-130	
Benzo(k)fluoranthene	ug/kg	1670	1530	91	54-130	
Benzoic Acid	ug/kg	8360	4550	54	19-130	
Benzyl alcohol	ug/kg	3340	2800	84	50-130	
bis(2-Chloroethoxy)methane	ug/kg	1670	1480	89	55-130	
bis(2-Chloroethyl) ether	ug/kg	1670	1460	87	53-130	
bis(2-Ethylhexyl)phthalate	ug/kg	1670	1480	89	58-130	
Butylbenzylphthalate	ug/kg	1670	1430	86	46-138	
Chrysene	ug/kg	1670	1480	88	57-130	
Di-n-butylphthalate	ug/kg	1670	1430	85	57-130	
Di-n-octylphthalate	ug/kg	1670	1450	87	57-130	
Dibenz(a,h)anthracene	ug/kg	1670	1380	82	60-130	
Dibenzofuran	ug/kg	1670	1450	87	54-130	
Diethylphthalate	ua/ka	1670	1390	83	55-130	
Dimethylphthalate	ua/ka	1670	1370	82	57-130	
Fluoranthene	ug/kg	1670	1540	92	57-130	
Fluorene	ug/kg	1670	1450	87	56-130	
Hexachlorobenzene	ua/ka	1670	1430	85	53-130	
Hexachlorocyclopentadiene	ua/ka	1670	1060	63	23-130	
Hexachloroethane	ua/ka	1670	1380	83	48-130	
Indeno(1 2 3-cd)pyrene	ug/kg	1670	1300	83	61-130	
Isophorone	ug/kg µa/ka	1670	1410	8 <u>4</u>	20-130	
N-Nitroso-di-n-propylamine	ug/kg	1670	1470	29 29	52-130	
N-Nitrosodimethylamine	ug/kg	1670	1320	70	45-130	
	uy/ky	1070	1520	19	-0-100	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



#### Project: BRAMLETTE J21030497

Pace Project No.: 92528011

#### LABORATORY CONTROL SAMPLE: 3199477

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
N-Nitrosodiphenylamine	ug/kg	1670	1390	83	56-130	
Nitrobenzene	ug/kg	1670	1430	86	50-130	
Pentachlorophenol	ug/kg	3340	2780	83	33-130	
Phenanthrene	ug/kg	1670	1480	88	60-130	
Phenol	ug/kg	1670	1480	89	54-130	
Pyrene	ug/kg	1670	1510	90	61-130	
Pyridine	ug/kg	1670	1080	65	35-130	
2,4,6-Tribromophenol (S)	%			92	18-130	
2-Fluorobiphenyl (S)	%			81	19-130	
2-Fluorophenol (S)	%			83	18-130	
Nitrobenzene-d5 (S)	%			87	21-130	
Phenol-d6 (S)	%			84	18-130	
Terphenyl-d14 (S)	%			105	15-130	

MATRIX SPIKE SAMPLE:	3199478

MATRIX OF IRE OAMI EE.	5155470						
Parameter	Linits	92528011001 Result	Spike Conc	MS Result	MS % Rec	% Rec	Qualifiers
							Quainers
1-Methylnaphthalene	ug/kg	ND	1940	1510	78	30-130	
2,2'-Oxybis(1-chloropropane)	ug/kg	ND	1940	1430	74	30-130	
2,4,5-Trichlorophenol	ug/kg	ND	1940	1610	83	26-130	
2,4,6-Trichlorophenol	ug/kg	ND	1940	1540	80	23-130	
2,4-Dichlorophenol	ug/kg	ND	1940	1600	83	29-130	
2,4-Dimethylphenol	ug/kg	ND	1940	1650	86	13-130	
2,4-Dinitrophenol	ug/kg	ND	9660	6480	67	10-131	
2,4-Dinitrotoluene	ug/kg	ND	1940	1690	87	28-130	
2,6-Dinitrotoluene	ug/kg	ND	1940	1640	85	36-130	
2-Chloronaphthalene	ug/kg	ND	1940	1480	77	27-130	
2-Chlorophenol	ug/kg	ND	1940	1480	77	29-130	
2-Methylnaphthalene	ug/kg	ND	1940	1560	81	29-130	
2-Methylphenol(o-Cresol)	ug/kg	ND	1940	1560	81	20-130	
2-Nitroaniline	ug/kg	ND	3860	3400	88	29-130	
2-Nitrophenol	ug/kg	ND	1940	1600	83	26-130	
3&4-Methylphenol(m&p Cresol)	ug/kg	ND	1940	1540	80	10-176	
3,3'-Dichlorobenzidine	ug/kg	ND	3860	3120	81	15-130 II	_
3-Nitroaniline	ug/kg	ND	3860	3090	80	28-130	
4,6-Dinitro-2-methylphenol	ug/kg	ND	3860	2980	77	15-132	
4-Bromophenylphenyl ether	ug/kg	ND	1940	1590	82	35-130	
4-Chloro-3-methylphenol	ug/kg	ND	3860	3280	85	30-130	
4-Chloroaniline	ug/kg	ND	3860	2900	75	28-130	
4-Chlorophenylphenyl ether	ug/kg	ND	1940	1690	88	32-130	
4-Nitroaniline	ug/kg	ND	3860	3300	85	30-130	
4-Nitrophenol	ug/kg	ND	9660	8610	89	17-130	
Acenaphthene	ug/kg	ND	1940	1600	83	29-130	
Acenaphthylene	ug/kg	ND	1940	1580	82	31-130	
Aniline	ug/kg	ND	1940	1250	65	10-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



#### Project: BRAMLETTE J21030497

Pace Project No.: 92528011

MATRIX SPIKE SAMPLE:	3199478						
		92528011001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Anthracene	ug/kg	ND	1940	1660	86	33-130	
Benzo(a)anthracene	ug/kg	ND	1940	1710	89	32-130	
Benzo(a)pyrene	ug/kg	ND	1940	1710	88	32-130	
Benzo(b)fluoranthene	ug/kg	ND	1940	1710	89	33-130	
Benzo(g,h,i)perylene	ug/kg	ND	1940	1580	82	28-130	
Benzo(k)fluoranthene	ug/kg	ND	1940	1720	89	31-130	
Benzoic Acid	ug/kg	ND	9660	4200	44	10-130	
Benzyl alcohol	ug/kg	ND	3860	3020	78	31-130	
bis(2-Chloroethoxy)methane	ug/kg	ND	1940	1520	79	30-130	
bis(2-Chloroethyl) ether	ug/kg	ND	1940	1510	78	68-130	
bis(2-Ethylhexyl)phthalate	ug/kg	ND	1940	1650	85	40-130	
Butylbenzylphthalate	ug/kg	ND	1940	1630	84	40-130	
Chrysene	ug/kg	ND	1940	1660	86	30-130	
Di-n-butylphthalate	ug/kg	ND	1940	1550	80	41-130	
Di-n-octylphthalate	ug/kg	ND	1940	1610	83	42-130	
Dibenz(a,h)anthracene	ug/kg	ND	1940	1660	86	27-130	
Dibenzofuran	ug/kg	ND	1940	1660	86	32-130	
Diethylphthalate	ug/kg	ND	1940	1640	85	40-130	
Dimethylphthalate	ug/kg	ND	1940	1600	83	37-130	
Fluoranthene	ug/kg	ND	1940	1680	87	26-130	
Fluorene	ug/kg	ND	1940	1680	87	31-130	
Hexachlorobenzene	ug/kg	ND	1940	1630	84	29-130	
Hexachlorocyclopentadiene	ug/kg	ND	1940	1020	53	10-130	
Hexachloroethane	ug/kg	ND	1940	1490	77	21-130	
Indeno(1,2,3-cd)pyrene	ug/kg	ND	1940	1610	84	28-130	
Isophorone	ug/kg	ND	1940	1510	78	32-130	
N-Nitroso-di-n-propylamine	ug/kg	ND	1940	1590	82	31-130	
N-Nitrosodimethylamine	ug/kg	ND	1940	1390	72	20-130	
N-Nitrosodiphenylamine	ug/kg	ND	1940	1610	83	32-130	
Nitrobenzene	ug/kg	ND	1940	1500	78	25-130	
Pentachlorophenol	ug/kg	ND	3860	3150	81	10-130	
Phenanthrene	ug/kg	ND	1940	1660	86	34-130	
Phenol	ug/kg	ND	1940	1630	84	14-130	
Pyrene	ug/kg	ND	1940	1730	89	31-130	
Pyridine	ug/kg	ND	1940	759	39	10-130	
2,4,6-Tribromophenol (S)	%				92	18-130	
2-Fluorobiphenyl (S)	%				78	19-130	
2-Fluorophenol (S)	%				75	18-130	
Nitrobenzene-d5 (S)	%				80	21-130	
Phenol-d6 (S)	%				79	18-130	
Terphenyl-d14 (S)	%				104	15-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



#### Project: BRAMLETTE J21030497

Pace Project No.: 92528011

# SAMPLE DUPLICATE: 3199513

		92528011003	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1-Methylnaphthalene	ug/kg				30	)
2.2'-Oxybis(1-chloropropane)	ug/kg	ND	ND		30	)
2.4.5-Trichlorophenol	ua/ka	ND	ND		30	)
2.4.6-Trichlorophenol	ua/ka	ND	ND		30	)
2.4-Dichlorophenol	ug/kg	ND	ND		30	)
2.4-Dimethylphenol	ua/ka	ND	ND		30	)
2.4-Dinitrophenol	ua/ka	ND	ND		30	)
2.4-Dinitrotoluene	ua/ka	ND	ND		30	)
2 6-Dinitrotoluene	ua/ka	ND	ND		30	)
2-Chloronaphthalene	ug/kg	ND	ND		30	)
2-Chlorophenol	ua/ka	ND	ND		30	)
2-Methylnaphthalene	ug/kg	ND	ND		30	)
2-Methylphenol(o-Cresol)	ug/kg	ND	ND		30	)
2-Nitroaniline	ug/kg	ND	ND		30	)
2-Nitrophenol	ug/kg	ND	ND		30	)
3&4-Methylphenol(m&p Cresol)	ug/kg	ND	ND		30	)
3 3'-Dichlorobenzidine	ug/kg	ND	ND		3(	, )
3-Nitroaniline	ug/kg	ND	ND		3(	)
4 6-Dinitro-2-methylphenol	ug/kg	ND			30	)
4-Bromonbenylphenyl ether	ug/kg	ND			30	)
4-Chloro-3-methylphenol	ug/kg	ND			30	)
4-Chloroaniline	ug/kg	ND			30	)
	ug/kg				30	)
4 Nitroanilino	ug/kg				30	
4 Nitrophonol	ug/kg				30	
	ug/kg				30	
	ug/kg				30	
Acenaphinylene	ug/kg				30	
Anthroppe	ug/kg				30	
Anunacene Bonzo(a)anthracono	ug/kg				30	
	ug/kg				30	
Denzo(a)pyrene	ug/kg				30	
	ug/kg		ND		30	
Benzo(g,n,i)perviene	ug/kg		ND		30	)
Benzoic Asid	ug/kg		ND		30	
Benzul alashal	ug/kg		ND		30	
Benzyl alconol	ug/kg		ND		30	)
bis(2-Chioroethoxy)methane	ug/kg		ND		30	)
bis(2-Chioroethyi) ether	ug/kg		ND		30	)
Dis(2-Ethylnexyl)phthalate	ug/kg		ND		30	)
Butylbenzylphthalate	ug/kg		ND		30	)
Chrysene	ug/kg	ND	ND		30	)
DI-n-butyIphthalate	ug/kg	ND	ND		30	J
Di-n-octylphthalate	ug/kg	ND	ND		30	)
Dibenz(a,h)anthracene	ug/kg	ND	ND		30	)
Dibenzofuran	ug/kg	ND	ND		30	)
Diethylphthalate	ug/kg	ND	ND		30	)
Dimethylphthalate	ug/kg	ND	ND		30	)

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



#### Project: BRAMLETTE J21030497

Pace Project No.: 92528011

## SAMPLE DUPLICATE: 3199513

		92528011003	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Fluoranthene	ug/kg	ND	ND		30	
Fluorene	ug/kg	ND	ND		30	
Hexachlorobenzene	ug/kg	ND	ND		30	
Hexachlorocyclopentadiene	ug/kg	ND	ND		30	
Hexachloroethane	ug/kg	ND	ND		30	
Indeno(1,2,3-cd)pyrene	ug/kg	ND	ND		30	
Isophorone	ug/kg	ND	ND		30	
N-Nitroso-di-n-propylamine	ug/kg	ND	ND		30	
N-Nitrosodimethylamine	ug/kg	ND	ND		30	
N-Nitrosodiphenylamine	ug/kg	ND	ND		30	
Nitrobenzene	ug/kg	ND	ND		30	
Pentachlorophenol	ug/kg	ND	ND		30	
Phenanthrene	ug/kg	ND	ND		30	
Phenol	ug/kg	ND	ND		30	
Pyrene	ug/kg	ND	ND		30	
Pyridine	ug/kg	ND	ND		30	
2,4,6-Tribromophenol (S)	%	57	67			
2-Fluorobiphenyl (S)	%	71	71			
2-Fluorophenol (S)	%	57	62			
Nitrobenzene-d5 (S)	%	71	72			
Phenol-d6 (S)	%	68	68			
Terphenyl-d14 (S)	%	101	101			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**


Droject.	BRAMIETTE	121020/07
		321030437

Pace Project No.: 92528011

QC Batch: 608843	Analysis Meth	od: E	EPA 8270E			
QC Batch Method: EPA 35	546	Analysis Desc	ription: 8	3270E Solid MSSV	Microwave	
	-	Laboratory.	F	Pace Analytical Ser	vices - Charlotte	
Associated Lab Samples:	92528011017 92528011018	92528011019 92	528011020		need onanotic	
Associated Lab Gampies.	52520011017, 52520011010,	52520011015, 520	520011020			
METHOD BLANK: 3206787		Matrix: S	Solid			
Associated Lab Samples:	92528011017, 92528011018,	92528011019, 925	528011020			
		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1-Methylnaphthalene	ug/kg	ND	32	8 115	03/24/21 15:07	
2,2'-Oxybis(1-chloropropane)	ug/kg	ND	32	8 156	03/24/21 15:07	
2,4,5-Trichlorophenol	ug/kg	ND	32	8 150	03/24/21 15:07	
2,4,6-Trichlorophenol	ug/kg	ND	32	8 135	03/24/21 15:07	
2,4-Dichlorophenol	ug/kg	ND	32	8 128	03/24/21 15:07	
2,4-Dimethylphenol	ug/kg	ND	32	8 136	03/24/21 15:07	
2,4-Dinitrophenol	ug/kg	ND	1640	0 1010	03/24/21 15:07	
2,4-Dinitrotoluene	ug/kg	ND	32	8 126	03/24/21 15:07	
2,6-Dinitrotoluene	ug/kg	ND	32	8 120	03/24/21 15:07	
2-Chloronaphthalene	ug/kg	ND	32	8 130	03/24/21 15:07	
2-Chlorophenol	ug/kg	ND	32	8 123	03/24/21 15:07	
2-Methylnaphthalene	ug/kg	ND	32	8 131	03/24/21 15:07	
2-Methylphenol(o-Cresol)	ug/kg	ND	32	8 134	03/24/21 15:07	
2-Nitroaniline	ug/kg	ND	1640	0 268	03/24/21 15:07	
2-Nitrophenol	ug/kg	ND	32	8 142	03/24/21 15:07	
3&4-Methylphenol(m&p Cres	ol) ug/kg	ND	32	8 132	03/24/21 15:07	
3,3'-Dichlorobenzidine	ug/kg	ND	65	6 222	03/24/21 15:07	IL
3-Nitroaniline	ug/kg	ND	164	0 257	03/24/21 15:07	
4,6-Dinitro-2-methylphenol	ug/kg	ND	65	6 306	03/24/21 15:07	
4-Bromophenylphenyl ether	ug/kg	ND	32	8 126	03/24/21 15:07	
4-Chloro-3-methylphenol	ug/kg	ND	65	6 230	03/24/21 15:07	
4-Chloroaniline	ug/kg	ND	65	6 257	03/24/21 15:07	
4-Chlorophenylphenyl ether	ug/kg	ND	32	8 122	03/24/21 15:07	
4-Nitroaniline	ug/kg	ND	65	6 249	03/24/21 15:07	
4-Nitrophenol	ug/kg	ND	164	0 634	03/24/21 15:07	
Acenaphthene	ug/kg	ND	32	8 115	03/24/21 15:07	
Acenaphthylene	ug/kg	ND	32	8 115	03/24/21 15:07	
Aniline	ug/kg	ND	32	8 128	03/24/21 15:07	
Anthracene	ug/kg	ND	32	8 107	03/24/21 15:07	
Benzo(a)anthracene	ug/kg	ND	32	8 109	03/24/21 15:07	
Benzo(a)pyrene	ug/kg	ND	32	8 113	03/24/21 15:07	
Benzo(b)fluoranthene	ug/kg	ND	32	8 109	03/24/21 15:07	
Benzo(a,h,i)pervlene	ug/kg	ND	32	8 127	03/24/21 15:07	v1
Benzo(k)fluoranthene	ua/ka	ND	32	8 115	03/24/21 15:07	
Benzoic Acid	ua/ka	ND	164	0 704	03/24/21 15:07	
Benzyl alcohol	ua/ka	ND	65	6 248	03/24/21 15:07	
bis(2-Chloroethoxv)methane	ua/ka	ND	32	B 136	03/24/21 15:07	
bis(2-Chloroethvl) ether	ua/ka	ND	32	8 123	03/24/21 15:07	
bis(2-Ethylhexvl)phthalate	ua/ka	ND	32	B 127	03/24/21 15:07	
Butylbenzylphthalate	ug/kg	ND	32	8 138	03/24/21 15:07	v1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

# **REPORT OF LABORATORY ANALYSIS**



# Project: BRAMLETTE J21030497

Pace Project No.: 92528011

METHOD BLANK: 3206787		Matrix:				
Associated Lab Samples:	92528011017, 92528011018, 92	528011019, 92	528011020			
		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chrysene	ug/kg	ND	328	119	03/24/21 15:07	
Di-n-butylphthalate	ug/kg	ND	328	110	03/24/21 15:07	
Di-n-octylphthalate	ug/kg	ND	328	129	03/24/21 15:07	v1
Dibenz(a,h)anthracene	ug/kg	ND	328	126	03/24/21 15:07	
Dibenzofuran	ug/kg	ND	328	118	03/24/21 15:07	
Diethylphthalate	ug/kg	ND	328	120	03/24/21 15:07	
Dimethylphthalate	ug/kg	ND	328	119	03/24/21 15:07	
Fluoranthene	ug/kg	ND	328	112	03/24/21 15:07	
Fluorene	ug/kg	ND	328	115	03/24/21 15:07	
Hexachlorobenzene	ug/kg	ND	328	128	03/24/21 15:07	
Hexachlorocyclopentadiene	ug/kg	ND	328	188	03/24/21 15:07	
Hexachloroethane	ug/kg	ND	328	125	03/24/21 15:07	
Indeno(1,2,3-cd)pyrene	ug/kg	ND	328	129	03/24/21 15:07	
Isophorone	ug/kg	ND	328	146	03/24/21 15:07	
N-Nitroso-di-n-propylamine	ug/kg	ND	328	123	03/24/21 15:07	
N-Nitrosodimethylamine	ug/kg	ND	328	110	03/24/21 15:07	
N-Nitrosodiphenylamine	ug/kg	ND	328	116	03/24/21 15:07	
Nitrobenzene	ug/kg	ND	328	152	03/24/21 15:07	
Pentachlorophenol	ug/kg	ND	656	321	03/24/21 15:07	
Phenanthrene	ug/kg	ND	328	107	03/24/21 15:07	
Phenol	ug/kg	ND	328	146	03/24/21 15:07	
Pyrene	ug/kg	ND	328	133	03/24/21 15:07	
Pyridine	ug/kg	ND	328	103	03/24/21 15:07	
2,4,6-Tribromophenol (S)	%	73	18-130		03/24/21 15:07	
2-Fluorobiphenyl (S)	%	79	19-130		03/24/21 15:07	
2-Fluorophenol (S)	%	79	18-130		03/24/21 15:07	
Nitrobenzene-d5 (S)	%	82	21-130		03/24/21 15:07	
Phenol-d6 (S)	%	74	18-130		03/24/21 15:07	
Terphenyl-d14 (S)	%	115	15-130		03/24/21 15:07	

#### LABORATORY CONTROL SAMPLE: 3206788

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/kg	1660	1340	81	54-130	
2,2'-Oxybis(1-chloropropane)	ug/kg	1660	1290	78	38-130	
2,4,5-Trichlorophenol	ug/kg	1660	1550	94	49-130	
2,4,6-Trichlorophenol	ug/kg	1660	1470	89	50-130	
2,4-Dichlorophenol	ug/kg	1660	1390	84	51-130	
2,4-Dimethylphenol	ug/kg	1660	1440	87	53-130	
2,4-Dinitrophenol	ug/kg	8280	6880	83	39-130	
2,4-Dinitrotoluene	ug/kg	1660	1510	91	53-130	
2,6-Dinitrotoluene	ug/kg	1660	1570	95	55-130	
2-Chloronaphthalene	ug/kg	1660	1520	92	48-130	
2-Chlorophenol	ug/kg	1660	1390	84	54-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

# **REPORT OF LABORATORY ANALYSIS**



# Project: BRAMLETTE J21030497

Pace Project No.: 92528011

Parameter         Units         Conc.         Result         % Rec         Limits         Qualifiers           2:Methylinghthalene         ug/kg         1660         1360         82         57-130           2:Methylinghenol(-Cresol)         ug/kg         1660         1400         84         50-130           2:Mitrophinol         ug/kg         1660         1310         79         50-130           3:3:Dichlorobenzidine         ug/kg         3310         2370         90         47-130         IL           3:3:Dichlorobenzidine         ug/kg         3310         3160         95         45-130         I.           4:Afficthylphenol         ug/kg         3310         2550         77         49-130         I.           4:Chloros-methylphenol         ug/kg         3310         2550         77         49-130         I.           4:Chloros-methylphenol         ug/kg         3310         2550         77         49-130         I.           4:Chloros-methylphenol         ug/kg         3600         1430         86         55-130         I.           4:Chloros-methylphenol         ug/kg         1660         1440         90         56-130           4:Chloroshmethylphenol	LABORATORY CONTROL SAMPLE:	3206788					
Parameter         Units         Conc.         Result         % Rec         Limits         Qualifiers           2-Methylphenol(-Cresol)         ug/kg         1660         1360         82         57-130           Vehthylphenol(-Cresol)         ug/kg         1660         1440         94         50-130           Nitrophenol         ug/kg         310         3090         93         49-130           184-Methylphenol(m&p Cresol)         ug/kg         3310         2370         90         47-130         IL           184-Methylphenol(m&p Cresol)         ug/kg         3310         3040         92         50-142           16-Dinitro2-methylphenol         ug/kg         3310         2750         83         52:130           16-Dinitro2-methylphenol         ug/kg         3310         2750         83         51:30           16-Dinitro2-methylphenol         ug/kg         1660         1430         86         53:10           16-Dinitro2-methylphenol         ug/kg         1660         1430         85         40:130           16-Dinitro2-methylphenol         ug/kg         1660         1480         71         44:130           16-Dinitro2-methylphenol         ug/kg         1660         1180			Spike	LCS	LCS	% Rec	
EMethylnaphthalene         ug/kg         1660         1360         82         57-130           Methylphenol(C-Cresol)         ug/kg         1660         1400         84         50-130           Nitroanline         ug/kg         1660         1480         90         50-130           Nitrophenol         ug/kg         1660         1480         90         47-130           Si Methylphenol(mkp Cresol)         ug/kg         3310         2970         90         47-130         IL           Nitrophenylphenol         ug/kg         3310         2970         90         47-130         IL           Si Dichlorobenzidine         ug/kg         3310         2970         90         47-130         IL           -Nitroanline         ug/kg         3310         2550         77         49-130           -Chloroz-methylphenol         ug/kg         3310         2550         77         49-130           -Chlorozhenylphenyl ether         ug/kg         1860         1400         86         53-130           -Chlorozhenylphenol         ug/kg         1860         1490         90         66-130           venaphthene         ug/kg         1660         1490         95         59-130	Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Methyphenol(c-Cresol)         ug/kg         1660         1400         84         60-130           >Nitroaniline         ug/kg         3310         3090         93         49-130           Nitroaniline         ug/kg         1660         1310         79         50-130           84-Methyphenol(mbp Cresol)         ug/kg         3310         370         90         47-130         IL           9. Dintrobrezime         ug/kg         3310         3640         92         50-132           9. Dintrobrezimetria         ug/kg         3310         3640         92         50-142           1. Bromophenylphenyl ether         ug/kg         3310         2750         83         51-130           1. Chloroanitine         ug/kg         1660         1430         86         53-130           1. Chlorophenylphenyl ether         ug/kg         1660         1490         90         56-130           1. Chlorophenylphenyl ether         ug/kg         1660         1490         90         56-130           1. Chlorophenylphenyl ether         ug/kg         1660         1560         94         58-130           1. Chlorophenylphenyl         ug/kg         1660         150         94         58-130 <td>2-Methylnaphthalene</td> <td>ug/kg</td> <td>1660</td> <td>1360</td> <td>82</td> <td>57-130</td> <td></td>	2-Methylnaphthalene	ug/kg	1660	1360	82	57-130	
Nitroshine         ug/kg         3310         3090         93         49-130           2Nitrophenol         ug/kg         1660         1480         90         50-130           2Nitrophenol         ug/kg         3310         2970         90         47-130         IL           3.3-Dichloroberzidine         ug/kg         3310         3160         95         45-130           1.6-Dintro-2-methylphenol         ug/kg         3310         3040         92         50-142           1.Formophenylphenyl ether         ug/kg         3310         2550         77         49-130           1.Chloros-3-methylphenol         ug/kg         3310         2750         83         51-130           1.Chloros-methylphenyl ether         ug/kg         1660         1430         86         53-130           1.Chloros-methylphenyl ether         ug/kg         1660         150         94         56-130           1.Vitrophenol         ug/kg         1660         150         94         56-130           Keanaphtylene         ug/kg         1660         150         94         56-130           Valracene         ug/kg         1660         150         94         56-130           Valracene </td <td>2-Methylphenol(o-Cresol)</td> <td>ug/kg</td> <td>1660</td> <td>1400</td> <td>84</td> <td>50-130</td> <td></td>	2-Methylphenol(o-Cresol)	ug/kg	1660	1400	84	50-130	
Philtophenol         ug/kg         1660         1400         90         50-130           8&4-Methylphenol(m&p Cresol)         ug/kg         3310         2970         90         47-130         IL           8&4-Methylphenol         ug/kg         3310         3160         95         45-130           F.Dintro-Z-methylphenol         ug/kg         3310         3160         95         45-130           F.Dintro-Z-methylphenol         ug/kg         3310         2750         83         52-130           F.Choros-3-methylphenol         ug/kg         3310         2750         83         51-30           F.Choros-3-methylphenol         ug/kg         8280         7550         83         51-30           F.Choroshine         ug/kg         1660         1430         86         53-130           F.Choroshine         ug/kg         1660         1490         90         56-130           Keenaphthylene         ug/kg         1660         180         71         44-130           Nihracane         ug/kg         1660         1740         105         59-130           Serzo(s/kluoranthacene         ug/kg         1660         1580         96         54-130           Serzo(s/kluo	2-Nitroaniline	ug/kg	3310	3090	93	49-130	
84.4.Methylphenol(m&p Cresol)         ug/kg         160         110         79         50-130           3.3-Dichlorobenzidine         ug/kg         3310         2970         90         47-130         IL           4.5-Dintlorobenzidine         ug/kg         3310         3460         95         45-130           6.5-Dintlorobenzidine         ug/kg         3310         2750         83         55-130           1-Chloros-methylphenol         ug/kg         3310         2750         83         55-130           1-Chloros-amethylphenol         ug/kg         3310         2750         83         51-130           1-Chloroshenylphenyl ether         ug/kg         310         2750         83         51-130           1-Nitropanoline         ug/kg         1660         1490         90         56-130           1-Nitropanoline         ug/kg         1660         150         94         68-130           1-Nitracene         ug/kg         1660         150         94         68-130           1-Nitracene         ug/kg         1660         150         96         64-130           1-Nitracene         ug/kg         1660         1740         105         59-130           1-Nitr	2-Nitrophenol	ug/kg	1660	1480	90	50-130	
3.2-Dichlorobenzidine       ug/kg       3310       2970       90       47-130       IL         Nitroaniline       ug/kg       3310       3160       95       45-130         B-Dintro2-methylphenol       ug/kg       3310       3040       92       50-142         I-Bromophenylphenyl ether       ug/kg       3310       2550       77       49-130         I-Chloro-amethylphenol       ug/kg       3310       2550       77       49-130         I-Chlorophenylphenyl ether       ug/kg       1660       1430       86       53-130         I-Chlorophenylphenol       ug/kg       1660       1490       90       56-130         Kcenaphthylene       ug/kg       1660       150       94       88-130         Nuhracene       ug/kg       1660       150       94       88-130         Nuhracene       ug/kg       1660       1740       105       59-130         Senzo(h)luoranthene       ug/kg       1660       1580       96       64-130         Senzo(h)luoranthene       ug/kg       1660       1580       96       54-130         Senzo(h)luoranthene       ug/kg       1660       1580       96       54-130	3&4-Methylphenol(m&p Cresol)	ug/kg	1660	1310	79	50-130	
E-Nitroaniline         ug/kg         3310         3160         95         45-130           6, D-Dinitro-2-methylphenol         ug/kg         3310         3040         92         50-142.           E-Choros-2-methylphenol         ug/kg         1660         1540         93         55-130           L-Choros-2-methylphenol         ug/kg         3310         2750         83         52-130           L-Choros-2-methylphenyl ether         ug/kg         1660         1430         86         53-130           L-Choros-2-methylphenyl ether         ug/kg         1660         1430         86         53-130           L-Nitroaniline         ug/kg         1660         1550         94         56-130           L-Cenophenylphenyl ether         ug/kg         1660         1550         92         60-130           L-Cenophenylphenyl ether         ug/kg         1660         1520         92         60-130           L-Cenophenylphenyl ether         ug/kg         1660         1530         96         54-130           L-Cenophenylphenyl ether         ug/kg         1660         1580         95         59-130           Senzo(s/ljuranthene         ug/kg         1660         1580         96         54-130	3,3'-Dichlorobenzidine	ug/kg	3310	2970	90	47-130	IL
k.6-Dinitro-2-methylphenol       ug/kg       3310       3040       92       50-142         Bromophenylphenyl ether       ug/kg       3310       2750       83       55-130         L-Choroa-Thirthylphenol       ug/kg       3310       2750       83       52-130         L-Choroa-Thirthylphenol       ug/kg       3310       2750       83       51-130         L-Choroa-Thirthylphenol       ug/kg       3310       2750       83       51-130         L-Choroa-Thirthylphenol       ug/kg       8280       7050       83       51-130         L-Nitrophenol       ug/kg       1660       1430       90       56-130         Vennaphthylene       ug/kg       1660       1550       94       58-130         Vanhare       ug/kg       1660       1520       92       60-130         Vanhare       ug/kg       1660       1580       95       59-130         Vanhare       ug/kg       1660       1580       96       54-130         Senzo(s/luoranthene       ug/kg       1660       1580       96       54-130         Senzo(s/luoranthene       ug/kg       1660       1580       96       54-130         Senzo(s/luoranthene<	3-Nitroaniline	ug/kg	3310	3160	95	45-130	
Harbornophenylphenyl ether         ug/kg         1660         1540         93         55-130           L-Chioro-3-methylphenol         ug/kg         3310         2750         83         52-130           L-Chioro-3-methylphenol         ug/kg         3310         2750         83         51-130           L-Chiorophenylphenyl ether         ug/kg         1660         1430         86         53-130           L-Nitrophenylphenyl ether         ug/kg         1660         1490         90         55-130           Vcenaphthene         ug/kg         1660         1490         90         55-130           Vcenaphthylene         ug/kg         1660         1580         94         58-130           Nulline         ug/kg         1660         1580         94         58-130           Banzo(a)pyrene         ug/kg         1660         1580         95         59-130           Banzo(a)pyrene         ug/kg         1660         1580         95         59-130           Banzo(b/lluoranthene         ug/kg         1660         1580         95         59-130           Banzo(k)/lluoranthene         ug/kg         1660         1590         96         54-130           Sig2-Cholorethoxylmeth	4,6-Dinitro-2-methylphenol	ug/kg	3310	3040	92	50-142	
L-Chloro-3-methylphenol       ug/kg       3310       2750       83       52-130         L-Chlorophenylphenyl ether       ug/kg       1860       1430       86       53-130         L-Nitroaniline       ug/kg       3310       2750       83       51-130         L-Nitroaniline       ug/kg       8280       77050       83       51-130         L-Nitrophenol       ug/kg       1860       1490       90       56-130         Veenaphthrene       ug/kg       1660       1550       94       58-130         Veenaphthylene       ug/kg       1660       1520       92       60-130         Venaphthracene       ug/kg       1660       1740       105       59-130         Senzo(a)anthracene       ug/kg       1660       1590       96       54-130         Senzo(b/luoranthene       ug/kg       1660       1580       95       59-130       11         Senzo(b/luoranthene       ug/kg       1660       1580       96       54-130         Senzo(b/luoranthene       ug/kg       1660       1580       96       54-130         Senzo(b/luoranthene       ug/kg       1660       1580       96       54-130         Se	4-Bromophenylphenyl ether	ug/kg	1660	1540	93	55-130	
L-Chloroaniline         ug/kg         3310         2550         77         49-130           L-Chlorophenylphenyl ether         ug/kg         1660         1430         86         53-130           L-Nitrophenol         ug/kg         8280         7050         83         51-130           L-Nitrophenol         ug/kg         1660         1490         90         56-130           Vcenaphthene         ug/kg         1660         1550         94         58-130           Vcenaphthene         ug/kg         1660         1550         92         60-130           Senzo(a)anthracene         ug/kg         1660         1740         105         59-130           Jenzo(a)apyrene         ug/kg         1660         1580         95         59-130           Jenzo(a)hluoranthene         ug/kg         1660         1580         95         59-130           Jenzo(k/luoranthene         ug/kg         1660         1580         95         59-130           Jenzo(k/luoranthene         ug/kg         1660         1580         95         59-130           Jenzo(k/luoranthene         ug/kg         1660         1590         96         54-130           Jenzo(k/luoranthene         ug/kg <td>4-Chloro-3-methylphenol</td> <td>ug/kg</td> <td>3310</td> <td>2750</td> <td>83</td> <td>52-130</td> <td></td>	4-Chloro-3-methylphenol	ug/kg	3310	2750	83	52-130	
L-Chlorophenylphenyl ether         ug/kg         1600         1430         86         53-130           L-Nitropaniline         ug/kg         3310         2750         83         51-130           L-Nitropanol         ug/kg         8280         7050         85         40-130           Accenaphthene         ug/kg         1660         1490         90         56-130           Accenaphthylene         ug/kg         1660         1550         94         58-130           Avaline         ug/kg         1660         1520         92         60-130           Senzo(a)privene         ug/kg         1660         1510         97         57-130           Benzo(b)furoanthene         ug/kg         1660         1580         96         54-130           Benzo(b)furoanthene         ug/kg         1660         1580         96         54-130           Benzo(k)furoanthene         ug/kg         1660         1580         96         54-130           Benzo(k)furoanthene         ug/kg         1660         1580         96         54-130           Benzo(k)furoanthene         ug/kg         1660         1410         85         53-130           Benzo(k)furoanthene         ug/kg	4-Chloroaniline	ug/kg	3310	2550	77	49-130	
L-Nitroaniline ug/kg 3310 2750 83 51-130 L-Nitrophenol ug/kg 8280 7050 85 40-130 Acenaphthene ug/kg 1660 1490 90 56-130 Acenaphthylene ug/kg 1660 1550 94 58-130 Anthracene ug/kg 1660 1180 71 44-130 Senzo(a)anthracene ug/kg 1660 1520 92 60-130 Senzo(a)anthracene ug/kg 1660 1580 95 59-130 Senzo(a)anthracene ug/kg 1660 1580 95 59-130 Senzo(a)nthene ug/kg 1660 1580 95 59-130 v1 Senzo(k)fluoranthene ug/kg 1660 1590 96 54-130 Senzo(k)fluoranthene ug/kg 1660 1370 83 55-130 Sis(2-Chloroethoxy)methane ug/kg 1660 1370 83 55-130 Sis(2-Chloroethyl) ether ug/kg 1660 1310 109 58-130 Sutylbenzylphthalate ug/kg 1660 1860 112 46-138 v1 Chrysene ug/kg 1660 1590 96 57-130 Di-n-butylphthalate ug/kg 1660 1520 92 60-130 Di-n-butylphthalate ug/kg 1660 1520 92 57-130 Di-n-butylphthalate ug/kg 1660 1520 92 57-130	4-Chlorophenylphenyl ether	ug/kg	1660	1430	86	53-130	
L-Nitrophenol ug/kg 8280 7050 85 40-130 Veenaphthene ug/kg 1660 1490 90 56-130 Veenaphthylene ug/kg 1660 1550 94 58-130 Avenaphthylene ug/kg 1660 1180 71 44-130 Anthracene ug/kg 1660 1520 92 60-130 Senzo(a)prene ug/kg 1660 1540 97 57-130 Senzo(a)prene ug/kg 1660 1590 96 54-130 Senzo(a)prene ug/kg 1660 1590 95 59-130 v1 Senzo(b)fluoranthene ug/kg 1660 1590 96 54-130 Senzo(a)fluoranthene ug/kg 1660 1590 96 54-130 Senzo(a)fluoranthene ug/kg 1660 1590 96 54-130 Senzo(a)fluoranthene ug/kg 1660 1590 96 54-130 Senzo(b)fluoranthene ug/kg 1660 1590 96 54-130 Senzo(c)fluoranthene ug/kg 1660 1370 83 55-130 Senzo(c)fluoranthene ug/kg 1660 1410 85 53-130 Sis(2-Chloroethxy)methane ug/kg 1660 1810 109 58-130 Sulybenzylphthalate ug/kg 1660 1740 105 57-130 Din-butylphthalate ug/kg 1660 1590 96 57-130 Din-butylphthalate ug/kg 1660 1520 92 60-130 Din-butylphthalate ug/kg 1660 1520 92 60-130 Din-butylphthalate ug/kg 1660 1540 93 55-130 Din-butylphthalate ug/kg 1660 1520 92 60-130 Din-butylphthalate ug/kg 1660 1520 92 57-130 Din-butylphthalate ug/kg 1660 1550 96 57-130 Din-butylphthalate ug/kg 1660 1520 92 57-130 Din-butylphthalate ug/kg 1660 1550 93 53-130 Din-butylphthalate ug/kg 1660 1550 93 53-130 Din-butylphthalate ug/kg 1660 1550 92 57-130 Din-butylphthalate ug/kg 1660 1550 93 53-130 Din-butylphthalate ug/kg 1660 1550 93 53-130 Dinethylphthalate ug/kg 1660 1550 94 53-13	4-Nitroaniline	ug/kg	3310	2750	83	51-130	
Accenaphthene         ug/kg         1660         1490         90         56-130           Vcenaphthylene         ug/kg         1660         1550         94         58-130           Aniline         ug/kg         1660         1520         92         60-130           Aniline         ug/kg         1660         1520         92         60-130           Jenzo(a)pyrene         ug/kg         1660         1610         97         57-130           Jenzo(b)Ivoranthene         ug/kg         1660         1580         95         59-130 v1           Jenzo(b/Ivoranthene         ug/kg         1660         1410         85         53-130           Jis(2-Chloroethoxy)methane         ug/kg         1660         1410         85         53-130           Jis(2-Chloroethoxy)methalate         ug/kg         1660         1590         96         57-130           John-butylphthalate	4-Nitrophenol	ug/kg	8280	7050	85	40-130	
Accenaphthylene         ug/kg         1660         1550         94         58-130           Anline         ug/kg         1660         1180         71         44-130           Anthracene         ug/kg         1660         1520         92         60-130           Benzo(a)nthracene         ug/kg         1660         1610         97         57-130           Benzo(b)fluoranthene         ug/kg         1660         1580         95         59-130           Benzo(k)fluoranthene         ug/kg         1660         1580         95         59-130           Benzo(k)fluoranthene         ug/kg         1660         1590         96         54-130           Benzo(k,fluoranthene         ug/kg         1660         1590         96         54-130           Benzo(k,fluoranthene         ug/kg         1660         1570         78         50-130           Sig(2-Chloroethoxy)methane         ug/kg         1660         1410         85         53-130           Sig(2-Chloroethoxy)methane         ug/kg         1660         1860         112         46-138 v1           Drin-butylphthalate         ug/kg         1660         1580         96         57-130           Din-noctylphthalate	Acenaphthene	ug/kg	1660	1490	90	56-130	
Aniline         ug/kg         1660         1180         71         44.130           Anthracene         ug/kg         1660         1520         92         60-130           Benzo(a)anthracene         ug/kg         1660         1740         105         59-130           Benzo(a)pyrene         ug/kg         1660         1610         97         57-130           Benzo(b)fluoranthene         ug/kg         1660         1580         96         54-130           Benzo(k)prone         ug/kg         1660         1580         95         59-130         V1           Benzo(k)fuoranthene         ug/kg         1660         1580         96         54-130           Benzo(k)fuoranthene         ug/kg         8280         5680         69         19-130           Benzo(k)fuoranthene         ug/kg         1660         1370         83         55-130           Benzo(k)fuorethoxylmethane         ug/kg         1660         1810         109         58-130           Bis(2-Chloroethyl) ether         ug/kg         1660         1810         109         58-130           Bis(2-Chloroethoxyl)methalate         ug/kg         1660         1840         112         46-138         V1 <t< td=""><td>Acenaphthylene</td><td>ua/ka</td><td>1660</td><td>1550</td><td>94</td><td>58-130</td><td></td></t<>	Acenaphthylene	ua/ka	1660	1550	94	58-130	
Authracene         ug/kg         1660         1520         92         60-130           Benzo(a)purene         ug/kg         1660         1740         105         59-130           Benzo(a)purene         ug/kg         1660         1610         97         57-130           Benzo(b)fluoranthene         ug/kg         1660         1580         96         54-130           Benzo(k)fluoranthene         ug/kg         1660         1370         83         55-130           bis(2-Chloroethx))methane         ug/kg         1660         1810         109         58-130           Burylbenzylphthalate         ug/kg         1660         1740         105         57-130           Din-butylphthalate         ug/kg         1660         1520         92         60-130           Din-butylphthalate	Aniline	ua/ka	1660	1180	71	44-130	
Banzolainthracene         ug/kg         1660         1740         105         59-130           Banzolainthracene         ug/kg         1660         1610         97         57-130           Banzolainthracene         ug/kg         1660         1590         96         54-130           Banzolainthracene         ug/kg         1660         1580         95         59-130         V1           Banzolainthracene         ug/kg         1660         1580         96         54-130         Sanzolainthracene         Ug/kg         1660         1590         96         54-130           Banzolainthracene         ug/kg         1660         1570         78         50-130         Solainthracene         Ug/kg         1660         1370         83         55-130           Sic(2-Chloroethyl) ether         ug/kg         1660         1810         109         58-130           Sutylbenzylphthalate         ug/kg         1660         1860         112         46-138         v1           Chrysene         ug/kg         1660         1740         105         57-130         Di-           Din-butylphthalate         ug/kg         1660         1520         92         60-130         Disetro(a,h)anthracene	Anthracene	ua/ka	1660	1520	92	60-130	
Banzo(a)pyrene         ug/kg         1660         171         171           Banzo(a)pyrene         ug/kg         1660         1590         96         54-130           Banzo(a)pyrene         ug/kg         1660         1590         96         54-130           Banzo(b)fluoranthene         ug/kg         1660         1590         96         54-130           Banzo(k)fluoranthene         ug/kg         1660         1410         85         53-130           Bis(2-Chloroethyl)phthalate         ug/kg         1660         1860         112         46-138 <v1< td="">           Diversene         ug/kg         1660         1590         96         57-130           Diversene         ug/kg         1660         1520         92         60-130           Divetrylphthalate         ug/kg         16</v1<>	Benzo(a)anthracene	ua/ka	1660	1740	105	59-130	
Benzo(b)[fluoranthene         ug/kg         1660         1590         96         54-130           Benzo(g,h,i)perylene         ug/kg         1660         1580         95         59-130         v1           Benzo(k)[fluoranthene         ug/kg         1660         1590         96         54-130           Benzoic Acid         ug/kg         8280         5680         69         19-130           Benzyl alcohol         ug/kg         3310         2570         78         50-130           bis(2-Chloroethoxy)methane         ug/kg         1660         1370         83         55-130           bis(2-Chloroethyl) ether         ug/kg         1660         1410         85         53-130           bis(2-Chloroethyl) pthalate         ug/kg         1660         1860         112         46-138         v1           bis(2-Chloroethyl) pthalate         ug/kg         1660         1590         96         57-130           birn-cylphthalate         ug/kg         1660         1520         92         60-130           Dien-cylphthalate         ug/kg         1660         1520         92         57-130           Dien-cylphthalate         ug/kg         1660         1520         92         57-130	Benzo(a)pvrene	ua/ka	1660	1610	97	57-130	
Banzo(g,h.i)perylene       ug/kg       1660       1580       95       59-130       v1         Banzo(k,h)perylene       ug/kg       1660       1590       96       54-130         Banzo(k,h)perylene       ug/kg       8280       5680       69       19-130         Banzoic Acid       ug/kg       3310       2570       78       50-130         Banzoic Acid       ug/kg       1660       1370       83       55-130         Bis(2-Chloroethoxy)methane       ug/kg       1660       1410       85       53-130         bis(2-Ehloroethyl) ether       ug/kg       1660       1810       109       58-130         Butylbenzylphthalate       ug/kg       1660       1860       112       46-138       v1         Din-butylphthalate       ug/kg       1660       1500       96       57-130       Din-butylphthalate       ug/kg       1660       1520       92       60-130         Dihenzo(g,h)anthracene       ug/kg       1660       1520       92       67-130       Dinethylphthalate       ug/kg       1660       1520       92       57-130         Dibenzofuran       ug/kg       1660       1520       92       57-130       Dinethylphthalate	Benzo(b)fluoranthene	ua/ka	1660	1590	96	54-130	
Banzo(k)fluoranthene       ug/kg       1660       1590       96       54-130         Banzo(k)fluoranthene       ug/kg       3310       2570       78       50-130         Banzo(k)fluoranthene       ug/kg       3310       2570       78       50-130         Banzo(k)fluoranthene       ug/kg       1660       1370       83       55-130         bis(2-Chloroethyl) ether       ug/kg       1660       1810       109       58-130         Bis(2-Ethylhexyl)phthalate       ug/kg       1660       1810       109       58-130         Bis(2-Ethylhexyl)phthalate       ug/kg       1660       1860       112       46-138       v1         Choroethyl) ether       ug/kg       1660       1740       105       57-130       50-130         Din-butylphthalate       ug/kg       1660       1520       92       60-130       116         Dihenz(a,h)anthracene       ug/kg       1660       1520       92       57-130       11         Dibenz(a,h)anthracene       ug/kg       1660       1520       92       57-130       11         Dibenz(a,h)anthracene       ug/kg       1660       1520       92       57-130       11         Dibenz(a,h)a	Benzo(a.h.i)pervlene	ua/ka	1660	1580	95	59-130	v1
Banzoic Acid         Lg/kg         Sola         Sola <thsola< th=""> <thsola< td=""><td>Benzo(k)fluoranthene</td><td>ua/ka</td><td>1660</td><td>1590</td><td>96</td><td>54-130</td><td></td></thsola<></thsola<>	Benzo(k)fluoranthene	ua/ka	1660	1590	96	54-130	
Banzyl alcohol         ug/kg         Banzyl         Banzyl <thbanzyl< th=""> <thba< td=""><td>Benzoic Acid</td><td>ua/ka</td><td>8280</td><td>5680</td><td>69</td><td>19-130</td><td></td></thba<></thbanzyl<>	Benzoic Acid	ua/ka	8280	5680	69	19-130	
bis(2-Chloroethoxy)methane       ug/kg       1660       1370       83       55-130         bis(2-Chloroethyl) ether       ug/kg       1660       1410       85       53-130         bis(2-Chloroethyl) phthalate       ug/kg       1660       1810       109       58-130         Butylbenzylphthalate       ug/kg       1660       1860       112       46-138 v1         Chrysene       ug/kg       1660       1740       105       57-130         Din-butylphthalate       ug/kg       1660       1590       96       57-130         Din-octylphthalate       ug/kg       1660       1520       92       60-130         Dibenz(a,h)anthracene       ug/kg       1660       1520       92       57-130         Dimethylphthalate       ug/kg       1660       1520       93       53-130 </td <td>Benzvl alcohol</td> <td>ua/ka</td> <td>3310</td> <td>2570</td> <td>78</td> <td>50-130</td> <td></td>	Benzvl alcohol	ua/ka	3310	2570	78	50-130	
bis(2-Chloroethyl) ether       ug/kg       1660       1410       85       53-130         bis(2-Ethylhexyl)phthalate       ug/kg       1660       1810       109       58-130         Butylbenzylphthalate       ug/kg       1660       1860       112       46-138 v1         Chrysene       ug/kg       1660       1740       105       57-130         Di-n-butylphthalate       ug/kg       1660       1590       96       57-130         Di-n-octylphthalate       ug/kg       1660       1520       92       60-130         Dibenz(a,h)anthracene       ug/kg       1660       1520       92       60-130         Dibenzofuran       ug/kg       1660       1520       92       60-130         Dimethylphthalate       ug/kg       1660       1520       92       57-130         Dimethylphthalate       ug/kg       1660       1520       92       57-130         Dimethylphthalate       ug/kg       1660       1520       92       57-130         Uoranthene       ug/kg       1660       1520       92       57-130         Fluoranthene       ug/kg       1660       1520       93       53-130         Hexachlorobenzene </td <td>bis(2-Chloroethoxy)methane</td> <td>ua/ka</td> <td>1660</td> <td>1370</td> <td>83</td> <td>55-130</td> <td></td>	bis(2-Chloroethoxy)methane	ua/ka	1660	1370	83	55-130	
bis(2-Ethylhexyl)phthalate       ug/kg       1660       1810       109       58-130         Butylbenzylphthalate       ug/kg       1660       1860       112       46-138 v1         Chrysene       ug/kg       1660       1740       105       57-130         Di-n-butylphthalate       ug/kg       1660       1590       96       57-130         Di-n-octylphthalate       ug/kg       1660       1520       92       60-130         Dibenz(a,h)anthracene       ug/kg       1660       1520       92       60-130         Dibenz(a,h)anthracene       ug/kg       1660       1520       92       60-130         Dibenzfuran       ug/kg       1660       1540       93       55-130         Dimethylphthalate       ug/kg       1660       1520       92       57-130         Cluoranthene       ug/kg       1660       1520       92       57-130         Cluoranthene       ug/kg       1660       1520       92       57-130         Cluoranthene       ug/kg       1660       1550       93       53-130         Hexachlorobenzene       ug/kg       1660       1550       93       53-130         Hexachlorocyclopentadiene<	bis(2-Chloroethyl) ether	ua/ka	1660	1410	85	53-130	
No.(= 1.47), minuted       ug/kg       1660       1876       1676       1676       1676         Sutylbenzylphthalate       ug/kg       1660       1860       112       46-138 v1         Chrysene       ug/kg       1660       1740       105       57-130         Di-n-butylphthalate       ug/kg       1660       1920       116       57-130         Di-n-octylphthalate       ug/kg       1660       1920       116       57-130         Dibenz(a,h)anthracene       ug/kg       1660       1520       92       60-130         Dibenzofuran       ug/kg       1660       1540       93       55-130         Diethylphthalate       ug/kg       1660       1520       92       57-130         Diethylphthalate       ug/kg       1660       1520       92       57-130         Dimethylphthalate       ug/kg       1660       1520       92       57-130         Churanthene       ug/kg       1660       1520       92       57-130         Fluoranthene       ug/kg       1660       1490       90       56-130         Hexachlorobenzene       ug/kg       1660       1490       93       53-130         Hexachlorocy	bis(2-Ethylhexyl)phthalate	ua/ka	1660	1810	109	58-130	
Chryseneug/kg1660174010557-130Di-n-butylphthalateug/kg166015909657-130Di-n-butylphthalateug/kg1660192011657-130Dibenz(a,h)anthraceneug/kg166015209260-130Dibenzofuranug/kg166015409355-130Diethylphthalateug/kg166015209257-130Diethylphthalateug/kg166015209257-130Diethylphthalateug/kg166015209257-130Diethylphthalateug/kg166015209257-130Fluorantheneug/kg166015209257-130Fluorantheneug/kg166015209257-130Fluorantheneug/kg166015209257-130Fluorantheneug/kg166015209353-130Fluorantheneug/kg166015509353-130Hexachlorocyclopentadieneug/kg166010306223-130Hexachlorocyclopentadieneug/kg166015909661-130sophoroneug/kg166015909661-130N-Nitroso-di-n-propylamineug/kg166012807752-130N-Nitrosodiphenylamineug/kg166014909045-130N-Nitrosodiphenylamineug/kg166014909045-130N-Nitrosodipheny	Butylbenzylphthalate	ua/ka	1660	1860	112	46-138	v1
Di-n-butylphthalateug/kg166015909657-130Di-n-butylphthalateug/kg166015909260-130Dibenz(a,h)anthraceneug/kg166015209260-130Dibenzofuranug/kg166014909054-130Diethylphthalateug/kg166015209257-130Diethylphthalateug/kg166015209257-130Diethylphthalateug/kg166015209257-130Cluorantheneug/kg166015209257-130Fluoreneug/kg166015209257-130Fluoreneug/kg166014909056-130Hexachlorobenzeneug/kg166014909056-130Iexachlorocyclopentadieneug/kg166014108548-130ndeno(1,2,3-cd)pyreneug/kg166015909661-130sophoroneug/kg166013408149-130V-Nitroso-di-n-propylamineug/kg166012807752-130V-Nitrosodiphenylamineug/kg166014909045-130V-Nitrosodiphenylamineug/kg166015009456-130Vitrobenzeneug/kg166015009456-130	Chrysene	ua/ka	1660	1740	105	57-130	
Non-only philateug/kg1660192011657-130 v1Dibenz(a,h) anthraceneug/kg166015209260-130Dibenzofuranug/kg166014909054-130Diethylphthalateug/kg166015409355-130Dimethylphthalateug/kg166015209257-130Dimethylphthalateug/kg166015209257-130Cluorantheneug/kg166015209257-130Fluoreneug/kg166015209257-130Iexachlorobenzeneug/kg166014909056-130Iexachlorocyclopentadieneug/kg166015509353-130Iexachlorocyclopentadieneug/kg166014108548-130ndeno(1,2,3-cd)pyreneug/kg166015909661-130v-Nitroso-di-n-propylamineug/kg166012807752-130v-Nitrosodiphenylamineug/kg166014909045-130v-Nitrosodiphenylamineug/kg166014909045-130v-Nitrosodiphenylamineug/kg166014909045-130v-Nitrosodiphenylamineug/kg166015009456-130vitrobenzeneug/kg166015009456-130	Di-n-butylphthalate	ua/ka	1660	1590	96	57-130	
Dibenz(a,h)anthracene       ug/kg       1660       1520       92       60-130         Dibenzofuran       ug/kg       1660       1490       90       54-130         Diethylphthalate       ug/kg       1660       1520       92       60-130         Diethylphthalate       ug/kg       1660       1540       93       55-130         Dimethylphthalate       ug/kg       1660       1520       92       57-130         Dimethylphthalate       ug/kg       1660       1520       92       57-130         Fluoranthene       ug/kg       1660       1520       92       57-130         Fluoranthene       ug/kg       1660       1520       92       57-130         Fluoranthene       ug/kg       1660       1490       90       56-130         Hexachlorobenzene       ug/kg       1660       1030       62       23-130         Hexachloroethane       ug/kg       1660       1410       85       48-130         ndeno(1,2,3-cd)pyrene       ug/kg       1660       1590       96       61-130         sophorone       ug/kg       1660       1340       81       49-130         N-Nitrosodimethylamine       ug/kg	Di-n-octvlphthalate	ua/ka	1660	1920	116	57-130	v1
Dibenzofuran       ug/kg       1660       1490       90       54-130         Dibenzofuran       ug/kg       1660       1490       90       54-130         Dibethylphthalate       ug/kg       1660       1540       93       55-130         Dimethylphthalate       ug/kg       1660       1520       92       57-130         Dimethylphthalate       ug/kg       1660       1520       92       57-130         Fluoranthene       ug/kg       1660       1520       92       57-130         Fluoranthene       ug/kg       1660       1490       90       56-130         Fluorene       ug/kg       1660       1550       93       53-130         Hexachlorobenzene       ug/kg       1660       1030       62       23-130         Hexachlorocyclopentadiene       ug/kg       1660       1030       62       23-130         Hexachlorocthane       ug/kg       1660       1410       85       48-130         ndeno(1,2,3-cd)pyrene       ug/kg       1660       1590       96       61-130         sophorone       ug/kg       1660       1340       81       49-130         N-Nitrosodimethylamine       ug/kg	Dibenz(a.h)anthracene	ua/ka	1660	1520	92	60-130	
Diethylphthalate       ug/kg       1660       1540       93       55-130         Dimethylphthalate       ug/kg       1660       1520       92       57-130         Dimethylphthalate       ug/kg       1660       1520       92       57-130         Fluoranthene       ug/kg       1660       1520       92       57-130         Fluoranthene       ug/kg       1660       1520       92       57-130         Fluoranthene       ug/kg       1660       1490       90       56-130         Hexachlorobenzene       ug/kg       1660       1030       62       23-130         Hexachloroethane       ug/kg       1660       1030       62       23-130         Hexachloroethane       ug/kg       1660       1410       85       48-130         ndeno(1,2,3-cd)pyrene       ug/kg       1660       1590       96       61-130         sophorone       ug/kg       1660       1340       81       49-130         N-Nitrosodimethylamine       ug/kg       1660       1280       77       52-130         N-Nitrosodiphenylamine       ug/kg       1660       1490       90       45-130         N-Nitrosodiphenylamine	Dibenzofuran	ua/ka	1660	1490	90	54-130	
Dimethylphthalateug/kg166015209257-130Fluorantheneug/kg166015209257-130Fluorantheneug/kg166014909056-130Hexachlorobenzeneug/kg166015509353-130Hexachlorocyclopentadieneug/kg166010306223-130Hexachlorocthaneug/kg166014108548-130Indeno(1,2,3-cd)pyreneug/kg166015909661-130sophoroneug/kg166013408149-130N-Nitrosodimethylamineug/kg166014909045-130N-Nitrosodiphenylamineug/kg166015609456-130Nitrobenzeneug/kg166015009150-130	Diethylphthalate	ug/kg	1660	1540	93	55-130	
Fluoranthene       ug/kg       1660       1520       92       57-130         Fluoranthene       ug/kg       1660       1490       90       56-130         Fluorene       ug/kg       1660       1490       90       56-130         Hexachlorobenzene       ug/kg       1660       1550       93       53-130         Hexachlorocyclopentadiene       ug/kg       1660       1030       62       23-130         Hexachlorocthane       ug/kg       1660       1410       85       48-130         Indeno(1,2,3-cd)pyrene       ug/kg       1660       1590       96       61-130         sophorone       ug/kg       1660       1340       81       49-130         N-Nitrosodin-propylamine       ug/kg       1660       1280       77       52-130         N-Nitrosodimethylamine       ug/kg       1660       1490       90       45-130         N-Nitrosodiphenylamine       ug/kg       1660       1560       94       56-130         N-Nitrosodiphenylamine       ug/kg       1660       1500       91       50-130	Dimethylphthalate	ua/ka	1660	1520	92	57-130	
Fluorene       ug/kg       1660       1490       90       56-130         Hexachlorobenzene       ug/kg       1660       1550       93       53-130         Hexachlorocyclopentadiene       ug/kg       1660       1030       62       23-130         Hexachlorocethane       ug/kg       1660       1410       85       48-130         Indeno(1,2,3-cd)pyrene       ug/kg       1660       1590       96       61-130         sophorone       ug/kg       1660       1340       81       49-130         N-Nitrosodinethylamine       ug/kg       1660       1280       77       52-130         N-Nitrosodiphenylamine       ug/kg       1660       1490       90       45-130         N-Nitrosodiphenylamine       ug/kg       1660       1560       94       56-130         N-Nitrosodiphenylamine       ug/kg       1660       1500       94       56-130	Fluoranthene	ua/ka	1660	1520	92	57-130	
Hexachlorobenzene       ug/kg       1660       1550       93       53-130         Hexachlorocyclopentadiene       ug/kg       1660       1030       62       23-130         Hexachlorocyclopentadiene       ug/kg       1660       1030       62       23-130         Hexachlorocyclopentadiene       ug/kg       1660       1410       85       48-130         Hexachlorocyclopentadiene       ug/kg       1660       1590       96       61-130         Indeno(1,2,3-cd)pyrene       ug/kg       1660       1340       81       49-130         sophorone       ug/kg       1660       1280       77       52-130         N-Nitrosodimethylamine       ug/kg       1660       1490       90       45-130         N-Nitrosodiphenylamine       ug/kg       1660       1560       94       56-130         Nitrobenzene       ug/kg       1660       1500       91       50-130	Fluorene	ua/ka	1660	1490	90	56-130	
Hexachlorocyclopentadiene       ug/kg       1660       1030       62       23-130         Hexachlorocyclopentadiene       ug/kg       1660       1410       85       48-130         Hexachlorocthane       ug/kg       1660       1590       96       61-130         Indeno(1,2,3-cd)pyrene       ug/kg       1660       1340       81       49-130         N-Nitroso-di-n-propylamine       ug/kg       1660       1280       77       52-130         N-Nitrosodimethylamine       ug/kg       1660       1490       90       45-130         N-Nitrosodiphenylamine       ug/kg       1660       1560       94       56-130         Nitrobenzene       ug/kg       1660       1500       91       50-130	Hexachlorobenzene	ua/ka	1660	1550	93	53-130	
Hexachloroethane       ug/kg       1660       1410       85       48-130         Hexachloroethane       ug/kg       1660       1590       96       61-130         sophorone       ug/kg       1660       1340       81       49-130         N-Nitroso-di-n-propylamine       ug/kg       1660       1280       77       52-130         N-Nitrosodimethylamine       ug/kg       1660       1490       90       45-130         N-Nitrosodiphenylamine       ug/kg       1660       1560       94       56-130         Nitrobenzene       ug/kg       1660       1500       91       50-130	Hexachlorocyclopentadiene	ua/ka	1660	1030	62	23-130	
ndeno(1,2,3-cd)pyrene       ug/kg       1660       1590       96       61-130         sophorone       ug/kg       1660       1340       81       49-130         N-Nitroso-di-n-propylamine       ug/kg       1660       1280       77       52-130         N-Nitrosodimethylamine       ug/kg       1660       1490       90       45-130         N-Nitrosodiphenylamine       ug/kg       1660       1560       94       56-130         Nitrobenzene       ug/kg       1660       1500       91       50-130	Hexachloroethane	ua/ka	1660	1410	85	48-130	
sophorone       ug/kg       1660       1340       81       49-130         v-Nitroso-di-n-propylamine       ug/kg       1660       1280       77       52-130         v-Nitrosodimethylamine       ug/kg       1660       1490       90       45-130         v-Nitrosodiphenylamine       ug/kg       1660       1560       94       56-130         vitrobenzene       ug/kg       1660       1500       91       50-130	Indeno(1.2.3-cd)pyrene	ua/ka	1660	1590	96	61-130	
V-Nitroso-di-n-propylamine       ug/kg       1660       1280       77       52-130         V-Nitrosodimethylamine       ug/kg       1660       1490       90       45-130         V-Nitrosodiphenylamine       ug/kg       1660       1560       94       56-130         Vitrobenzene       ug/kg       1660       1500       91       50-130	Isophorone	ua/ka	1660	1340	81	49-130	
V-Nitrosodimethylamine     ug/kg     1660     1490     90     45-130       V-Nitrosodiphenylamine     ug/kg     1660     1560     94     56-130       Nitrobenzene     ug/kg     1660     1500     91     50-130	N-Nitroso-di-n-propylamine	ua/ka	1660	1280	77	52-130	
V-Nitrosodiphenylamine         ug/kg         1660         1560         94         56-130           Nitrobenzene         ug/kg         1660         1500         91         50-130	N-Nitrosodimethylamine	ua/ka	1660	1490	90	45-130	
Vitrobenzene ug/kg 1660 1500 91 50-130	N-Nitrosodiphenylamine	ua/ka	1660	1560	94	56-130	
	Nitrobenzene	ua/ka	1660	1500	91	50-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

# **REPORT OF LABORATORY ANALYSIS**



#### Project: BRAMLETTE J21030497

Pace Project No.: 92528011

#### LABORATORY CONTROL SAMPLE: 3206788

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Pentachlorophenol	ug/kg	3310	2690	81	33-130	
Phenanthrene	ug/kg	1660	1580	96	60-130	
Phenol	ug/kg	1660	1480	90	54-130	
Pyrene	ug/kg	1660	1800	109	61-130	
Pyridine	ug/kg	1660	1250	76	35-130	
2,4,6-Tribromophenol (S)	%			83	18-130	
2-Fluorobiphenyl (S)	%			83	19-130	
2-Fluorophenol (S)	%			84	18-130	
Nitrobenzene-d5 (S)	%			81	21-130	
Phenol-d6 (S)	%			77	18-130	
Terphenyl-d14 (S)	%			115	15-130	

#### MATRIX SPIKE SAMPLE:

3206789

		92528011017	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/kg	ND	1960	1210	62	30-130	
2,2'-Oxybis(1-chloropropane)	ug/kg	ND	1960	1110	57	30-130	
2,4,5-Trichlorophenol	ug/kg	ND	1960	1620	83	26-130	
2,4,6-Trichlorophenol	ug/kg	ND	1960	1450	74	23-130	
2,4-Dichlorophenol	ug/kg	ND	1960	1220	62	29-130	
2,4-Dimethylphenol	ug/kg	ND	1960	1070	55	13-130	
2,4-Dinitrophenol	ug/kg	ND	9800	7440	76	10-131	
2,4-Dinitrotoluene	ug/kg	ND	1960	1660	85	28-130	
2,6-Dinitrotoluene	ug/kg	ND	1960	1690	86	36-130	
2-Chloronaphthalene	ug/kg	ND	1960	1400	71	27-130	
2-Chlorophenol	ug/kg	ND	1960	1190	61	29-130	
2-Methylnaphthalene	ug/kg	ND	1960	1230	63	29-130	
2-Methylphenol(o-Cresol)	ug/kg	ND	1960	1090	56	20-130	
2-Nitroaniline	ug/kg	ND	3910	3340	85	29-130	
2-Nitrophenol	ug/kg	ND	1960	1340	68	26-130	
3&4-Methylphenol(m&p Cresol)	ug/kg	ND	1960	1060	54	10-176	
3,3'-Dichlorobenzidine	ug/kg	ND	3910	3260	83	15-130 I	L
3-Nitroaniline	ug/kg	ND	3910	3410	87	28-130	
4,6-Dinitro-2-methylphenol	ug/kg	ND	3910	3410	87	15-132	
4-Bromophenylphenyl ether	ug/kg	ND	1960	1640	83	35-130	
4-Chloro-3-methylphenol	ug/kg	ND	3910	2770	71	30-130	
4-Chloroaniline	ug/kg	ND	3910	2340	60	28-130	
4-Chlorophenylphenyl ether	ug/kg	ND	1960	1460	75	32-130	
4-Nitroaniline	ug/kg	ND	3910	3150	80	30-130	
4-Nitrophenol	ug/kg	ND	9800	7760	79	17-130	
Acenaphthene	ug/kg	ND	1960	1490	76	29-130	
Acenaphthylene	ug/kg	ND	1960	1550	79	31-130	
Aniline	ug/kg	ND	1960	848	43	10-130	
Anthracene	ug/kg	ND	1960	1630	83	33-130	
Benzo(a)anthracene	ug/kg	ND	1960	1870	96	32-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### Project: BRAMLETTE J21030497

Pace Project No.: 92528011

MATRIX SPIKE SAMPLE:	3206789						
		92528011017	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Benzo(a)pyrene	ug/kg	ND	1960	1800	92	32-130	
Benzo(b)fluoranthene	ug/kg	ND	1960	1620	83	33-130	
Benzo(g,h,i)perylene	ug/kg	ND	1960	2020	103	28-130 v	1
Benzo(k)fluoranthene	ug/kg	ND	1960	1720	88	31-130	
Benzoic Acid	ug/kg	ND	9800	3310	34	10-130	
Benzyl alcohol	ug/kg	ND	3910	2230	57	31-130	
bis(2-Chloroethoxy)methane	ug/kg	ND	1960	1220	62	30-130	
bis(2-Chloroethyl) ether	ug/kg	ND	1960	1230	63	68-130 N	11
bis(2-Ethylhexyl)phthalate	ug/kg	ND	1960	1910	98	40-130	
Butylbenzylphthalate	ug/kg	ND	1960	2000	102	40-130 v	1
Chrysene	ug/kg	ND	1960	1870	95	30-130	
Di-n-butylphthalate	ug/kg	ND	1960	1700	87	41-130	
Di-n-octylphthalate	ug/kg	ND	1960	2010	102	42-130 v	1
Dibenz(a,h)anthracene	ug/kg	ND	1960	2020	103	27-130	
Dibenzofuran	ug/kg	ND	1960	1540	78	32-130	
Diethylphthalate	ug/kg	ND	1960	1690	86	40-130	
Dimethylphthalate	ug/kg	ND	1960	1670	85	37-130	
Fluoranthene	ug/kg	ND	1960	1660	85	26-130	
Fluorene	ug/kg	ND	1960	1560	79	31-130	
Hexachlorobenzene	ug/kg	ND	1960	1670	85	29-130	
Hexachlorocyclopentadiene	ug/kg	ND	1960	814	42	10-130	
Hexachloroethane	ug/kg	ND	1960	1200	61	21-130	
Indeno(1,2,3-cd)pyrene	ug/kg	ND	1960	2020	103	28-130	
Isophorone	ug/kg	ND	1960	1260	64	32-130	
N-Nitroso-di-n-propylamine	ug/kg	ND	1960	1130	57	31-130	
N-Nitrosodimethylamine	ug/kg	ND	1960	1210	62	20-130	
N-Nitrosodiphenylamine	ug/kg	ND	1960	1680	86	32-130	
Nitrobenzene	ug/kg	ND	1960	1300	66	25-130	
Pentachlorophenol	ug/kg	ND	3910	2790	71	10-130	
Phenanthrene	ug/kg	ND	1960	1730	88	34-130	
Phenol	ug/kg	ND	1960	1200	61	14-130	
Pyrene	ug/kg	ND	1960	2110	108	31-130	
Pyridine	ug/kg	ND	1960	936	48	10-130	
2,4,6-Tribromophenol (S)	%				64	18-130	
2-Fluorobiphenyl (S)	%				57	19-130	
2-Fluorophenol (S)	%				50	18-130	
Nitrobenzene-d5 (S)	%				55	21-130	
Phenol-d6 (S)	%				48	18-130	
Terphenyl-d14 (S)	%				99	15-130	

#### SAMPLE DUPLICATE: 3206790

Parameter	Units	92528011017 Result	Dup Result	RPD	Max RPD	Qualifiers
1-Methylnaphthalene 2,2'-Oxybis(1-chloropropane)	ug/kg ug/kg	ND ND	ND ND		30 30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

# **REPORT OF LABORATORY ANALYSIS**



#### Project: BRAMLETTE J21030497

Pace Project No.: 92528011

SAMPLE DUPLICATE: 3206790						
		92528011017	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
2,4,5-Trichlorophenol	ug/kg	ND	ND		3	30
2.4.6-Trichlorophenol	ua/ka	ND	ND		3	30
2.4-Dichlorophenol	ua/ka	ND	ND		3	30
2.4-Dimethylphenol	ua/ka	ND	ND			30
2.4-Dinitrophenol	ua/ka	ND	ND			30
2.4-Dinitrotoluene	ua/ka	ND	ND			30
2.6-Dinitrotoluene	ua/ka	ND	ND		2	30
2-Chloronaphthalene	ua/ka	ND	ND		2	30
2-Chlorophenol	ua/ka	ND	ND		2	30
2-Methylnanhthalene	ug/kg	ND	ND			30
2-Methylphenol(o-Cresol)	ug/kg	ND	ND			30
2-Nitroaniline	ug/kg	ND				30
2 Nitrophonol	ug/kg	ND				20
28.4-Methylphenol(m&n Cresol)	ug/kg					30
3 3'-Dichlorobenzidine	ug/kg	ND				
3-Nitroaniline	ug/kg					
4.6 Dinitro 2 mothylphonol	ug/kg					
4,0-Dining-2-methyphenol	ug/kg					
4-Bromophenyiphenyi ether	ug/kg		ND			
4-Chloroppiling	ug/kg		ND			
4-Chlorophanula hanul athan	ug/kg		ND			
4-Chlorophenyiphenyi ether	ug/kg		ND			50
	ug/kg		ND		:	30
	ug/kg	ND	ND			30
Acenaphthene	ug/kg	ND	ND		3	30
Acenaphthylene	ug/kg	ND	ND		3	30
Aniline	ug/kg	ND	ND		3	30
Anthracene	ug/kg	ND	ND		3	30
Benzo(a)anthracene	ug/kg	ND	136J		3	30
Benzo(a)pyrene	ug/kg	ND	ND		3	30
Benzo(b)fluoranthene	ug/kg	ND	ND		3	30
Benzo(g,h,i)perylene	ug/kg	ND	ND		3	30 v1
Benzo(k)fluoranthene	ug/kg	ND	ND		3	30
Benzoic Acid	ug/kg	ND	ND		3	30
Benzyl alcohol	ug/kg	ND	ND		3	30
bis(2-Chloroethoxy)methane	ug/kg	ND	ND		3	30
bis(2-Chloroethyl) ether	ug/kg	ND	ND		3	30
bis(2-Ethylhexyl)phthalate	ug/kg	ND	ND		3	30
Butylbenzylphthalate	ug/kg	ND	ND		3	30 v1
Chrysene	ug/kg	ND	ND		3	30
Di-n-butylphthalate	ug/kg	ND	ND		3	30
Di-n-octylphthalate	ug/kg	ND	ND		3	30 v1
Dibenz(a,h)anthracene	ug/kg	ND	ND		3	30
Dibenzofuran	ug/kg	ND	ND		3	30
Diethylphthalate	ug/kg	ND	ND		3	30
Dimethylphthalate	ug/kg	ND	ND		3	30
Fluoranthene	ug/kg	ND	327J		3	30
Fluorene	ug/kg	ND	ND		3	30

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

# **REPORT OF LABORATORY ANALYSIS**



# Project: BRAMLETTE J21030497

Pace Project No.: 92528011

## SAMPLE DUPLICATE: 3206790

		92528011017	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Hexachlorobenzene	ug/kg	ND	ND		30	
Hexachlorocyclopentadiene	ug/kg	ND	ND		30	
Hexachloroethane	ug/kg	ND	ND		30	
Indeno(1,2,3-cd)pyrene	ug/kg	ND	ND		30	
Isophorone	ug/kg	ND	ND		30	
N-Nitroso-di-n-propylamine	ug/kg	ND	ND		30	
N-Nitrosodimethylamine	ug/kg	ND	ND		30	
N-Nitrosodiphenylamine	ug/kg	ND	ND		30	
Nitrobenzene	ug/kg	ND	ND		30	
Pentachlorophenol	ug/kg	ND	ND		30	
Phenanthrene	ug/kg	ND	329J		30	
Phenol	ug/kg	ND	ND		30	
Pyrene	ug/kg	ND	311J		30	
Pyridine	ug/kg	ND	ND		30	
2,4,6-Tribromophenol (S)	%	60	62			
2-Fluorobiphenyl (S)	%	62	38			
2-Fluorophenol (S)	%	57	64			
Nitrobenzene-d5 (S)	%	63	64			
Phenol-d6 (S)	%	55	62			
Terphenyl-d14 (S)	%	90	50			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

# **REPORT OF LABORATORY ANALYSIS**



Project:	BRAM	ETTE J2103	0497							
Pace Project No.:	925280	)11								
QC Batch:	6072	98		Analysis Meth	nod: S	SW-846				
QC Batch Method:	SW-8	46		Analysis Desc	cription: [	Dry Weight/Per	cent Moist	ure		
				Laboratory:	F	Pace Analytical	Services	- Charlot	tte	
Associated Lab Sar	mples:	9252801100 9252801100 9252801101	1, 925280110 8, 925280110 5, 925280110	002, 92528011003, 92 009, 92528011010, 92 016, 92528011017, 92	528011004, 9 528011011, 9 528011018, 9	2528011005, 9 2528011012, 9 2528011019, 9	925280110 925280110 925280110	06, 9252 13, 9252 20	28011007, 28011014,	
SAMPLE DUPLICA	TE: 31	99386								
				92528011001	Dup		N	lax		
Para	meter		Units	Result	Result	RPD	R	PD	Qualifiers	
Percent Moisture			%	14.3	14.(	0	2	25	5 N2	
SAMPLE DUPLICA	TE: 31	99387								
_				92528011020	Dup		N	lax		
Parar	meter		Units	Result	Result	RPD	R	PD	Qualifiers	
Percent Moisture			%	33.1	37.1	1	11	25	5 N2	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



# QUALIFIERS

#### Project: BRAMLETTE J21030497

Pace Project No.: 92528011

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### ANALYTE QUALIFIERS

- C8 Result may be biased high due to carryover from previously analyzed sample.
- E Analyte concentration exceeded the calibration range. The reported result is estimated.
- IH This analyte exceeded secondary source verification criteria high for the initial calibration. The reported results should be considered an estimated value.
- IK The recalculated concentration of the calibration standard(s) did not meet method acceptance criteria; this result should be considered an estimated value.
- IL This analyte exceeded secondary source verification criteria low for the initial calibration. The reported results should be considered an estimated value.
- L1 Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- N2 The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.
- v1 The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.
- v2 The continuing calibration verification was below the method acceptance limit. The analyte was not detected in the associated samples and the sensitivity of the instrument was verified with a reporting limit check standard.
- v3 The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have low bias.



# QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: BRAMLETTE J21030497

92528011

Pace Project No.:

Analytical QC Batch Method QC Batch Lab ID Sample ID **Analytical Method** Batch RI-SB-13 (0.5-1.0) 607499 92528011001 EPA 3546 607315 EPA 8270E 92528011002 RI-SB-13 (5.5-6.0) EPA 3546 607315 EPA 8270E 607499 92528011003 RI-SB-14 (0.5-1.0) 607315 607499 EPA 3546 EPA 8270E RI-SB-14 (5.5-6.0) 92528011004 EPA 3546 607315 EPA 8270E 607499 92528011005 RI-SB-15 (0.5-1.0) EPA 3546 607315 607499 EPA 8270E 92528011006 RI-SB-15 (5.5-6.0) EPA 3546 607315 EPA 8270E 607499 92528011007 RI-SB-16 (0.5-1.0) EPA 3546 607315 EPA 8270E 607499 92528011008 RI-SB-16 (5.5-6.0) EPA 3546 607315 EPA 8270E 607499 92528011009 RI-SB-17 (0.5-1.0) 607315 EPA 3546 EPA 8270E 607499 92528011010 RI-SB-17 (5.5-6.0) 607315 607499 EPA 3546 EPA 8270E 92528011011 RI-SB-18 (0.5-1.0) EPA 3546 607315 EPA 8270E 607499 92528011012 RI-SB-18 (5.5-6.0) EPA 3546 607315 EPA 8270E 607499 92528011017 RI-SB-23 (0.5-1.0) EPA 3546 608843 EPA 8270E 609141 92528011018 RI-SB-23 (5.5-6.0) 608843 EPA 3546 EPA 8270E 609141 609141 92528011019 RI-SB-24 (0.5-1.0) EPA 3546 608843 EPA 8270E 92528011020 RI-SB-24 (5.5-6.0) EPA 3546 608843 EPA 8270E 609141 92528011021 **TRIP BLANK** EPA 8260D 607594 92528011001 RI-SB-13 (0.5-1.0) EPA 5035A/5030B 607356 EPA 8260D 607409 92528011002 RI-SB-13 (5.5-6.0) EPA 8260D 607409 EPA 5035A/5030B 607356 RI-SB-14 (0.5-1.0) 92528011003 EPA 5035A/5030B 607356 EPA 8260D 607409 RI-SB-14 (5.5-6.0) 92528011004 EPA 5035A/5030B 607356 EPA 8260D 607409 92528011005 RI-SB-15 (0.5-1.0) EPA 5035A/5030B 607356 EPA 8260D 607409 92528011006 RI-SB-15 (5.5-6.0) EPA 5035A/5030B 607356 EPA 8260D 607409 RI-SB-16 (0.5-1.0) 607623 92528011007 EPA 5035A/5030B EPA 8260D 607658 RI-SB-16 (5.5-6.0) 607409 92528011008 EPA 5035A/5030B 607356 EPA 8260D RI-SB-17 (0.5-1.0) 92528011009 EPA 5035A/5030B 607356 EPA 8260D 607409 92528011010 RI-SB-17 (5.5-6.0) EPA 5035A/5030B 607356 EPA 8260D 607409 92528011011 RI-SB-18 (0.5-1.0) EPA 5035A/5030B 607356 EPA 8260D 607409 RI-SB-18 (5.5-6.0) 607356 92528011012 EPA 5035A/5030B EPA 8260D 607409 RI-SB-23 (0.5-1.0) 608883 92528011017 EPA 5035A/5030B EPA 8260D 608896 92528011018 RI-SB-23 (5.5-6.0) EPA 5035A/5030B 608883 EPA 8260D 608896 92528011019 RI-SB-24 (0.5-1.0) EPA 5035A/5030B 608883 EPA 8260D 608896 RI-SB-24 (5.5-6.0) 608883 EPA 8260D 608896 92528011020 EPA 5035A/5030B RI-SB-13 (0.5-1.0) 92528011001 SW-846 607298 RI-SB-13 (5.5-6.0) 92528011002 SW-846 607298 RI-SB-14 (0.5-1.0) 92528011003 SW-846 607298 92528011004 RI-SB-14 (5.5-6.0) SW-846 607298 92528011005 RI-SB-15 (0.5-1.0) SW-846 607298 92528011006 RI-SB-15 (5.5-6.0) SW-846 607298 92528011007 RI-SB-16 (0.5-1.0) SW-846 607298 92528011008 RI-SB-16 (5.5-6.0) SW-846 607298 RI-SB-17 (0.5-1.0) 92528011009 SW-846 607298 RI-SB-17 (5.5-6.0) 92528011010 SW-846 607298 RI-SB-18 (0.5-1.0) SW-846 92528011011 607298 92528011012 RI-SB-18 (5.5-6.0) SW-846 607298



# QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:BRAMLETTE J21030497Pace Project No.:92528011

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92528011013		SW-846	607298		
92528011014	RI-SB-21 (5.5-6.0)	SW-846	607298		
92528011015	RI-SB-22 (0.5-1.0)	SW-846	607298		
92528011016	RI-SB-22 (5.5-6.0)	SW-846	607298		
92528011017	RI-SB-23 (0.5-1.0)	SW-846	607298		
92528011018	RI-SB-23 (5.5-6.0)	SW-846	607298		
92528011019	RI-SB-24 (0.5-1.0)	SW-846	607298		
92528011020	RI-SB-24 (5.5-6.0)	SW-846	607298		

ø)	Document Name:	Document Revised: October 28, 2020 Page 1 of 2
Pace Analytical"	Document No.: F-CAR-CS-033-Rev.07	Issuing Authority: Pace Carolinas Quality Office
aboratory receiving samples: Asheville Eden Greenwood	🗌 Huntersville 🗌 Rale	igh Mechanicsville Atlanta Kernersville
Sample Condition Client Name:		Project #: WO#:92528011
Courier:	PS USPS 0 Other:	Client 92528011
stody Seal Present? Yes ANO S	eals Intact? 🗌 Yes 🥂 N	O Date/Initials Person Examining Contents
cking Material: Bubble Wrap C ermometer: CIR Gun ID: <u>A3To7</u> I	Bubble Bags None	Other Biological Tissue Frozen?
bler Temp: $2 \cdot 1/3 \cdot 5 \cdot $	actor: ct (°C) <u>/s. y /-s.  </u> United States: CA, NY, of SC (check m	Temp should be above freezing to 6°C Samples out of temp criteria. Samples on ice, cooling process has begun Did samples originate from a foreign source (internationally, including Hawaii and Puerto Rico)?
		Comments/Discrepancy:
Chain of Custody Present?	Yes No N/A	1.
Samples Arrived within Hold Time?	Yes No N/A	2.
Short Hold Time Analysis (<72 hr.)?		3.
Rush Turn Around Time Requested?	Ves No N/A	4. 3 Day TAT
Sufficient Volume?		5.
Correct Containers Used?		6.
-Pace Containers Used?	Yes No N/A	
Containers Intact?	Yes No N/A	7.
Dissolved analysis: Samples Field Filtered?		8.
Sample Labels Match COC?	ØYes ØNo □N/A	9. Additional Samples not
-Includes Date/Time/ID/Analysis Matrix:	36	N K C K C
Headspace in VOA Vials (>5-6mm)?		- 10.
Trip Blank Present?	□Yes □No □N/A	11.
Trip Blank Custody Seals Present?	Tyes No PN/A	
COMMENTS/SAMPLE DISCREPANCY		Field Data Required?
		Lot ID of split containers:
IENT NO IFICATION/RESOLUTION		
Person contacted:	Date/	Time:
Project Manager SCURF Review:		Date:
Project Manager SRE Review:		Date:

2	Document Name: Sample Condition Upon Receipt(SCUR)	Document Revised: October 28, 2020 Page 2 of 2
Pace Analytical	Document No.: F-CAR-CS-033-Rev.07	Issuing Authority: Pace Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

# Project # WO#: 92528011

CLIENT: 92-Duke Ener

PM: KLH1

Due Date: 03/19/21

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottles

ltem#	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP45-125 mL Plastic H25O4 (pH < 2) (CI-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP4Z-125 mL Plastic ZN Acetate & NaOH (>9)	BP4C-125 mL Plastic NaOH (pH > 12) (Cl-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCI (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG1S-1 liter Amber H2SO4 (pH < 2)	<b>AG3S-</b> 250 mL Amber H2SO4 (pH < 2)	AG3A(DG3A)-250 mL Amber NH4CI (N/A)(CI-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SP5T-125 mL Sterile Plastic (N/A - lab)	SP2T-250 mL Sterile Plastic (N/A – lab)		BP3A-250 mL Plastic (NH2)2SO4 (9.3-9.7)	AGOU-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1								$\backslash$	1				$\backslash$	$\backslash$	/						1			1			_	
2	$\backslash$								(				$\backslash$	$\backslash$	/						1			1	1			
3	$\backslash$								1				$\backslash$		1						t.			1	1			
4	$\square$					$\backslash$	N		( .				$\backslash$	$\sum$	1						1				1			
5	1								1			17	$\backslash$	$\sum$					J		1			$\sum$				
6	$\square$						$\backslash$	$\square$	1				$\sum$	$\square$	$\sum$		1.1			11	1			$\sum$				
7						$\backslash$	$\backslash$	$\sum$	1		$\square$		$\square$	$\square$	$\sum$					, [1]	1			$\square$	$\sum$			
8						$\square$			1		$\backslash$		1	$\square$							1				$\sum$			_
9						$\square$			1		$\backslash$		1	1					1		1			$\square$	$\sum$	1		
10						$\sum$	$\sum$	$\sum$	1		$\backslash$		1	$\square$							1				1		-	-
11				-		$\backslash$		$\sum$	1		$\backslash$		$\backslash$	1	$\sum$						(				$\square$	-		
12					1	$\backslash$	N	N	1		$\backslash$		$\backslash$	$\backslash$	1				1		1			1	1			

		pH Ad	justment Log for Pres	erved Samples		_
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #
	-					
						(
		1				

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

ace Analytical

Sample Receiving Non-Conformance Form (NCF)

Date: 3/	6/21	Evaluated by: Aus Deracin
Client: /	Similaria	

# A, WO#: 92528011

PM: KLH1 Due Date: 03/19/21 CLIENT: 92-Duke Ener

1. If Chain-of-Custody (COC) is not received: contact client and if necessary, fill out a COC and indicate that it was filled out by lab personnel. Note issues on this NCF.

Col	ection date/time missing or prrect	Analyses or analytes: missing or clarification needed	X	received (missing, additional, etc.)
Sai	nple IDs on COC do not ch sample labels	Required trip blanks were not received		Required signatures are missing
Comm	The Following Some	les not listed above: Did not Receive	- 5-	-pl-s listed on cor 2002.

3. Sample integrity issues: check applicable issues below and add details where appropriate:

Samples: Past holding time	Samples: Condition needs to be brought to lab personnel's attention (details below)	Preservation: Improper
Samples: Not field filtered	Containers: Broken or compromised	Temperature: not within acceptance criteria (typically 0-6C)
Samples: Insufficient volume received	Containers: Incorrect	Temperature: Samples arrived frozen
Samples: Cooler damaged or compromised	Custody Seals: Missing or compromised on samples, trip blanks or coolers	Vials received with improper headspace
Samples: contain chlorine or sulfides	Packing Material: Insufficient/Improper	Other:

Comments/Details:

4. If Samples not pres	erved properly and Sample Receiving a	djusts pH, add details below:	
Sample ID:	Date/Time:	Amount/type pres added:	
Preserved by:	Initial and Final pH:	Lot#ofpres added:	
Sample ID:	Date/Time:	Amount/type pres added:	
Preserved by:	Initial and Final pH:	Lot # of pres added:	
Sample ID:	Date/Time:	Amouni/type pres added:	
Preserved by:	Initial and Final pH:	Lot#of pres added:	

# 5. Client Contact: If client is contacted for any issue listed above, fill in details below:

Client:	Contacted per:	
PM Initials:	Date/Time:	

**Client Comments/Instructions:** 

	T	T	1			12	11	10	9	œ	7	6	cn.	4	ω	N	-	ITEM #		Request	Email: Phone:	Suite 22	Address	Section
					ADDITIONAL COMMENTS	RE-513-18-50-55-1.0-202103	RI-5B-18-50-0,5-1,0-22216315	RE-53-17-50-5.5-6.0-2021631	RI-513-17-50-0,5-1.0-20210315	RI-5B-16-50-55-6,0-20210315	RE-513-16-50-0.5-1.0-20210315	ET -53-15-50-5,5-6.0-202031	12-58-15-52-0.5-1.0-20210315	122-58-14-50-55-60-2021031	RI-53-14-50-05-1-0-20216315	RI-58-13-50-5,5-6,0-20210315	RI-5B-13-50-0.5-1.0-20210315	MATRIX Drinking Waste Waste War Waste War Waste War Potetor Solisolid One Character per box. (A-Z, 0-9 /) Sample Ids must be unique Tisse	``	ed Due Date: 3 May TAT	/803)429-3668 Fax	), Greenville, SC 29601	y: Synterra 148 River street	A 3 Client Information:
	Tyler Whe	Tom Ky	Syntern	Ton Ky	RELINQUISH	15 516	51.6	5 SL 6	- SL 6	- 54 6	51 6	5 51 6	51 G 3	5 546	546	5-63	51 63	로 대 및 중 등 은 유 가 꽃 독 및 응 MATRIX CODE (see valid codes to left) SAMPLE TYPE (G=GRAB C=COMP)		Project # 00-21	Purchase Order #: Project Name: Brami		Copy To: Heather Sn	Section B Required Project Inform
PRINT Na SIGNATU	HI July Wighth	1212	Cold Story	12/2	IED BY / AFFILIATION	3/15/21 1350 -	3/15/21 1345	31.5121 1335	3/15/21 1330 -	3,5/21 1150 -	3/15/21/145	3/15/21 1135	3/15/21 11 30	3/15/21 1040	3/15/21 1040 .	3/15/21 1035	1/15/2 1835 -	START START		31.00,02	lette Soil Samolino		nith	ation:
RE of SAMPLER:	ME AND SIGNATURE	3/16/21 1	0 12/2/10	3/15/21 1	DATE	1	1	1 4	+ 4	1 4	1 4	+ 4	+ 4	1	1 4	1	4 4	SAMPLE TEMP AT COLLECTION # OF CONTAINERS		Pace	Pace	Addr	Atten	Secti
Ton King	45 00	000 Tylus	930 Tent	700 500	TIME													Unpreserved H2SO4 HNO3 HCI NaOH		Profile #: 7754	Project Manager	ess:	pany Name:	ion C ice Information:
*	6-15	that 17 hu	En /2	Terra Cold	ACCEPTED BY I AFI	X	×	×	×	×	×	×	×	×	×	×	×	Na2S2O3 Methanol Other Analyses Test Y/N			kevin herring@nace			
DATE Signed:	έ <i>ι</i> γ	with	S	Starate	FILIATION	XX	××	X	X	×	XX	X	X	X	X	XX	XX	VOC's SVOC's	Requested Ar	and the second se	alabs com			
3/16/21	3.16.21	5/16/21	3/1421	3/15/21	DATE														halysis Filtered (					l
	1145	10.00	0920	1700	TIME														Y/N)			7		Pag
TEMP in ( Received Ice (Y/N) Custody Sealed Cooler (Y/N) Samples	on				SAMPLE CONDITIONS													Residual Chlorine (Y/N)	E.	SC	State / Location	Regulatory Agency		le: X Of

Page 137 of 139

					Ĺ	1	12	11	10	9	~	7	ø	(n	4	ω	N	-	ITEM#		Requeste	Phone:	Suite 220	Address:	Company	Section /	
						ADDITIONAL COMMENTS								Trip Biball	RI-57-20-50-55-6.0-24	RI-513-20-50-6.5-1.0-20	RI-53-19-50-5.5-6.0-2	RI-513-19-50-015-110-2	SAMPLE ID One Character per box. (A-Z, 0-9 /, -) Sample Ids must be unique	the fame	d Due Date: 3 www. TAT	(803)429-3668 Fax	, Greenville, SC 29601	148 River street	Synterra	Client Information:	WWW.PACELUSS.COM
		0	Ter	5407	Tom	RE								che	0210315	210315	0716315	10240-315 5	RIX CODE (ing Water DW te water WT uut P uut P uut P Solid St. Solid St. Solid St. St. Solid St. St. Solid St. St. St. St. St. St. St. St. St. St.		Project #:	Project Name:	Protection Onde	Copy To:	Report To: H	Section B Required Proje	
		5	KN /	in aut	Kng /	LINQUISHED			-					16 3/1	2 6 3/1	16 3/1	516 3/	L 6 3/5	MATRIX CODE (see valid codes to left) SAMPLE TYPE (G=GRAB C=COMP)		the section in	F#: Bramlett	Ē		eather Smith	ect Informati	
P	SAMP	IN PO	zh	4 PIS	24	BY / AFFILIAT								600 K/3	5/21/1435	5/21430	1/21 1420	121 1415	START		- Con Completion	e Soil Sampli				ion:	
RINT Name o	LER NAME A	2	1.4	And	Q.	TION								ſ	1	1	1		ECTED		ü	5					The Cha
of SAMPLE	ND SIGNA	3-110-2	3/16/21	3/16/21	3/5/24	DATE								1	1	)	1	1	SAMPLE TEMP AT COLLECTION								n-ot-Cus
R	TURE	1 12	1	20	7								1.1	R	2	2	1	4	# OF CONTAINERS		Pace	Pace	Addre	Comp	Atten	Secti	tody is
lon		330	Sos	3	8	TIME		-		-	-	-	-	X	-		-	-	Unpreserved H2SO4		Profile	Project	SS	any Na	lion:	on C ce Info	a
N	6.7		5	1	S				l iti				1.1			11			HNO3 Pre		#	Mana		Ime		rmatio	GAL
5			p	31	ATO	5		-					1	-		121			HCI Serva	ŝ	7754	ber				8	DOC
			h	lein	na	ACO	-		-	-			-						Na2S2O3		1100	Kov					ONE
			14		2	CEPTE			1				1.1		X	×	X	×	Methanol			n herr					NI.,
18		6	R	N	To	I AB O			111		21	2.11	111				114	-	Other	-	1 m Frank						All le
-66	11		Co	1	2	AFFILL			E	1			1		X	X	X	X	VOC's		avera	anelat					evan
				11	bra	ATION			123		-	1	11		X	X	X	X	SVOC's	Re	19.001						
					R			-		-				×				-	Trisk Shink	queste							
							r-			1				1						d Ana							SLDE
			3 14.21	3/16/21	3/5/2	DATE										11				lysis Filter		58		Ц			compiete
			1451	09	170	TIME														ed (Y/N)						_	d accurat
			1	C'	8				-					-				-					70			Pao	ery.
AP in C	3						1		-									_	Residual Chlorine (Y/N)	-	Cinto	State	egulat				
eived	on		11			SAM				1										00	50	linna	tory A			124	
1)						PLEC														1	1000	Non	gency			10	
ed ler						NDITI																				ç	
1)						SNO																					
ihing																										M	

0
I
≥
z
ò
Ť
ò
S
2
o
D
~
1
5
a
¥
0
2
Z
e
E.
Sa
1
8
õ
'n
le
n
1

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

				1		12	1	10	9	~	7	6	m	4	ω	N	-	ITEM #		1	Request	Phone:	Email To	Suite 2	Address	Require
					ADDITIONAL COMMENTS				Trip Blank	RI-SB-24_SO_5.5-6.0_20210315	RI-SB-24_SO_0.5-1.0_20210315	RI-SB-23_SO_5.5-6.0_20210315	RI-SB-23_SO_0.5-1.0_20210315	RI-SB-22_SO_5.5-6.0_20210315	RI-SB-22_SO_0.5-1.0_20210315	RI-SB-21_SO_5.5-6.0_20210315	RI-SB-21_SO_0.5-1.0_20210315	SAMPLE ID One Character per box. (A-Z, 0-9 /, -) Sample Ids must be unique	1		ed Due Date: 3-day TAT	Fax	x tking@synterracorp.com	20, Greenville, SC 29601	148 River Street	d Client Information:
					7													Vidate Water WT Vidate Water WW Product P SaviSovid SL Oli	MATRIX CODE Drinking Water DW		Project Numb	Project Name	Purchase On		Copy To:	Required Pr
					ELINQ	1	1		WTO	SL	SL	SL 0	SL (	SLO	SL 0	SLO	SL	MATRIX CODE (see valid co	des to left)	1	Der:	-	der #		Hea	oject I
					UISHE	-			3 3/	3	3	3	3 3/	3 3/	3	3	3	SAMPLE TYPE (G=GRAB (	C=COMP)			orm			ther	nform
		1S			ED BY / AFI	-			15/2021	15/2021 16	15/2021 15	15/2021 15	15/2021 15	15/2021 15	15/2021 15	15/2021 15	15/2021 15	START			00	er Bramle			Smith	ation:
SIG	PRI	AMPLE			FILIAT				ł.	8	55	40	35	30	25	10	05	TIME	COLLE	1	0.273	ette N				
NATURE	NT Name o	R NAME A			ION				L	E	1	1	1	t	1	1	1	EN	CTED		1.00.08	IGP				
FSAM	<b>FSAM</b>	ND SI	711	NT.	DA	Ĩ			1	E.	1	r	Ŧ	r.	ı	Ð	t	TIME								
PLER	PLER	GNAT	245	10	TE		-							11		21		SAMPLE TEMP AT COLLECT	ION	1					1.	1.0
-"	1	URE			-				2	4	4	4	4	4	4	4	4	# OF CONTAINERS			Pace	Pace	Pace	Addre	Com	Invoi
					IME	_			×	_	-						-	Unpreserved			Profil	Proje	Quot	SSS.	tion:	ce Inf
				100	1	-	-	1			-		1.1	-		-		HNO3	P		*	ct Mar	"		ame:	orma
65								+	i.c.	-1	line (							HCI	eser		775	hager			1	tion:
1					A				2					11	1.0			NaOH	vativ		4					
					CEP	_				×	×	×	×	×	×	×	×	Na2S2O3	les			Kevi				
					TED	-	-	-	-	-	-	-	-	<u>.</u>	-	-	-	Other	1			He			4	
					SYIA	-	-		-			-		-			-	Analyses Test	Y/N			rring		1		
	Ton				FFILI		-			×	×	×	×	×	×	×	×	8260	1 21				Ľ	1		5
DATE	King	Q			ATIO					×	×	×	×	×	×	×	×	8270	2-1	70						
Sign					z	-	_	_	~		-	21			-	_		Trip Blank		ques						
ed:						-													-	ted Ar		t		t	-	
					-								14							alysis						
3/15					DATE										TT I					s Filtereo		1				
/2021					TIME															(Y/N)			2			_
							4					-		-	-	-	-					State	guav	and at		Pag
TEM	P in C	2					_											Residual Chlorine (Y/N)		-		Incat	N VIO			e :
Rece	ived	on			SAMP					HOLD					ion	Jency	anau a		N							
(Y/N)					LEO					SAM																
Seale	d				ONDI					PLE						5			0							
(Y/N)	er		-		TIONS																					<b>_</b>
Samp Intact (Y/N)	ples				0																					N

Page 139 of 139



Pace Analytical Services, LLC 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

March 22, 2021

Program Manager Duke Energy 13339 Hagers Ferry Road Bldg. 7405 MG30A2 Huntersville, NC 28078

# RE: Project: FORMER BRAMLETTE MGP J21030498 Pace Project No.: 92528353

Dear Program Manager:

Enclosed are the analytical results for sample(s) received by the laboratory on March 17, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Charlotte

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kan slang

Kevin Herring kevin.herring@pacelabs.com 1(704)875-9092 HORIZON Database Administrator

Enclosures

cc: Tom King Amber Lipsky Program Manager, Duke Energy Mike Mastbaum Todd Plating, Synterra Rick Powell B. Russo Heather Smith





# CERTIFICATIONS

#### Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528353

#### Pace Analytical Services Charlotte

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12 South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221



# SAMPLE SUMMARY

Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528

92528353

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92528353001	RI-SB-19_SO_0.5-1.0_20210315	Solid	03/15/21 14:15	03/17/21 10:45
92528353002	RI-SB-19_SO_5.5-6.0_20210315	Solid	03/15/21 14:20	03/17/21 10:45
92528353003	RI-SB-20_SO_0.5-1.0_20210315	Solid	03/15/21 14:30	03/17/21 10:45
92528353004	RI-SB-20_SO_5.5-6.0_20210315	Solid	03/15/21 14:35	03/17/21 10:45
92528353005	TRIP BLANK	Water	03/17/21 00:00	03/17/21 10:45



# SAMPLE ANALYTE COUNT

Project:FORMER BRAMLETTE MGP J21030498Pace Project No.:92528353

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92528353001	 RI-SB-19_SO_0.5-1.0_20210315	EPA 8270E	BPJ	68	PASI-C
		EPA 8260D	CL	70	PASI-C
		SW-846	KDF	1	PASI-C
92528353002	RI-SB-19_SO_5.5-6.0_20210315	EPA 8270E	BPJ	68	PASI-C
		EPA 8260D	CL	70	PASI-C
		SW-846	KDF	1	PASI-C
92528353003	RI-SB-20_SO_0.5-1.0_20210315	EPA 8270E	BPJ	68	PASI-C
		EPA 8260D	CL	70	PASI-C
		SW-846	KDF	1	PASI-C
92528353004	RI-SB-20_SO_5.5-6.0_20210315	EPA 8270E	BPJ	68	PASI-C
		EPA 8260D	CL	70	PASI-C
		SW-846	KDF	1	PASI-C
92528353005	TRIP BLANK	EPA 8260D	PM1	62	PASI-C

PASI-C = Pace Analytical Services - Charlotte



# SUMMARY OF DETECTION

Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528353

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92528353001	RI-SB-19_SO_0.5-1.0_20210315					
EPA 8260D	Acetone	97.3J	ug/kg	146	03/19/21 23:03	
EPA 8260D	2-Butanone (MEK)	47.6J	ug/kg	146	03/19/21 23:03	
EPA 8260D	Naphthalene	6.4J	ug/kg	7.3	03/19/21 23:03	
EPA 8260D	Toluene	5.7J	ug/kg	7.3	03/19/21 23:03	
SW-846	Percent Moisture	22.0	%	0.10	03/18/21 15:17	N2
92528353002	RI-SB-19_SO_5.5-6.0_20210315					
EPA 8260D	Ethylbenzene	9.2J	ug/kg	16.9	03/19/21 01:02	
EPA 8260D	Xylene (Total)	89.9	ug/kg	33.7	03/19/21 01:02	
EPA 8260D	m&p-Xylene	65.9	ug/kg	33.7	03/19/21 01:02	
EPA 8260D	o-Xylene	24.0	ug/kg	16.9	03/19/21 01:02	
SW-846	Percent Moisture	22.3	%	0.10	03/18/21 15:17	N2
92528353003	RI-SB-20_SO_0.5-1.0_20210315					
EPA 8260D	Toluene	14.1	ug/kg	6.6	03/19/21 01:55	
SW-846	Percent Moisture	13.2	%	0.10	03/18/21 15:17	N2
92528353004	RI-SB-20_SO_5.5-6.0_20210315					
EPA 8260D	Toluene	5.0J	ug/kg	6.3	03/19/21 01:20	
SW-846	Percent Moisture	18.9	%	0.10	03/18/21 15:17	N2



Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528353

Method:EPA 8270EDescription:8270E MSSV MicrowaveClient:Duke EnergyDate:March 22, 2021

#### **General Information:**

4 samples were analyzed for EPA 8270E by Pace Analytical Services Charlotte. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

#### Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

#### Sample Preparation:

The samples were prepared in accordance with EPA 3546 with any exceptions noted below.

#### Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

#### **Continuing Calibration:**

All criteria were within method requirements with any exceptions noted below.

QC Batch: 607492

v1: The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.

- BLANK (Lab ID: 3200335)
  - Butylbenzylphthalate
  - Di-n-octylphthalate
  - bis(2-Ethylhexyl)phthalate
- DUP (Lab ID: 3200338)
  - Butylbenzylphthalate
  - Di-n-octylphthalate
  - bis(2-Ethylhexyl)phthalate
- LCS (Lab ID: 3200336)
  - Butylbenzylphthalate
  - Di-n-octylphthalate
  - bis(2-Ethylhexyl)phthalate
- MS (Lab ID: 3200337)
  - Butylbenzylphthalate
  - Di-n-octylphthalate
  - bis(2-Ethylhexyl)phthalate
- RI-SB-19_SO_0.5-1.0_20210315 (Lab ID: 92528353001)
  - Butylbenzylphthalate
  - Di-n-octylphthalate
  - bis(2-Ethylhexyl)phthalate
- RI-SB-19_SO_5.5-6.0_20210315 (Lab ID: 92528353002)
  - Butylbenzylphthalate
  - Di-n-octylphthalate
  - bis(2-Ethylhexyl)phthalate
- RI-SB-20_SO_0.5-1.0_20210315 (Lab ID: 92528353003)



Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528353

Method:EPA 8270EDescription:8270E MSSV MicrowaveClient:Duke EnergyDate:March 22, 2021

#### QC Batch: 607492

v1: The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.

- Butylbenzylphthalate
- Di-n-octylphthalate
- bis(2-Ethylhexyl)phthalate
- RI-SB-20_SO_5.5-6.0_20210315 (Lab ID: 92528353004)
  - Butylbenzylphthalate
  - Di-n-octylphthalate
  - bis(2-Ethylhexyl)phthalate

#### Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

#### Surrogates:

All surrogates were within QC limits with any exceptions noted below.

#### Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

#### Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

#### Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 607492

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 92527967001

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 3200337)
  - Benzoic Acid

#### **Duplicate Sample:**

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

#### Additional Comments:



Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528353

Method:EPA 8260DDescription:8260 MSV Low Level SCClient:Duke EnergyDate:March 22, 2021

#### General Information:

1 sample was analyzed for EPA 8260D by Pace Analytical Services Charlotte. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

#### Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

#### Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

QC Batch: 608197

IK: The recalculated concentration of the calibration standard(s) did not meet method acceptance criteria; this result should be considered an estimated value.

- BLANK (Lab ID: 3204047)
  - Bromoform
- LCS (Lab ID: 3204048)
  - Bromoform
- MS (Lab ID: 3204049)
  - Bromoform
- MSD (Lab ID: 3204050)
  - Bromoform
- TRIP BLANK (Lab ID: 92528353005)
- Bromoform

#### Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

#### Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

#### Surrogates:

All surrogates were within QC limits with any exceptions noted below.

#### Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

#### Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

#### Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

#### Additional Comments:



Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528353

#### Method: EPA 8260D

Description:8260D/5035A/5030B SC VolatilesClient:Duke EnergyDate:March 22, 2021

#### **General Information:**

4 samples were analyzed for EPA 8260D by Pace Analytical Services Charlotte. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

#### Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

#### Sample Preparation:

The samples were prepared in accordance with EPA 5035A/5030B with any exceptions noted below.

#### Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

QC Batch: 607623

IK: The recalculated concentration of the calibration standard(s) did not meet method acceptance criteria; this result should be considered an estimated value.

- BLANK (Lab ID: 3200879)
  - Bromomethane
  - Hexachloro-1,3-butadiene
- DUP (Lab ID: 3200881)
  - Bromomethane
  - Hexachloro-1,3-butadiene
- LCS (Lab ID: 3200880)
  - Bromomethane
  - Hexachloro-1,3-butadiene
- MS (Lab ID: 3200882)
  - Bromomethane
  - Hexachloro-1,3-butadiene
- RI-SB-19_SO_5.5-6.0_20210315 (Lab ID: 92528353002)
  - Bromomethane
  - Hexachloro-1,3-butadiene
- RI-SB-20_SO_5.5-6.0_20210315 (Lab ID: 92528353004)
- Hexachloro-1,3-butadiene

#### Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

#### QC Batch: 607623

v1: The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.

- BLANK (Lab ID: 3200879)
  - Bromomethane
- DUP (Lab ID: 3200881)
  - Bromomethane
- LCS (Lab ID: 3200880)



Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528353

#### Method: EPA 8260D

Description:8260D/5035A/5030B SC VolatilesClient:Duke EnergyDate:March 22, 2021

#### QC Batch: 607623

v1: The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.

- Bromomethane
- MS (Lab ID: 3200882)
  - Bromomethane
- RI-SB-19_SO_5.5-6.0_20210315 (Lab ID: 92528353002)
  - Bromomethane

v2: The continuing calibration verification was below the method acceptance limit. The analyte was not detected in the associated samples and the sensitivity of the instrument was verified with a reporting limit check standard.

- BLANK (Lab ID: 3200879)
  - tert-Butylbenzene
- DUP (Lab ID: 3200881)
- tert-Butylbenzene
- LCS (Lab ID: 3200880)
- tert-Butylbenzene
- MS (Lab ID: 3200882)
  - tert-Butylbenzene
- RI-SB-19_SO_5.5-6.0_20210315 (Lab ID: 92528353002)
  - tert-Butylbenzene
- RI-SB-20_SO_5.5-6.0_20210315 (Lab ID: 92528353004)
  - tert-Butylbenzene

QC Batch: 608035

v1: The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.

- BLANK (Lab ID: 3203111)
- Bromomethane
- DUP (Lab ID: 3203113)
- Bromomethane
- LCS (Lab ID: 3203112)
  - Bromomethane
- MS (Lab ID: 3203114)
- Bromomethane
- RI-SB-19_SO_0.5-1.0_20210315 (Lab ID: 92528353001)
- Bromomethane

v3: The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have low bias.

- MS (Lab ID: 3203114)
- tert-Butylbenzene

#### Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

#### Surrogates:

All surrogates were within QC limits with any exceptions noted below.



Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528353

#### Method: EPA 8260D

Description:8260D/5035A/5030B SC VolatilesClient:Duke EnergyDate:March 22, 2021

#### Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

#### Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

QC Batch: 607623

L1: Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.

• LCS (Lab ID: 3200880)

Bromomethane

#### Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

#### QC Batch: 607623

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 92528353002

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 3200882)
  - Chloromethane

# Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

#### Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.



Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528353

Sample: RI-SB-19_SO_0.5- 1.0_20210315	Lab ID: 92528353001 Collected: 03/15/21 14:15 Received: 03/17/21 10:45 Matrix: Solid								
Results reported on a "dry weig	ght" basis and are	e adjusted fo	or percent mo	oisture, sar	nple s	ize and any diluti	ons.		
Descention	Desults	11-26-	Report		55	Davasa	Archard		
Parameters		Units		MDL		- Prepared	Analyzed	CAS NO.	Quai
8270E MSSV Microwave	Analytical	Method: EPA	A 8270E Prep	aration Met	hod: E	PA 3546			
	Pace Anal	ytical Service	es - Charlotte						
Acenanhthene	ND	ua/ka	429	151	1	03/18/21 10.18	03/18/21 20:49	83-32-9	
Acenaphthylene	ND	ug/kg	429	151	1	03/18/21 10:18	03/18/21 20:49	208-96-8	
Aniline	ND	ug/kg	429	168	1	03/18/21 10:18	03/18/21 20:49	62-53-3	
Anthracene	ND	ug/kg	429	140	1	03/18/21 10:18	03/18/21 20:49	120-12-7	
Benzo(a)anthracene	ND	ug/kg	429	143	1	03/18/21 10:18	03/18/21 20:49	56-55-3	
Benzo(b)fluoranthene		ug/kg	429	143	1	03/18/21 10:18	03/18/21 20:49	205-99-2	
Benzo(a h i)pervlene		ug/kg ug/kg	429	145	1	03/18/21 10:18	03/18/21 20:49	191-24-2	
Benzo(k)fluoranthene		ug/kg	429	151	1	03/18/21 10:18	03/18/21 20:49	207-08-9	
Benzoic Acid		ug/kg	2140	921	1	03/18/21 10:18	03/18/21 20:49	65-85-0	
Benzyl alcohol		ug/kg	857	325	1	03/18/21 10:18	03/18/21 20:49	100-51-6	
4-Bromonbenylphenyl ether		ug/kg	420	165	1	03/18/21 10:18	03/18/21 20:40	101-55-3	
Butylbenzylphthalate		ug/kg	420	181	1	03/18/21 10:18	03/18/21 20:49	85-68-7	v1
4-Chloro-3-methylphenol		ug/kg	857	301	1	03/18/21 10:18	03/18/21 20:49	59-50-7	VI
4-Chloroaniline		ug/kg	857	336	1	03/18/21 10:18	03/18/21 20:49	106-47-8	
his(2-Chloroethoxy)methane		ug/kg	420	178	1	03/18/21 10:18	03/18/21 20:40	111-01-1	
bis(2-Chloroethyl) ether		ug/kg	429	161	1	03/18/21 10:18	03/18/21 20:49	111-44-4	
2-Chloronanhthalene		ug/kg	429	170	1	03/18/21 10:18	03/18/21 20:49	01-58-7	
2-Chlorophenol		ug/kg	420	161	1	03/18/21 10:18	03/18/21 20:40	95-57-8	
4-Chlorophenylphenyl ether		ug/kg	429	160	1	03/18/21 10:18	03/18/21 20:49	7005-72-3	
Chrysene		ug/kg	429	100	1	03/18/21 10:18	03/18/21 20:49	218-01-0	
Dibenz(a b)anthracene		ug/kg	429	165	1	03/18/21 10:18	03/18/21 20:49	53-70-3	
Dibenzofuran		ug/kg	429	105	1	03/18/21 10:18	03/18/21 20:49	132-64-9	
3 3'-Dichlorobenzidine		ug/kg	857	200	1	03/18/21 10:18	03/18/21 20:40	01-04-1	п
2.4 Dichlorophonol		ug/kg	420	169	1	03/19/21 10:19	03/18/21 20:49	120 82 2	16
		ug/kg	429	100	1	03/19/21 10:19	03/18/21 20:49	94 66 2	
2.4 Dimothylphonol		ug/kg	429	170	1	03/19/21 10:19	03/18/21 20:49	105 67 0	
Dimethylphthalate		ug/kg	429	170	1	03/18/21 10:18	03/18/21 20:49	131-11-3	
		ug/kg	420	1//	1	03/18/21 10:18	03/18/21 20:40	84-74-2	
4 6-Dinitro-2-methylphenol		ug/kg	423	400	1	03/18/21 10:18	03/18/21 20:49	531-52-1	
2 4-Dinitrophenol		ug/kg	2140	1320	1	03/18/21 10:18	03/18/21 20:49	51-28-5	
		ug/kg	420	165	1	03/18/21 10:18	03/18/21 20:49	121-14-2	
2.6-Dinitrotoluene		ug/kg	429	105	1	03/18/21 10:18	03/18/21 20:49	606-20-2	
		ug/kg	420	160	1	03/18/21 10:18	03/18/21 20:40	117-84-0	v1
bis(2-Ethylbeyyl)phthalate		ug/kg	429	166	1	03/18/21 10:18	03/18/21 20:49	117-81-7	v1 v1
Fluoranthono		ug/kg	429	147	1	03/19/21 10:19	03/18/21 20:49	206 44 0	VI
Fluorono		ug/kg	429	147	1	03/19/21 10:19	03/18/21 20:49	200-44-0	
Havachlarabanzana		ug/kg	429	169	1	03/10/21 10.10	03/10/21 20:49	119 74 1	
		ug/kg	429	245	1	03/18/21 10.18	03/10/21 20:49	77 47 4	
		ug/kg	429	240 464	1	03/10/21 10.10	03/10/21 20.49	67 72 4	
		ug/kg	429	104	1	02/10/21 10:18	02/10/21 20:49	102 20 5	
Indeno(1,2,3-00)pyrene		ug/kg	429	109	1 A	02/10/21 10:18	02/10/21 20:49	193-39-3	
1 Mothylpaphthologo		ug/kg	429	191	1	02/10/21 10:18	03/10/21 20:49	10-09-1	
		ug/kg	429	101	1 A	02/10/21 10.10	03/10/21 20.49	01 57 6	
∠-metnymaphtnalene	ND	ug/kg	429	171	1	03/10/21 10:18	03/10/21 20:49	91-21-0	



Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528353

Sample: RI-SB-19_SO_0.5- 1.0_20210315	Lab ID:	92528353001	Collecte	d: 03/15/21	14:15	Received: 03/	17/21 10:45 Ma	atrix: Solid	
Results reported on a "dry weight	" basis and ar	e adjusted for	percent mo	oisture, sar	nple s	ize and any diluti	ons.		
Parameters	Results	Units	Report Limit	MDI	DF	Prepared	Analyzed	CAS No.	Qual
8270E MSSV Microwave	Analytical	Method: EPA 8	8270E Prep	aration Met	hod: E	PA 3546			
	Pace Ana	lytical Services	- Charlotte						
2-Methylphenol(o-Cresol)	ND	ug/kg	429	175	1	03/18/21 10:18	03/18/21 20:49	95-48-7	
3&4-Methylphenol(m&p Cresol)	ND	ug/kg	429	173	1	03/18/21 10:18	03/18/21 20:49	15831-10-4	
2-Nitroaniline	ND	ug/kg	2140	351	1	03/18/21 10:18	03/18/21 20:49	88-74-4	
3-Nitroaniline	ND	ug/kg	2140	336	1	03/18/21 10:18	03/18/21 20:49	99-09-2	
4-Nitroaniline	ND	ug/kg	857	326	1	03/18/21 10:18	03/18/21 20:49	100-01-6	
Nitrobenzene	ND	ug/kg	429	199	1	03/18/21 10:18	03/18/21 20:49	98-95-3	
2-Nitrophenol	ND	ug/kg	429	186	1	03/18/21 10:18	03/18/21 20:49	88-75-5	
4-Nitrophenol	ND	ug/kg	2140	829	1	03/18/21 10:18	03/18/21 20:49	100-02-7	
N-Nitrosodimethylamine	ND	ug/kg	429	144	1	03/18/21 10:18	03/18/21 20:49	62-75-9	
N-Nitroso-di-n-propylamine	ND	ug/kg	429	161	1	03/18/21 10:18	03/18/21 20:49	621-64-7	
N-Nitrosodiphenylamine	ND	ug/kg	429	152	1	03/18/21 10:18	03/18/21 20:49	86-30-6	
2,2'-Oxybis(1-chloropropane)	ND	ug/kg	429	204	1	03/18/21 10:18	03/18/21 20:49	108-60-1	
Pentachlorophenol	ND	ug/kg	857	420	1	03/18/21 10:18	03/18/21 20:49	87-86-5	
Phenanthrene	ND	ug/kg	429	140	1	03/18/21 10:18	03/18/21 20:49	85-01-8	
Phenol	ND	ug/kg	429	191	1	03/18/21 10:18	03/18/21 20:49	108-95-2	
Pyrene	ND	ug/kg	429	174	1	03/18/21 10:18	03/18/21 20:49	129-00-0	
Pyridine	ND	ug/kg	429	135	1	03/18/21 10:18	03/18/21 20:49	110-86-1	
2,4,5-Trichlorophenol	ND	ug/kg	429	196	1	03/18/21 10:18	03/18/21 20:49	95-95-4	
2,4,6-Trichlorophenol	ND	ug/kg	429	177	1	03/18/21 10:18	03/18/21 20:49	88-06-2	
Surrogates									
Nitrobenzene-d5 (S)	66	%	21-130		1	03/18/21 10:18	03/18/21 20:49	4165-60-0	
2-Fluorobiphenyl (S)	39	%	19-130		1	03/18/21 10:18	03/18/21 20:49	321-60-8	
Terphenyl-d14 (S)	65	%	15-130		1	03/18/21 10:18	03/18/21 20:49	1718-51-0	
Phenol-d6 (S)	61	%	18-130		1	03/18/21 10:18	03/18/21 20:49	13127-88-3	
2-Fluorophenol (S)	61	%	18-130		1	03/18/21 10:18	03/18/21 20:49	367-12-4	
2,4,6-Tribromophenol (S)	63	%	18-130		1	03/18/21 10:18	03/18/21 20:49	118-79-6	
8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA 8	8260D Prep	paration Met	hod: E	PA 5035A/5030B			
	Pace Ana	lytical Services	- Charlotte						
Acetone	97.3J	ug/kg	146	46.8	1	03/19/21 12:09	03/19/21 23:03	67-64-1	
Benzene	ND	ug/kg	7.3	2.9	1	03/19/21 12:09	03/19/21 23:03	71-43-2	
Bromobenzene	ND	ug/kg	7.3	2.4	1	03/19/21 12:09	03/19/21 23:03	108-86-1	
Bromochloromethane	ND	ug/kg	7.3	2.2	1	03/19/21 12:09	03/19/21 23:03	74-97-5	
Bromodichloromethane	ND	ug/kg	7.3	2.8	1	03/19/21 12:09	03/19/21 23:03	75-27-4	
Bromoform	ND	ug/kg	7.3	2.6	1	03/19/21 12:09	03/19/21 23:03	75-25-2	
Bromomethane	ND	ug/kg	14.6	11.5	1	03/19/21 12:09	03/19/21 23:03	74-83-9	v1
2-Butanone (MEK)	47.6J	ug/kg	146	35.0	1	03/19/21 12:09	03/19/21 23:03	78-93-3	
n-Butylbenzene	ND	ug/kg	7.3	3.4	1	03/19/21 12:09	03/19/21 23:03	104-51-8	
sec-Butylbenzene	ND	ug/kg	7.3	3.2	1	03/19/21 12:09	03/19/21 23:03	135-98-8	
tert-Butylbenzene	ND	ug/kg	7.3	2.6	1	03/19/21 12:09	03/19/21 23:03	98-06-6	
Carbon tetrachloride	ND	ug/kg	7.3	2.7	1	03/19/21 12:09	03/19/21 23:03	56-23-5	
Chlorobenzene	ND	ug/kg	7.3	1.4	1	03/19/21 12:09	03/19/21 23:03	108-90-7	
Chloroethane	ND	ug/kg	14.6	5.6	1	03/19/21 12:09	03/19/21 23:03	75-00-3	



Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528353

Sample: RI-SB-19_SO_0.5- 1.0_20210315	Lab ID: 92528353001 Collected: 03/15/21 14:15 Received: 03/17/21 10:45 Matrix: Solid								
Results reported on a "dry weight	" basis and ar	e adjusted f	or percent mo	oisture, sar	nple s	ize and any diluti	ons.		
			Report			<b>.</b> .		0.00 N	<b>o</b> 1
Parameters	Results	Units				Prepared	Analyzed	CAS No.	Qual
8260D/5035A/5030B SC Volatiles	Analytical	Method: EP/	A 8260D Prep	aration Met	thod: E	PA 5035A/5030B			
	Pace Ana	lytical Servic	es - Charlotte						
Chloroform	ND		7.0			02/40/04 40:00	00/40/04 00:00	07.00.0	
Chloromothana		ug/kg	1.3	4.4	1	03/19/21 12:09	03/19/21 23:03	07-00-3	
		ug/kg	14.0	0.1	1	03/19/21 12.09	03/19/21 23.03	14-01-3	
2-Chlorotoluono		ug/kg	7.3	2.0	1	03/19/21 12:09	03/19/21 23.03	90-49-0 106 42 4	
1 2 Dibromo 3 chloropropano		ug/kg	7.3	1.5	1	03/19/21 12:09	03/19/21 23:03	06 12 9	
Dibromochloromothano		ug/kg	7.3	2.0	1	03/19/21 12:09	03/19/21 23:03	90-12-0 124 49 1	
1 2-Dibromoethane (EDB)		ug/kg ug/kg	7.3	4.1	1	03/19/21 12:09	03/19/21 23:03	124-40-1	
Dibromomethane		ug/kg	7.3	1.6	1	03/19/21 12:00	03/10/21 23:03	74-95-3	
1 2-Dichlorobenzene		ug/kg	7.3	2.6	1	03/19/21 12:00	03/10/21 23:03	95-50-1	
1 3-Dichlorobenzene		ug/kg	7.3	2.0	1	03/19/21 12:00	03/10/21 23:03	541-73-1	
1,3 Dichlorobenzene		ug/kg	7.3	1 0	1	03/19/21 12:00	03/10/21 23:03	106-46-7	
Dichlorodifluoromethane		ug/kg	14.6	3.2	1	03/19/21 12:09	03/19/21 23:03	75-71-8	
1 1-Dichloroethane	ND	ug/kg	7.3	3.0	1	03/19/21 12:09	03/19/21 23:03	75-34-3	
1 2-Dichloroethane	ND	ug/kg	7.3	4.8	1	03/19/21 12:09	03/19/21 23:03	107-06-2	
1 1-Dichloroethene	ND	ug/kg	7.3	3.0	1	03/19/21 12:09	03/19/21 23:03	75-35-4	
cis-1,2-Dichloroethene	ND	ug/kg	7.3	2.5	1	03/19/21 12:09	03/19/21 23:03	156-59-2	
trans-1.2-Dichloroethene	ND	ua/ka	7.3	2.6	1	03/19/21 12:09	03/19/21 23:03	156-60-5	
1.2-Dichloropropane	ND	ua/ka	7.3	2.2	1	03/19/21 12:09	03/19/21 23:03	78-87-5	
1.3-Dichloropropane	ND	ua/ka	7.3	2.3	1	03/19/21 12:09	03/19/21 23:03	142-28-9	
2.2-Dichloropropane	ND	ua/ka	7.3	2.4	1	03/19/21 12:09	03/19/21 23:03	594-20-7	
1.1-Dichloropropene	ND	ua/ka	7.3	3.5	1	03/19/21 12:09	03/19/21 23:03	563-58-6	
cis-1.3-Dichloropropene	ND	ug/kg	7.3	2.0	1	03/19/21 12:09	03/19/21 23:03	10061-01-5	
trans-1.3-Dichloropropene	ND	ug/kg	7.3	2.5	1	03/19/21 12:09	03/19/21 23:03	10061-02-6	
Diisopropyl ether	ND	ug/kg	7.3	2.0	1	03/19/21 12:09	03/19/21 23:03	108-20-3	
Ethylbenzene	ND	ug/kg	7.3	3.4	1	03/19/21 12:09	03/19/21 23:03	100-41-4	
Hexachloro-1,3-butadiene	ND	ug/kg	14.6	11.9	1	03/19/21 12:09	03/19/21 23:03	87-68-3	
2-Hexanone	ND	ug/kg	72.9	7.0	1	03/19/21 12:09	03/19/21 23:03	591-78-6	
Isopropylbenzene (Cumene)	ND	ug/kg	7.3	2.5	1	03/19/21 12:09	03/19/21 23:03	98-82-8	
p-lsopropyltoluene	ND	ug/kg	7.3	3.6	1	03/19/21 12:09	03/19/21 23:03	99-87-6	
Methylene Chloride	ND	ug/kg	29.2	20.0	1	03/19/21 12:09	03/19/21 23:03	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	72.9	7.0	1	03/19/21 12:09	03/19/21 23:03	108-10-1	
Methyl-tert-butyl ether	ND	ug/kg	7.3	2.7	1	03/19/21 12:09	03/19/21 23:03	1634-04-4	
Naphthalene	6.4J	ug/kg	7.3	3.8	1	03/19/21 12:09	03/19/21 23:03	91-20-3	
n-Propylbenzene	ND	ug/kg	7.3	2.6	1	03/19/21 12:09	03/19/21 23:03	103-65-1	
Styrene	ND	ug/kg	7.3	1.9	1	03/19/21 12:09	03/19/21 23:03	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/kg	7.3	2.8	1	03/19/21 12:09	03/19/21 23:03	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/kg	7.3	1.9	1	03/19/21 12:09	03/19/21 23:03	79-34-5	
Tetrachloroethene	ND	ug/kg	7.3	2.3	1	03/19/21 12:09	03/19/21 23:03	127-18-4	
Toluene	5.7J	ug/kg	7.3	2.1	1	03/19/21 12:09	03/19/21 23:03	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/kg	7.3	5.9	1	03/19/21 12:09	03/19/21 23:03	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/kg	7.3	6.1	1	03/19/21 12:09	03/19/21 23:03	120-82-1	
1,1,1-Trichloroethane	ND	ug/kg	7.3	3.8	1	03/19/21 12:09	03/19/21 23:03	71-55-6	
1,1,2-Trichloroethane	ND	ug/kg	7.3	2.4	1	03/19/21 12:09	03/19/21 23:03	79-00-5	



Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528353

Sample: RI-SB-19_SO_0.5- 1.0_20210315	Lab ID:	92528353001	Collected	l: 03/15/21	14:15	Received: 03/	17/21 10:45 Ma	atrix: Solid	
Results reported on a "dry weight"	" basis and are	e adjusted for	percent mo	isture, san	nple si	ize and any diluti	ons.		
		-	Report		-	-			
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA 8	260D Prepa	aration Met	hod: El	PA 5035A/5030B			
	Pace Anal	ytical Services	- Charlotte						
Trichloroethene	ND	ug/kg	7.3	1.9	1	03/19/21 12:09	03/19/21 23:03	79-01-6	
Trichlorofluoromethane	ND	ug/kg	7.3	4.0	1	03/19/21 12:09	03/19/21 23:03	75-69-4	
1,2,3-Trichloropropane	ND	ug/kg	7.3	3.7	1	03/19/21 12:09	03/19/21 23:03	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/kg	7.3	2.0	1	03/19/21 12:09	03/19/21 23:03	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/kg	7.3	2.5	1	03/19/21 12:09	03/19/21 23:03	108-67-8	
Vinyl acetate	ND	ug/kg	72.9	5.3	1	03/19/21 12:09	03/19/21 23:03	108-05-4	
Vinyl chloride	ND	ug/kg	14.6	3.7	1	03/19/21 12:09	03/19/21 23:03	75-01-4	
Xylene (Total)	ND	ug/kg	14.6	4.2	1	03/19/21 12:09	03/19/21 23:03	1330-20-7	
m&p-Xylene	ND	ug/kg	14.6	5.0	1	03/19/21 12:09	03/19/21 23:03	179601-23-1	
o-Xylene	ND	ug/kg	7.3	3.2	1	03/19/21 12:09	03/19/21 23:03	95-47-6	
Surrogates									
Toluene-d8 (S)	99	%	70-130		1	03/19/21 12:09	03/19/21 23:03	2037-26-5	
4-Bromofluorobenzene (S)	93	%	69-134		1	03/19/21 12:09	03/19/21 23:03	460-00-4	
1,2-Dichloroethane-d4 (S)	92	%	70-130		1	03/19/21 12:09	03/19/21 23:03	17060-07-0	
Percent Moisture	Analytical	Method: SW-84	46						
	Pace Anal	ytical Services	- Charlotte						
Percent Moisture	22.0	%	0.10	0.10	1		03/18/21 15:17		N2



Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528353

Sample: RI-SB-19_SO_5.5- 6.0_20210315	Lab ID:	9252835300	2 Collecte	d: 03/15/21	1 14:20	Received: 03/	17/21 10:45 Ma	atrix: Solid	
Results reported on a "dry weig	ght" basis and ar	e adjusted fo	r percent m	oisture, sar	nple s	ize and any diluti	ons.		
Demonstere		11-26-	Report			Davasa	A sector sector		0
Parameters		Units		MDL		Prepared	Analyzed	CAS NO.	Quai
8270E MSSV Microwave	Analytical	Method: EPA	8270E Prep	aration Met	hod: E	PA 3546			
	Pace Ana	lytical Service	s - Charlotte						
Acenanhthene	ND	ua/ka	420	148	1	03/18/21 10.18	03/18/21 21.17	83-32-9	
Acenaphthylene		ug/kg	420	148	1	03/18/21 10:18	03/18/21 21:17	208-96-8	
Aniline	ND	ug/kg	420	164	1	03/18/21 10:18	03/18/21 21:17	62-53-3	
Anthracene		ug/kg	420	138	1	03/18/21 10:18	03/18/21 21:17	120-12-7	
Benzo(a)anthracene		ug/kg	420	140	1	03/18/21 10:18	03/18/21 21:17	56-55-3	
Benzo(b)fluoranthene		ug/kg	420	140	1	03/18/21 10:18	03/18/21 21:17	205-99-2	
Benzo(a h i)pervlene		ug/kg	420	163	1	03/18/21 10:18	03/18/21 21:17	191-24-2	
Benzo(k)fluoranthene		ug/kg	420	148	1	03/18/21 10:18	03/18/21 21:17	207-08-9	
Benzoic Acid		ug/kg	2100	003	1	03/18/21 10:18	03/18/21 21:17	65-85-0	
Benzyl alcohol		ug/kg	8/1	318	1	03/18/21 10:18	03/18/21 21:17	100-51-6	
4-Bromonbenylphenyl ether		ug/kg	420	162	1	03/18/21 10:18	03/18/21 21:17	101-55-3	
4-Diomophenyiphenyi ether		ug/kg	420	102	1	03/18/21 10:18	03/18/21 21:17	85-68-7	v1
4 Chloro 3 mothylphonol		ug/kg	9/1	206	1	03/10/21 10:10	03/10/21 21:17	50 50 7	VI
4 Chloroanilino		ug/kg	9/1	290	1	03/10/21 10.10	03/10/21 21.17	106 47 9	
4-Chioroathine		ug/kg	420	175	1	03/10/21 10.10	03/10/21 21.17	100-47-0	
bis(2-Chloroothyl) other		ug/kg	420	175	1	03/10/21 10.10	03/10/21 21.17	111-91-1	
2 Chloropophtholopo		ug/kg	420	100	1	03/10/21 10.10	03/10/21 21.17	01 59 7	
		ug/kg	420	107	1	03/10/21 10.10	03/10/21 21.17	91-30-7	
2-Chlorophenol		ug/kg	420	100	1	03/10/21 10.10	03/10/21 21.17	90-07-0 7005 70 0	
	ND	ug/kg	420	157	1	03/18/21 10.18	03/16/21 21:17	7005-72-3	
	ND	ug/kg	420	153	1	03/18/21 10:18	03/18/21 21:17	218-01-9	
Dibenz(a,n)anthracene	ND	ug/kg	420	162	1	03/18/21 10:18	03/18/21 21:17	53-70-3	
Dibenzoruran	ND	ug/kg	420	152	1	03/18/21 10:18	03/18/21 21:17	132-64-9	
3,3-Dichlorobenzidine	ND	ug/kg	841	284	1	03/18/21 10:18	03/18/21 21:17	91-94-1	IL
2,4-Dicnioropnenoi	ND	ug/kg	420	164	1	03/18/21 10:18	03/18/21 21:17	120-83-2	
Dietnyiphthalate	ND	ug/kg	420	154	1	03/18/21 10:18	03/18/21 21:17	84-66-2	
2,4-Dimethylphenol	ND	ug/kg	420	1/5	1	03/18/21 10:18	03/18/21 21:17	105-67-9	
Dimetnyiphthalate	ND	ug/kg	420	153	1	03/18/21 10:18	03/18/21 21:17	131-11-3	
DI-n-butyiphthalate	ND	ug/kg	420	141	1	03/18/21 10:18	03/18/21 21:17	84-74-2	
4,6-Dinitro-2-methylphenol	ND	ug/kg	841	392	1	03/18/21 10:18	03/18/21 21:17	534-52-1	
2,4-Dinitrophenol	ND	ug/kg	2100	1300	1	03/18/21 10:18	03/18/21 21:17	51-28-5	
2,4-Dinitrotoluene	ND	ug/kg	420	162	1	03/18/21 10:18	03/18/21 21:17	121-14-2	
2,6-Dinitrotoluene	ND	ug/kg	420	154	1	03/18/21 10:18	03/18/21 21:17	606-20-2	
Di-n-octylphthalate	ND	ug/kg	420	166	1	03/18/21 10:18	03/18/21 21:17	117-84-0	v1
bis(2-Ethylhexyl)phthalate	ND	ug/kg	420	163	1	03/18/21 10:18	03/18/21 21:17	117-81-7	v1
Fluoranthene	ND	ug/kg	420	144	1	03/18/21 10:18	03/18/21 21:17	206-44-0	
Fluorene	ND	ug/kg	420	148	1	03/18/21 10:18	03/18/21 21:17	86-73-7	
Hexachlorobenzene	ND	ug/kg	420	164	1	03/18/21 10:18	03/18/21 21:17	118-74-1	
Hexachlorocyclopentadiene	ND	ug/kg	420	241	1	03/18/21 10:18	03/18/21 21:17	77-47-4	
Hexachloroethane	ND	ug/kg	420	160	1	03/18/21 10:18	03/18/21 21:17	67-72-1	
Indeno(1,2,3-cd)pyrene	ND	ug/kg	420	166	1	03/18/21 10:18	03/18/21 21:17	193-39-5	
Isophorone	ND	ug/kg	420	187	1	03/18/21 10:18	03/18/21 21:17	78-59-1	
1-Methylnaphthalene	ND	ug/kg	420	148	1	03/18/21 10:18	03/18/21 21:17	90-12-0	
2-Methylnaphthalene	ND	ug/kg	420	168	1	03/18/21 10:18	03/18/21 21:17	91-57-6	



Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528353

Sample: RI-SB-19_SO_5.5- 6.0_20210315	Lab ID:	92528353002	Collecte	d: 03/15/21	14:20	Received: 03/	17/21 10:45 Ma	atrix: Solid	
Results reported on a "dry weight	" basis and ar	e adjusted for	percent mo	oisture, san	nple s	ize and any diluti	ions.		
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270E MSSV Microwave	Analytical	Method: EPA 8	270E Prep	aration Met	hod: E	PA 3546		_	
	Pace Anal	ytical Services	- Charlotte						
2-Methylphenol(o-Cresol)	ND	ua/ka	420	172	1	03/18/21 10:18	03/18/21 21:17	95-48-7	
3&4-Methylphenol(m&p Cresol)	ND	ua/ka	420	169	1	03/18/21 10:18	03/18/21 21:17	15831-10-4	
2-Nitroaniline	ND	ua/ka	2100	344	1	03/18/21 10:18	03/18/21 21:17	88-74-4	
3-Nitroaniline	ND	ua/ka	2100	330	1	03/18/21 10:18	03/18/21 21:17	99-09-2	
4-Nitroaniline	ND	ua/ka	841	320	1	03/18/21 10:18	03/18/21 21:17	100-01-6	
Nitrobenzene	ND	ua/ka	420	195	1	03/18/21 10:18	03/18/21 21:17	98-95-3	
2-Nitrophenol	ND	ua/ka	420	182	1	03/18/21 10:18	03/18/21 21:17	88-75-5	
4-Nitrophenol	ND	ua/ka	2100	813	1	03/18/21 10:18	03/18/21 21:17	100-02-7	
N-Nitrosodimethylamine	ND	ua/ka	420	141	1	03/18/21 10:18	03/18/21 21:17	62-75-9	
N-Nitroso-di-n-propylamine	ND	ua/ka	420	158	1	03/18/21 10:18	03/18/21 21:17	621-64-7	
N-Nitrosodiphenylamine	ND	ua/ka	420	149	1	03/18/21 10:18	03/18/21 21:17	86-30-6	
2.2'-Oxybis(1-chloropropane)	ND	ua/ka	420	200	1	03/18/21 10:18	03/18/21 21:17	108-60-1	
Pentachlorophenol	ND	ua/ka	841	411	1	03/18/21 10:18	03/18/21 21:17	87-86-5	
Phenanthrene	ND	ua/ka	420	138	1	03/18/21 10:18	03/18/21 21:17	85-01-8	
Phenol	ND	ug/kg	420	187	1	03/18/21 10:18	03/18/21 21:17	108-95-2	
Pyrene	ND	ug/kg	420	171	1	03/18/21 10:18	03/18/21 21:17	129-00-0	
Pyridine	ND	ug/kg	420	132	1	03/18/21 10:18	03/18/21 21:17	110-86-1	
2.4.5-Trichlorophenol	ND	ua/ka	420	192	1	03/18/21 10:18	03/18/21 21:17	95-95-4	
2 4 6-Trichlorophenol	ND	ug/kg	420	173	1	03/18/21 10:18	03/18/21 21:17	88-06-2	
Surrogates		ug/ng	120	110	•	00,10,2110.10	00/10/21 2111	00 00 2	
Nitrobenzene-d5 (S)	60	%	21-130		1	03/18/21 10:18	03/18/21 21:17	4165-60-0	
2-Fluorobiphenyl (S)	27	%	19-130		1	03/18/21 10:18	03/18/21 21:17	321-60-8	
Terphenyl-d14 (S)	32	%	15-130		1	03/18/21 10:18	03/18/21 21:17	1718-51-0	
Phenol-d6 (S)	61	%	18-130		1	03/18/21 10:18	03/18/21 21:17	13127-88-3	
2-Fluorophenol (S)	61	%	18-130		1	03/18/21 10:18	03/18/21 21:17	367-12-4	
2,4,6-Tribromophenol (S)	54	%	18-130		1	03/18/21 10:18	03/18/21 21:17	118-79-6	
8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA 8	260D Prep	aration Met	hod: E	PA 5035A/5030B			
	Pace Anal	ytical Services	- Charlotte						
Acetone	ND	ug/kg	337	108	1	03/18/21 12:56	03/19/21 01:02	67-64-1	
Benzene	ND	ug/kg	16.9	6.7	1	03/18/21 12:56	03/19/21 01:02	71-43-2	
Bromobenzene	ND	ug/kg	16.9	5.5	1	03/18/21 12:56	03/19/21 01:02	108-86-1	
Bromochloromethane	ND	ug/kg	16.9	5.0	1	03/18/21 12:56	03/19/21 01:02	74-97-5	
Bromodichloromethane	ND	ua/ka	16.9	6.5	1	03/18/21 12:56	03/19/21 01:02	75-27-4	
Bromoform	ND	ua/ka	16.9	5.9	1	03/18/21 12:56	03/19/21 01:02	75-25-2	
Bromomethane	ND	ug/kg	33.7	26.6	1	03/18/21 12:56	03/19/21 01:02	74-83-9	IH,IK,
2-Butanone (MEK)		uo/ka	227	80.0	1	03/18/21 12.55	03/10/21 01.02	78-03 2	L1,v1
		ug/kg	331 16 0	00.9	1	03/10/21 12:00	03/19/21 01:02	101 51 0	
		ug/kg	10.9	8.U 7 4	T A	03/10/21 12:50	03/19/21 01:02	104-51-8	
sec-DutyIDeriZerie		ug/kg	10.9	1.4	1	03/10/21 12:50	03/19/21 01:02	199-90-0	<b>V</b> 2
		ug/kg	10.9	b.U с о	1	03/10/21 12:50	03/19/21 01:02	90-00-0 50-00-5	٧Z
		ug/kg	10.9	0.3	1 4	03/10/21 12:50	03/19/21 01:02	00-20-0 100 00 7	
Chloraethana		ug/kg	10.9	3.Z	 	03/10/21 12:50	02/19/21 01:02	75 00 0	
Chioroethane	ND	ug/ĸg	33.7	13.0	1	03/18/21 12:56	03/19/21 01:02	15-00-3	



Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528353

Results reported on a "dry weight" basis and are adjusted for percent molisture, sample size and any dilutions.           Report           Parameters         Results         Units         Important Muthod: EPA 5035A/5030B           Based Analytical Muthod: EPA 5036A/5030B           Parameters         Chiorotom         Muthod Signal	Sample: RI-SB-19_SO_5.5- 6.0_20210315	Lab ID: 92528353002 Collected: 03/15/21 14:20 Received: 03/17/21 10:45 Matrix: Solid									
Parameters         Results         Units         MDL         DF         Prepared         Analyzed         CAS No.         Qual           2820D/5035A/5030B SC Volatiles         Analytical Method: EPA 82000 Preparation Method: EPA 5035A/5030B         Pace Analytical Services - Charlotte         03/18/21 12:56         03/19/21 01:02         76-68-3           Chioromethane         ND         ug/kg         16.9         10.0         10/18/21 12:56         03/19/21 01:02         76-8-3         M1           2-Chiorotoluene         ND         ug/kg         16.9         6.0         1         03/18/21 12:56         03/19/21 01:02         16-84-4           12-Dibromo-S-chioropropane         ND         ug/kg         16.9         7.4         1         03/18/21 12:56         03/19/21 01:02         16-93-4           12-Dibromoethane         ND         ug/kg         16.9         7.4         1         03/18/21 12:56         03/19/21 01:02         16-93-4           12-Dichlorobenzene         ND         ug/kg         16.9         3.6         1         03/18/21 12:56         03/19/21 01:02         16-94-7           12-Dichlorobenzene         ND         ug/kg         16.9         3.6         1         03/18/21 12:56         03/19/21 01:02         16-54-3           12-	Results reported on a "dry weight	" basis and ar	e adjusted f	or percent mo	oisture, sar	nple s	ize and any diluti	ons.			
Partimitation         Product         Diffic         Diffic         MUL         Diffic         Propertion         Production         Production           28260/5053A/5030B SC Volatiles         Analytical Method: EPA 8260D         Preparation Method: EPA 8505A/5030B         Version         Version <td< th=""><th></th><th>Desults</th><th>l laite</th><th>Report</th><th>MDI</th><th></th><th>Duenened</th><th>A se a h se a d</th><th></th><th>Qual</th></td<>		Desults	l laite	Report	MDI		Duenened	A se a h se a d		Qual	
BaseD/5035A/5030B SC Volatile         Analylical Method: EPA 8280D Preparation Method: EPA 5035A/5030B           Chardorm         Chardorm         Chardorm         Chardorm           Chardorm         ND         ug/kg         15.9         1.0         0.3/18/21 12:6         0.3/19/21 01:02         67-66-3           Chardormehane         ND         ug/kg         16.9         6.0         1         0.3/18/21 12:66         0.3/19/21 01:02         66-48-4           4-Chardotauene         ND         ug/kg         16.9         6.5         1         0.3/18/21 12:66         0.3/19/21 01:02         16-43-4           1.2-Dichorobanethane         ND         ug/kg         16.9         7.4         1         0.3/18/21 12:66         0.3/19/21 01:02         16-43-4           1.2-Dichorobanethane         ND         ug/kg         16.9         7.4         1         0.3/18/21 12:66         0.3/19/21 01:02         24-63-1           1.2-Dichorobaneznee         ND         ug/kg         16.9         6.1         1         0.3/18/21 12:66         0.3/19/21 01:02         75-43-1           1.3-Dichorobaneznee         ND         ug/kg         16.9         6.9         1         0.3/18/21 12:56         0.3/19/21 01:02         75-3-4           1.3-Dichorobanezne	Parameters		Units				- Prepared	Analyzed	CAS NO.		
Pace Analytical Services - Charlotte           Chlorodrm         ND         upkg         16.9         10.2         1         03/18/21 12:6         03/19/21 01:02         67-66-3           Chlorodrulene         ND         upkg         16.9         6.0         1         03/18/21 12:6         03/19/21 01:02         67-66-3           Chlorodrulene         ND         upkg         16.9         6.0         1         03/18/21 12:56         03/19/21 01:02         66-3           Lobitomo-3-chloropropane         ND         upkg         16.9         9.5         1         03/18/21 12:56         03/19/21 01:02         12-43-4           1.2-Dibromothane (EDB)         ND         upkg         16.9         3.6         1         03/18/21 12:56         03/19/21 01:02         74-95-3           L2-Dibromothane (EDB)         ND         upkg         16.9         5.2         1         03/18/21 12:56         03/19/21 01:02         74-95-3           L2-Dibromothane (EDB)         ND         upkg         16.9         5.2         1         03/18/21 12:56         03/19/21 01:02         75-3           L2-Dibriomothane         ND         upkg         16.9         6.9         1         03/18/21 12:56         03/19/21 01:02         75-3	8260D/5035A/5030B SC Volatiles	Analytical	Method: EP	A 8260D Prep	aration Met	hod: E	PA 5035A/5030B				
Chiordorm         ND         ug/kg         16.9         10.2         1         03/18/21 12:56         03/18/21 10:10         74-87-3         M1           Chioronethane         ND         ug/kg         16.9         3.0         11.256         03/18/21 10:10         74-87-3         M1           2-Chiorotoluene         ND         ug/kg         16.9         3.0         10.3/18/21 12:56         03/18/21 10:10         26-43-8           4-Chiorotoluene         ND         ug/kg         16.9         5.5         1         03/18/21 12:56         03/18/21 10:10         26-43-8           Dibromochloromethane         ND         ug/kg         16.9         4.5         1         03/18/21 12:56         03/19/21 01:02         26-50-1           1.2-Dichoroberzene         ND         ug/kg         16.9         4.4         1         03/18/21 12:56         03/19/21 01:02         57-50-1           1.3-Dichoroberzene         ND         ug/kg         16.9         4.4         1         03/18/21 12:56         03/19/21 01:02         57-50-1           1.3-Dichoroberzene         ND         ug/kg         16.9         4.4         1         03/18/21 12:56         03/19/21 01:02         57-51-8           1.3-Dichoroberzene         ND		Pace Ana	ytical Servic	es - Charlotte							
Chordmethane         ND         ug/kg         16.3         12.2         1         0.3/18/21         12.50         0.3/18/21         12.50         0.3/18/21         12.50         0.3/18/21         12.50         0.3/18/21         12.50         0.3/18/21         12.50         0.3/18/21         12.50         0.3/18/21         12.50         0.3/18/21         12.50         0.3/18/21         12.50         0.3/18/21         12.50         0.3/18/21         12.50         0.3/18/21         12.50         0.3/18/21         12.50         0.3/18/21         12.50         0.3/18/21         12.50         0.3/18/21         12.50         0.3/18/21         12.50         0.3/18/21         12.50         0.3/18/21         12.50         0.3/18/21         12.50         0.3/18/21         12.50         0.3/18/21         12.50         0.3/18/21         0.3/18/21         12.50         0.3/18/21         0.3/18/21         0.3/18/21         0.3/18/21         0.3/18/21         0.3/18/21         0.3/18/21         0.3/18/21         0.3/18/21         0.3/18/21         0.3/18/21         0.3/18/21         0.3/18/21         0.3/18/21         0.3/18/21         0.3/18/21         0.3/18/21         0.3/18/21         0.3/18/21         0.3/18/21         0.3/18/21         0.3/18/21         0.3/18/21         0.3/18/21         0.3/18/21 <td>Chloroform</td> <td></td> <td>ua/ka</td> <td>16.0</td> <td>10.2</td> <td>1</td> <td>03/18/21 12:56</td> <td>03/10/21 01.02</td> <td>67-66-3</td> <td></td>	Chloroform		ua/ka	16.0	10.2	1	03/18/21 12:56	03/10/21 01.02	67-66-3		
Chorontrating         ND         ug/kg         16.9         0.01/16/21         0.01/16/21         10.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2         14.11/2	Chloromethane		ug/kg ug/kg	33.7	14.2	1	03/18/21 12:56	03/19/21 01:02	74-87-3	M1	
2 chonolulume         ND         ugkg         16.5         3.0         1         031821 12.56         031921 01.22         10.20         10.40           1,2-Dibromo-3-chloropropane         ND         ugkg         16.9         6.5         1         031821 12.56         031921 01.22         10.64.3           1,2-Dibromoethane (EDB)         ND         ugkg         16.9         9.5         1         031821 12.56         031921 01.22         12.64.3           1,2-Dibromoethane         ND         ugkg         16.9         6.1         1         031821 12.56         031921 01.02         24.8-5.3           1,2-Dichlorobenzene         ND         ugkg         16.9         6.1         1         031821 12.56         031921 01.02         2541-73.1           1,4-Dichlorobenzene         ND         ugkg         16.9         4.4         1         031821 12.56         031921 01.02         75-74.8           1,1-Dichlorobethane         ND         ugkg         16.9         5.8         1         031821 12.56         031921 01.02         75-74.8           1,2-Dichloroethane         ND         ugkg         16.9         5.8         1         031821 12.56         031921 01.02         156-60-5           1,2-Dichloroethane <td< td=""><td>2-Chlorotoluene</td><td></td><td>ug/kg</td><td>16.9</td><td>6.0</td><td>1</td><td>03/18/21 12:56</td><td>03/19/21 01:02</td><td>95-49-8</td><td></td></td<>	2-Chlorotoluene		ug/kg	16.9	6.0	1	03/18/21 12:56	03/19/21 01:02	95-49-8		
Absolution         ND         ug/kg         16.3         5.3         1         0.312/1         12.56         0.319/21         11.25         0.319/21         11.25         0.319/21         11.25         0.319/21         11.25         0.319/21         11.25         0.319/21         11.25         0.319/21         11.25         0.319/21         11.25         0.319/21         11.25         0.319/21         11.25         0.319/21         11.25         0.319/21         11.25         0.319/21         11.25         0.319/21         11.25         0.319/21         11.25         0.319/21         11.25         0.319/21         11.25         0.319/21         11.25         0.319/21         11.25         0.319/21         11.25         0.319/21         11.25         0.319/21         11.25         0.319/21         11.25         0.319/21         11.25         0.319/21         11.25         0.319/21         11.25         0.319/21         11.25         0.319/21         11.25         0.319/21         11.25         0.319/21         11.25         0.319/21         11.25         0.319/21         11.25         0.319/21         11.25         0.319/21         11.25         0.319/21         11.25         0.319/21         11.25         0.319/21         11.25         0.319/21         11.	4-Chlorotoluene		ug/kg	16.9	3.0	1	03/18/21 12:56	03/19/21 01:02	106-43-4		
Inclusione of unional of unional and the second s	1 2-Dibromo-3-chloropropape		ug/kg	16.9	6.5	1	03/18/21 12:56	03/19/21 01:02	96-12-8		
Discretion         ND         ugkg         16.9         7.4         1         0.01/22         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.12         10.	Dibromochloromethane		ug/kg	16.9	0.5 0.5	1	03/18/21 12:56	03/19/21 01:02	124-48-1		
Inclusion         ND         ugkg         16.9         3.6         1         0.3/18.21         12.25         0.3/18.21         10.20         74.95-3           1,2-Dichlorobenzene         ND         ug/kg         16.9         5.1         1         0.3/18.21         12.256         0.3/19/21         10.02         74.73-1           1,3-Dichlorobenzene         ND         ug/kg         16.9         5.4         1         0.3/18/21         12.56         0.3/19/21         01.02         75.71-8           1,1-Dichloroethane         ND         ug/kg         16.9         6.9         1         0.3/18/21         12.56         0.3/19/21         01.02         75.34-3           1,1-Dichloroethane         ND         ug/kg         16.9         5.8         1         0.3/18/21         12.56         0.3/19/21         01.02         75.34-3           1,2-Dichloroethane         ND         ug/kg         16.9         5.8         1         0.3/18/21         10.02         0.3/19/21         01.02         75.8-4           1,2-Dichloroethane         ND         ug/kg         16.9         5.1         0.3/18/21         0.3/18/21         0.3/18/21         10.02         16.8-42.5           1,2-Dichloroethane         ND	1 2-Dibromoethane (EDB)		ug/kg	16.9	74	1	03/18/21 12:56	03/19/21 01:02	106-93-4		
Destination         ND         ug/kg         16.9         6.1         1         0.3/18/2         12.56         0.3/19/2         0.1/12         0.3/18/2           1,3-Dichlorobenzene         ND         ug/kg         16.9         6.4         1         0.3/18/2         12.56         0.3/19/2         0.1/12         56.50-1           1,4-Dichlorobenzene         ND         ug/kg         16.9         4.4         1         0.3/18/2         12.56         0.3/19/2         0.1/12         75.4-3           1,1-Dichloroethane         ND         ug/kg         16.9         1.2         1         0.3/18/2         12.56         0.3/19/2         0.1/12         75.3-4           1,2-Dichloroethane         ND         ug/kg         16.9         5.8         1         0.3/18/2         12.56         0.3/19/2         0.1/12         75.3-54           i.2-Dichloroethane         ND         ug/kg         16.9         5.8         1         0.3/18/2         12.56         0.3/19/2         0.1/12         75.3-54           i.2-Dichloropropane         ND         ug/kg         16.9         5.3         1         0.3/18/2         12.56         0.3/19/2         10.1/12         26.3-58-6           i.2-Dichloropropane	Dibromomethane	ND	ug/kg	16.9	3.6	1	03/18/21 12:56	03/19/21 01:02	74-95-3		
Inclusion       Inclusion <thinclusion< th=""> <thinclusion< th=""> <thinclusion< th=""></thinclusion<></thinclusion<></thinclusion<>	1 2-Dichlorobenzene	ND	ug/kg	16.9	6.1	1	03/18/21 12:56	03/19/21 01:02	95-50-1		
ND       ug/kg       16.9       0.12       0.3142/1       12.56       03/19/21       0.10.2       10.84         J-Dichlorodflluoromethane       ND       ug/kg       33.7       7.3       1       0.3142/1       12.56       03/19/21       0.10.2       10.646-7         J-Dichlorodthane       ND       ug/kg       16.9       6.9       1       0.3142/1       12.56       0.3/19/21       0.10.2       10.706-2         J.1-Dichloroethane       ND       ug/kg       16.9       6.9       1       0.3142/1       12.56       0.3/19/21       0.10.2       17.6-62         LinDichloroethene       ND       ug/kg       16.9       5.9       1       0.3142/1       12.56       0.3/19/21       0.10.2       18.6-0.5         LinDichloroptopane       ND       ug/kg       16.9       5.9       1       0.3/18/21       12.56       0.3/19/21       0.10.2       18.6-0.5       1.3.3.0:holoroptopane       ND       ug/kg       16.9       5.5       1       0.3/18/21       12.56       0.3/19/21       0.10.2       18.2-2-9       2.2-Dichloroptopane       ND       ug/kg       16.9       5.8       1       0.3/18/21       12.56       0.3/19/21       0.10.2       10.661-0.5       1.1	1 3-Dichlorobenzene	ND	ug/kg	16.9	5.2	1	03/18/21 12:56	03/19/21 01:02	541-73-1		
Introduction         International operation         International operation <thinternatioperatioperation< th=""> <thinternation< th=""></thinternation<></thinternatioperatioperation<>	1,3 Dichlorobenzene		ug/kg	16.9	J.Z 4 4	1	03/18/21 12:56	03/19/21 01:02	106-46-7		
Display         Display <t< td=""><td>Dichlorodifluoromethane</td><td></td><td>ug/kg</td><td>33.7</td><td> 73</td><td>1</td><td>03/18/21 12:56</td><td>03/19/21 01:02</td><td>75-71-8</td><td></td></t<>	Dichlorodifluoromethane		ug/kg	33.7	 73	1	03/18/21 12:56	03/19/21 01:02	75-71-8		
I. J. Dichloroethane         ND         ug/kg         16.9         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3 <th7.3< th="">         7.3         7.3</th7.3<>	1 1-Dichloroethane	ND	ug/kg	16.9	6.9	1	03/18/21 12:56	03/19/21 01:02	75-34-3		
Inc. London and the series       ND       ug/kg       16.5       11.0       03/18/21       12.55       03/19/21       01.02       75.35.4         cis-1,2-Dichloroethene       ND       ug/kg       16.9       5.8       1       03/18/21       12.56       03/19/21       01.02       75.35.4         trans-1,2-Dichloroethene       ND       ug/kg       16.9       5.9       1       03/18/21       12.56       03/19/21       01.02       75.85.4         1,2-Dichloroptpane       ND       ug/kg       16.9       5.3       1       03/18/21       03/18/21       03/19/21       01.02       78.87.5         1,3-Dichloropropane       ND       ug/kg       16.9       5.5       1       03/18/21       12.56       03/19/21       01.02       56.35.6         cis-1,3-Dichloropropane       ND       ug/kg       16.9       4.6       1       03/18/21       10.30       10.02       10.061-02-6         Disporpyle ther       ND       ug/kg       16.9       4.6       1       03/18/21       10.03       10.02       10.02       10.02       10.02       10.02       10.02       10.02       10.02       10.02       10.02       10.02       10.02       10.03       10.03/18/21 <td>1 2-Dichloroethane</td> <td>ND</td> <td>ug/kg</td> <td>16.9</td> <td>11.2</td> <td>1</td> <td>03/18/21 12:56</td> <td>03/19/21 01:02</td> <td>107-06-2</td> <td></td>	1 2-Dichloroethane	ND	ug/kg	16.9	11.2	1	03/18/21 12:56	03/19/21 01:02	107-06-2		
Inclusion         ND         ug/kg         16.3         6.3         1         03/18/21         12.56         03/19/21         01.02         156-59-2           trans-1,2-Dichloroethene         ND         ug/kg         16.9         5.9         1         03/18/21         12.56         03/19/21         01:02         156-59-2           1,2-Dichloropropane         ND         ug/kg         16.9         5.3         1         03/18/21         12.56         03/19/21         01:02         78-87-5           1,3-Dichloropropane         ND         ug/kg         16.9         5.5         1         03/18/21         256         03/19/21         01:02         594-20-7           1,1-Dichloropropane         ND         ug/kg         16.9         4.6         1         03/18/21         03/19/21         01:02         10061-01-5           trans-1,3-Dichloropropene         ND         ug/kg         16.9         4.6         1         03/18/21         03/19/21         01:02         10061-02-6           Disopropyl ether         ND         ug/kg         16.9         7.9         1         03/18/21         03/19/21         01:02         10-4-1-4           Hexachloro-1,3-butadiene         ND         ug/kg         16.9	1 1-Dichloroethene	ND	ug/kg	16.9	69	1	03/18/21 12:56	03/19/21 01:02	75-35-4		
No. 1, 2 binkinorethene         ND         ug/kg         16.5         5.9         1         03/18/21         12.56         03/18/21         01/12/1         01/12/1         03/18/21         01/12/1         03/18/21         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1         01/12/1	cis-1 2-Dichloroethene	ND	ug/kg	16.9	5.8	1	03/18/21 12:56	03/19/21 01:02	156-59-2		
Name         ND         ug/kg         16.5         5.1         1         03/18/21         12:50         03/18/21         12:50         03/19/21         01:02         78:87-5           1,3-Dichloropropane         ND         ug/kg         16.9         5.3         1         03/18/21         12:56         03/19/21         01:02         78:87-5           1,3-Dichloropropane         ND         ug/kg         16.9         5.5         1         03/18/21         12:56         03/19/21         01:02         563:58-6           cis-1,3-Dichloropropene         ND         ug/kg         16.9         4.6         1         03/18/21         12:56         03/19/21         10:02         10061-02-6           Diisopropylether         ND         ug/kg         16.9         5.8         1         03/18/21         12:56         03/19/21         10:02         10061-02-6           Diisopropylether         ND         ug/kg         16.9         7.9         1         03/18/21         12:56         03/19/21         10:02         100-14-4           Hexachloro-1,3-butadiene         ND         ug/kg         169         16.3         1         03/18/21         12:56         03/19/21         01:02         98:82-8	trans-1 2-Dichloroethene	ND	ug/kg	16.9	5.9	1	03/18/21 12:56	03/19/21 01:02	156-60-5		
N.D.       N.D.       ug/kg       16.5       6.1       1       03/16/21 12:56       03/19/21 01:02       142-28-9         2.2-Dichloropropane       N.D.       ug/kg       16.9       5.3       1       03/18/21 12:56       03/19/21 01:02       542-20-7         1,1-Dichloropropane       N.D.       ug/kg       16.9       8.1       1       03/18/21 12:56       03/19/21 01:02       503-58-6         cis-1,3-Dichloropropane       N.D.       ug/kg       16.9       4.6       1       03/18/21 12:56       03/19/21 01:02       10061-01-5         trans-1,3-Dichloropropane       N.D.       ug/kg       16.9       5.8       1       03/18/21 12:56       03/19/21 01:02       10061-02-6         Diisopropyl ether       N.D.       ug/kg       16.9       7.9       1       03/18/21 12:56       03/19/21 01:02       100-41-4         Hexachloro-1,3-butadiene       N.D.       ug/kg       16.9       7.7       1       03/18/21 12:56       03/19/21 01:02       98-82-8         Isopropylbenzene (Cumene)       N.D.       ug/kg       16.9       5.7       1       03/18/21 12:56       03/19/21 01:02       98-82-8         J-Hostonice       N.D.       ug/kg       16.9       6.3       1       03/18	1 2-Dichloropropage	ND	ug/kg	16.9	5.0	1	03/18/21 12:56	03/19/21 01:02	78-87-5		
No. Biolographic       ND       ug/kg       16.9       5.5       1       03/18/21 12:56       03/19/21 01:02       59/24-20-7         1,1-Dichloropropene       ND       ug/kg       16.9       8.1       1       03/18/21 12:56       03/19/21 01:02       563-58-6         cis-1,3-Dichloropropene       ND       ug/kg       16.9       5.8       1       03/18/21 12:56       03/19/21 01:02       10061-01-5         trans-1,3-Dichloropropene       ND       ug/kg       16.9       4.6       1       03/18/21 12:56       03/19/21 01:02       10061-02-6         Diisopropyl ether       ND       ug/kg       16.9       4.6       1       03/18/21 12:56       03/19/21 01:02       100-41-4         Hexachtoro-1,3-butadiene       ND       ug/kg       16.9       7.9       1       03/18/21 12:56       03/19/21 01:02       59-78-6         Isopropylbenzene (Curnene)       ND       ug/kg       16.9       5.7       1       03/18/21 12:56       03/19/21 01:02       98-87-8         p-lsopropylbolnzene (MIBK)       ND       ug/kg       16.9       8.3       1       03/18/21 12:56       03/19/21 01:02       98-87-6         Methylene Chloride       ND       ug/kg       16.9       6.3       03/18/21 12:	1 3-Dichloropropane	ND	ug/kg	16.9	53	1	03/18/21 12:56	03/19/21 01:02	142-28-9		
L2       Display       Display <thdisplay< th=""> <thdisplay< th="">       Display       <t< td=""><td>2 2-Dichloropropane</td><td>ND</td><td>ug/kg</td><td>16.9</td><td>5.5</td><td>1</td><td>03/18/21 12:56</td><td>03/19/21 01:02</td><td>594-20-7</td><td></td></t<></thdisplay<></thdisplay<>	2 2-Dichloropropane	ND	ug/kg	16.9	5.5	1	03/18/21 12:56	03/19/21 01:02	594-20-7		
ND       ug/kg       16.9       4.6       1       03/18/21 12:56       03/19/21 01:02       10061-02-6         trans-1,3-Dichloropropene       ND       ug/kg       16.9       5.8       1       03/18/21 12:56       03/19/21 01:02       10061-02-6         Diisopropyl ether       ND       ug/kg       16.9       4.6       1       03/18/21 12:56       03/19/21 01:02       100-1-5         Ethylbenzene       9.2J       ug/kg       16.9       7.9       1       03/18/21 12:56       03/19/21 01:02       100-41-4         Hexachloro-1,3-butadiene       ND       ug/kg       16.9       7.9       1       03/18/21 12:56       03/19/21 01:02       98-82-8         Isopropylbenzene (Curnene)       ND       ug/kg       16.9       5.7       1       03/18/21 12:56       03/19/21 01:02       99-87-6         Lexpropylbenzene (Curnene)       ND       ug/kg       16.9       8.3       1       03/18/21 12:56       03/19/21 01:02       99-87-6         Vehtylene Chloride       ND       ug/kg       16.9       8.3       1       03/18/21 12:56       03/19/21 01:02       99-87-6         Methylene Chloride       ND       ug/kg       16.9       6.3       1       03/18/21 12:56       03/19/21 01	1 1-Dichloropropene	ND	ug/kg	16.9	8.1	1	03/18/21 12:56	03/19/21 01:02	563-58-6		
ND         ug/kg         16.9         5.8         1         03/18/21         12:56         03/19/21         01:02         10:03/10/10           Diisopropyl ether         ND         ug/kg         16.9         5.8         1         03/18/21         12:56         03/19/21         01:02         10:061-02-6           Diisopropyl ether         ND         ug/kg         16.9         7.9         1         03/18/21         12:56         03/19/21         01:02         10:061-02-6           Lisopropyl ether         ND         ug/kg         16.9         7.9         1         03/18/21         12:56         03/19/21         01:02         10:061-02-6           Lisopropyl ether         ND         ug/kg         16.9         7.7         1         03/18/21         12:56         03/19/21         01:02         591-78-6           Isopropyl benzene (Cumene)         ND         ug/kg         16.9         5.7         1         03/18/21         12:56         03/19/21         01:02         98-82-8           p-Isopropyl boluene         ND         ug/kg         16.9         8.3         1         03/18/21         12:56         03/19/21         01:02         108-10-1           Methyl-2-pentanone (MIBK)         ND	cis-1 3-Dichloropropene	ND	ug/kg	16.9	4.6	1	03/18/21 12:56	03/19/21 01:02	10061-01-5		
ND       ug/kg       16.9       4.6       1       03/18/21       12.56       03/19/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/21       01/	trans-1.3-Dichloropropene	ND	ug/kg	16.9	5.8	1	03/18/21 12:56	03/19/21 01:02	10061-02-6		
Entryleproprint       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100	Diisopropyl ether	ND	ug/kg	16.9	4.6	1	03/18/21 12:56	03/19/21 01:02	108-20-3		
LativisticitiesNDug/kg13.513.513.514.513.514.513.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.514.5<	Ethylbenzene	9.2.1	ug/kg	16.9	79	1	03/18/21 12:56	03/19/21 01:02	100-41-4		
No.NDug/kg16.916.3103/18/2112.5603/19/2101:0250:0617.86Isopropylbenzene (Cumene)NDug/kg16.95.7103/18/2112:5603/19/2101:02591:78-6Isopropylbenzene (Cumene)NDug/kg16.98.3103/18/2112:5603/19/2101:02591:78-6Methylene ChlorideNDug/kg16.98.3103/18/2112:5603/19/2101:0275:09-24-Methyl-2-pentanone (MIBK)NDug/kg16916.3103/18/2112:5603/19/2101:02108:10-1Methyl-ter-butyl etherNDug/kg16.96.3103/18/2112:5603/19/2101:02108:10-1NaphthaleneNDug/kg16.96.3103/18/2112:5603/19/2101:02108:10-1NProylbenzeneNDug/kg16.96.0103/18/2112:5603/19/2101:02103:65-1StyreneNDug/kg16.96.5103/18/2112:5603/19/2101:02100:42-51,1,2-TetrachloroethaneNDug/kg16.94.5103/18/2112:5603/19/2101:0210:42-51,1,2-TetrachloroethaneNDug/kg16.95.3103/18/2112:5603/19/2101:02127-18-4TolueneNDug/kg16.95.3103/18/2112:	Hexachloro-1 3-butadiene		ug/kg	33.7	27.6	1	03/18/21 12:56	03/19/21 01:02	87-68-3	IK	
InstructureNDug/kg16.95.7103/18/2112.1603/19/2101.0208/17/2103/18/2103/18/2103/18/2103/18/2101.0208/17/2103/18/2101.0208/17/2101.0208/17/2101.0208/17/2101.0208/17/2101.0208/17/2101.0208/17/2101.0208/17/2101.0208/17/2101.0208/17/2101.0208/17/2101.0208/17/2101.0208/17/2101.0208/17/2101.0208/17/2101.0208/17/2101.0208/17/2101.0208/17/2101.0208/17/2101.0208/17/2101.0208/17/2101.0208/17/2101.0208/17/2101.0208/17/2101.0208/17/2101.0208/17/2101.0208/17/2101.0208/17/2101.0208/17/2101.0208/17/2101.0208/17/2101.0208/17/2101.0208/17/2101.0208/17/2101.0208/17/2101.0208/17/2101.0208/17/2101.0208/17/2101.0208/17/2101.0208/17/2101.0208/17/2101.0210/17/2101.0210/17/2101.0210/17/2101.0210/17/2101.0210/17/2101.0210/17/2101.0210/17/2101.0210/17/2101.0210/17/2101.0210/17/2101.0210/17/2101.0210/17/2101.0210/17/2101.0210/17/2101.0210/17/2101.0210/17/2101.0210/17	2-Hexanone	ND	ug/kg	169	16.3	1	03/18/21 12:56	03/19/21 01:02	591-78-6	iix	
IndepIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndex	Isopropylbenzene (Cumene)	ND	ug/kg	16.9	5.7	1	03/18/21 12:56	03/19/21 01:02	98-82-8		
Methylene Chloride       ND       ug/kg       67.4       46.2       1       03/18/21 12:56       03/19/21 01:02       75-09-2         4-Methyl-2-pentanone (MIBK)       ND       ug/kg       169       16.3       1       03/18/21 12:56       03/19/21 01:02       108-10-1         Methyl-ter-butyl ether       ND       ug/kg       16.9       6.3       1       03/18/21 12:56       03/19/21 01:02       108-10-1         Methyl-ter-butyl ether       ND       ug/kg       16.9       6.3       1       03/18/21 12:56       03/19/21 01:02       108-40-44         Naphthalene       ND       ug/kg       16.9       6.0       1       03/18/21 12:56       03/19/21 01:02       103-65-1         Styrene       ND       ug/kg       16.9       6.0       1       03/18/21 12:56       03/19/21 01:02       100-42-5         1,1,2-Tetrachloroethane       ND       ug/kg       16.9       4.5       1       03/18/21 12:56       03/19/21 01:02       100-42-5         1,1,2.2-Tetrachloroethane       ND       ug/kg       16.9       4.5       1       03/18/21 12:56       03/19/21 01:02       20-20-6         1,1,2.2-Tetrachloroethane       ND       ug/kg       16.9       5.3       1       03/18/21 12:	p-Isopropyltoluene	ND	ug/kg	16.9	8.3	1	03/18/21 12:56	03/19/21 01:02	99-87-6		
Hard Joins of the dg/kgHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHardHard	Methylene Chloride	ND	ug/kg	67.4	46.2	1	03/18/21 12:56	03/19/21 01:02	75-09-2		
Methyl-tert-butyl etherNDug/kg16.96.3103/18/21 12:5603/19/21 01:021634-04-4NaphthaleneNDug/kg16.98.9103/18/21 12:5603/19/21 01:0291-20-3n-PropylbenzeneNDug/kg16.96.0103/18/21 12:5603/19/21 01:02103-65-1StyreneNDug/kg16.94.5103/18/21 12:5603/19/21 01:02100-42-51,1,2-TetrachloroethaneNDug/kg16.94.5103/18/21 12:5603/19/21 01:02630-20-61,1,2,2-TetrachloroethaneNDug/kg16.94.5103/18/21 12:5603/19/21 01:0279-34-5TetrachloroethaneNDug/kg16.95.3103/18/21 12:5603/19/21 01:02127-18-4TolueneNDug/kg16.94.8103/18/21 12:5603/19/21 01:02108-88-31,2,3-TrichlorobenzeneNDug/kg16.913.6103/18/21 12:5603/19/21 01:02127-18-4TolueneNDug/kg16.913.6103/18/21 12:5603/19/21 01:02120-82-11,2,4-TrichlorobenzeneNDug/kg16.914.2103/18/21 12:5603/19/21 01:02120-82-11,1,1-TrichloroethaneNDug/kg16.98.8103/18/21 12:5603/19/21 01:02120-82-11,1,2-TrichloroethaneNDug/kg16.98.8103/18/21 12:5603/19/21 01:02	4-Methyl-2-pentanone (MIBK)	ND	ug/kg	169	16.3	1	03/18/21 12:56	03/19/21 01:02	108-10-1		
Naphthalene       ND       ug/kg       16.9       8.9       1       03/18/21       12:56       03/19/21       01:02       91:20-3         n-Propylbenzene       ND       ug/kg       16.9       6.0       1       03/18/21       12:56       03/19/21       01:02       91:20-3         styrene       ND       ug/kg       16.9       6.0       1       03/18/21       12:56       03/19/21       01:02       100-42-5         1,1,1,2-Tetrachloroethane       ND       ug/kg       16.9       4.5       1       03/18/21       12:56       03/19/21       01:02       630-20-6         1,1,2,2-Tetrachloroethane       ND       ug/kg       16.9       4.5       1       03/18/21       12:56       03/19/21       01:02       630-20-6         1,1,2,2-Tetrachloroethane       ND       ug/kg       16.9       4.5       1       03/18/21       12:56       03/19/21       01:02       79-34-5         Tetrachloroethane       ND       ug/kg       16.9       5.3       1       03/18/21       12:56       03/19/21       01:02       102-82-1         Toluene       ND       ug/kg       16.9       4.8       1       03/18/21       12:56       03/19/21 <t< td=""><td>Methyl-tert-butyl ether</td><td>ND</td><td>ug/kg</td><td>16.9</td><td>6.3</td><td>1</td><td>03/18/21 12:56</td><td>03/19/21 01:02</td><td>1634-04-4</td><td></td></t<>	Methyl-tert-butyl ether	ND	ug/kg	16.9	6.3	1	03/18/21 12:56	03/19/21 01:02	1634-04-4		
n-PropylbenzeneNDug/kg16.96.0103/18/21 12:5603/19/21 01:02103-65-1StyreneNDug/kg16.94.5103/18/21 12:5603/19/21 01:02100-42-51,1,2-TetrachloroethaneNDug/kg16.96.5103/18/21 12:5603/19/21 01:02630-20-61,1,2,2-TetrachloroethaneNDug/kg16.94.5103/18/21 12:5603/19/21 01:0279-34-5TetrachloroethaneNDug/kg16.95.3103/18/21 12:5603/19/21 01:02127-18-4TolueneNDug/kg16.94.8103/18/21 12:5603/19/21 01:02108-88-31,2,3-TrichlorobenzeneNDug/kg16.913.6103/18/21 12:5603/19/21 01:02120-82-11,1,1-TrichloroethaneNDug/kg16.914.2103/18/21 12:5603/19/21 01:02120-82-11,1,2-TrichloroethaneNDug/kg16.914.2103/18/21 12:5603/19/21 01:02120-82-11,1,1-TrichloroethaneNDug/kg16.98.8103/18/21 12:5603/19/21 01:0271-55-61,1,2-TrichloroethaneNDug/kg16.95.6103/18/21 12:5603/19/21 01:0271-55-61,1,2-TrichloroethaneNDug/kg16.95.6103/18/21 12:5603/19/21 01:0271-55-6	Naphthalene	ND	ug/kg	16.9	8.9	1	03/18/21 12:56	03/19/21 01:02	91-20-3		
ND       ug/kg       16.9       4.5       1       03/18/21       12.56       03/19/21       01.02       100       04/2-5         1,1,1,2-Tetrachloroethane       ND       ug/kg       16.9       6.5       1       03/18/21       12:56       03/19/21       01:02       100-42-5         1,1,2,2-Tetrachloroethane       ND       ug/kg       16.9       6.5       1       03/18/21       12:56       03/19/21       01:02       630-20-6         1,1,2,2-Tetrachloroethane       ND       ug/kg       16.9       4.5       1       03/18/21       12:56       03/19/21       01:02       79-34-5         Tetrachloroethane       ND       ug/kg       16.9       5.3       1       03/18/21       12:56       03/19/21       01:02       102-18-4         Toluene       ND       ug/kg       16.9       4.8       1       03/18/21       12:56       03/19/21       01:02       108-88-3         1,2,3-Trichlorobenzene       ND       ug/kg       16.9       13.6       1       03/18/21       12:56       03/19/21       01:02       120-82-1         1,1,1-Trichlorobenzene       ND       ug/kg       16.9       14.2       1       03/18/21       12:56       03/19/	n-Propylbenzene	ND	ug/kg	16.9	6.0	1	03/18/21 12:56	03/19/21 01:02	103-65-1		
ND       ug/kg       16.5       1.6       03/18/21       12.56       03/19/21       01.02       100       12.6         1,1,1,2-Tetrachloroethane       ND       ug/kg       16.9       6.5       1       03/18/21       12.56       03/19/21       01.02       630-20-6         1,1,2,2-Tetrachloroethane       ND       ug/kg       16.9       4.5       1       03/18/21       12:56       03/19/21       01:02       79-34-5         Tetrachloroethane       ND       ug/kg       16.9       5.3       1       03/18/21       12:56       03/19/21       01:02       127-18-4         Toluene       ND       ug/kg       16.9       4.8       1       03/18/21       12:56       03/19/21       01:02       102-18-4         1,2,3-Trichlorobenzene       ND       ug/kg       16.9       4.8       1       03/18/21       12:56       03/19/21       01:02       108-88-3         1,2,3-Trichlorobenzene       ND       ug/kg       16.9       13.6       1       03/18/21       12:56       03/19/21       01:02       87-61-6         1,2,4-Trichlorobenzene       ND       ug/kg       16.9       14.2       1       03/18/21       12:56       03/19/21       01:02	Styrene	ND	ug/kg	16.9	4 5	1	03/18/21 12:56	03/19/21 01:02	100-42-5		
ND       ug/kg       16.9       4.5       1       03/18/21       12:56       03/19/21       01:02       79:34-5         Tetrachloroethane       ND       ug/kg       16.9       4.5       1       03/18/21       12:56       03/19/21       01:02       79:34-5         Tetrachloroethane       ND       ug/kg       16.9       5.3       1       03/18/21       12:56       03/19/21       01:02       127:18-4         Toluene       ND       ug/kg       16.9       4.8       1       03/18/21       12:56       03/19/21       01:02       127:18-4         Toluene       ND       ug/kg       16.9       4.8       1       03/18/21       12:56       03/19/21       01:02       108:88-3         1,2,3-Trichlorobenzene       ND       ug/kg       16.9       13.6       1       03/18/21       12:56       03/19/21       01:02       87:61-6         1,2,4-Trichlorobenzene       ND       ug/kg       16.9       14.2       1       03/18/21       12:56       03/19/21       01:02       120:82-11         1,1,1-Trichloroethane       ND       ug/kg       16.9       8.8       1       03/18/21       12:56       03/19/21       01:02       71:55-6 </td <td>1 1 1 2-Tetrachloroethane</td> <td>ND</td> <td>ug/kg</td> <td>16.9</td> <td>4.0 6.5</td> <td>1</td> <td>03/18/21 12:56</td> <td>03/19/21 01:02</td> <td>630-20-6</td> <td></td>	1 1 1 2-Tetrachloroethane	ND	ug/kg	16.9	4.0 6.5	1	03/18/21 12:56	03/19/21 01:02	630-20-6		
Tetrachloroethene       ND       ug/kg       16.9       5.3       1       03/18/21       12:56       03/19/21       01:02       12:7-18-4         Toluene       ND       ug/kg       16.9       4.8       1       03/18/21       12:56       03/19/21       01:02       127-18-4         Toluene       ND       ug/kg       16.9       4.8       1       03/18/21       12:56       03/19/21       01:02       108-88-3         1,2,3-Trichlorobenzene       ND       ug/kg       16.9       13.6       1       03/18/21       12:56       03/19/21       01:02       87-61-6         1,2,4-Trichlorobenzene       ND       ug/kg       16.9       14.2       1       03/18/21       12:56       03/19/21       01:02       120-82-1         1,1,1-Trichloroethane       ND       ug/kg       16.9       8.8       1       03/18/21       12:56       03/19/21       01:02       71-55-6         1,1,2-Trichloroethane       ND       ug/kg       16.9       5.6       1       03/18/21       12:56       03/19/21       01:02       79-00-5	1 1 2 2-Tetrachloroethane	ND	ug/kg	16.9	4.5	1	03/18/21 12:56	03/19/21 01:02	79-34-5		
Toluene       ND       ug/kg       16.9       4.8       1       03/18/21       12:56       03/19/21       01:02       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       10	Tetrachloroethene	ND	ug/kg	16.9	5.3	1	03/18/21 12:56	03/19/21 01:02	127-18-4		
1,2,3-Trichlorobenzene       ND       ug/kg       16.9       13.6       1       03/18/21       12:56       03/19/21       01:02       87-61-6         1,2,4-Trichlorobenzene       ND       ug/kg       16.9       14.2       1       03/18/21       12:56       03/19/21       01:02       87-61-6         1,1,1-Trichlorobenzene       ND       ug/kg       16.9       14.2       1       03/18/21       12:56       03/19/21       01:02       120-82-1         1,1,1-Trichloroethane       ND       ug/kg       16.9       8.8       1       03/18/21       12:56       03/19/21       01:02       71-55-6         1,1,2-Trichloroethane       ND       ug/kg       16.9       5.6       1       03/18/21       12:56       03/19/21       01:02       79-00-5	Toluene	ND	ug/kg	16.9	4.8	1	03/18/21 12:56	03/19/21 01:02	108-88-3		
1,2,4-Trichlorobenzene       ND       ug/kg       16.9       14.2       1       03/18/21       12.56       03/19/21       01.02       10.10         1,1,1-Trichloroethane       ND       ug/kg       16.9       8.8       1       03/18/21       12.56       03/19/21       01.02       12.0-82-1         1,1,2-Trichloroethane       ND       ug/kg       16.9       8.8       1       03/18/21       12.56       03/19/21       01.02       71-55-6         1,1,2-Trichloroethane       ND       ug/kg       16.9       5.6       1       03/18/21       12:56       03/19/21       01:02       79-00-5	1.2.3-Trichlorobenzene	ND	ug/kg	16.9	13.6	1	03/18/21 12:56	03/19/21 01:02	87-61-6		
1,1,1-Trichloroethane     ND     ug/kg     16.9     8.8     1     03/18/21     12:56     03/19/21     01:02     71:55-6       1,1,2-Trichloroethane     ND     ug/kg     16.9     5.6     1     03/18/21     12:56     03/19/21     01:02     79:00-5	1.2.4-Trichlorobenzene	ND	ug/kg	16.9	14.2	1	03/18/21 12:56	03/19/21 01:02	120-82-1		
1,1,2-Trichloroethane ND ug/kg 16.9 5.6 1 03/18/21 12:56 03/19/21 01:02 79-00-5	1.1.1-Trichloroethane	ND	ug/ka	16.9	8.8	1	03/18/21 12:56	03/19/21 01:02	71-55-6		
	1,1,2-Trichloroethane	ND	ug/ka	16.9	5.6	1	03/18/21 12:56	03/19/21 01:02	79-00-5		



Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528353

Sample: RI-SB-19_SO_5.5- 6.0_20210315	Lab ID:	92528353002	Collected	d: 03/15/21	14:20	Received: 03/	17/21 10:45 Ma	atrix: Solid	
Results reported on a "dry weight"	' basis and are	adjusted for	percent mo	oisture, san	nple si	ize and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA 8	260D Prep	aration Met	hod: E	PA 5035A/5030B			
	Pace Analytical Services - Charlotte								
Trichloroethene	ND	ug/kg	16.9	4.3	1	03/18/21 12:56	03/19/21 01:02	79-01-6	
Trichlorofluoromethane	ND	ug/kg	16.9	9.3	1	03/18/21 12:56	03/19/21 01:02	75-69-4	
1,2,3-Trichloropropane	ND	ug/kg	16.9	8.5	1	03/18/21 12:56	03/19/21 01:02	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/kg	16.9	4.6	1	03/18/21 12:56	03/19/21 01:02	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/kg	16.9	5.7	1	03/18/21 12:56	03/19/21 01:02	108-67-8	
Vinyl acetate	ND	ug/kg	169	12.3	1	03/18/21 12:56	03/19/21 01:02	108-05-4	
Vinyl chloride	ND	ug/kg	33.7	8.6	1	03/18/21 12:56	03/19/21 01:02	75-01-4	
Xylene (Total)	89.9	ug/kg	33.7	9.6	1	03/18/21 12:56	03/19/21 01:02	1330-20-7	
m&p-Xylene	65.9	ug/kg	33.7	11.5	1	03/18/21 12:56	03/19/21 01:02	179601-23-1	
o-Xylene	24.0	ug/kg	16.9	7.5	1	03/18/21 12:56	03/19/21 01:02	95-47-6	
Surrogates									
Toluene-d8 (S)	101	%	70-130		1	03/18/21 12:56	03/19/21 01:02	2037-26-5	
4-Bromofluorobenzene (S)	94	%	69-134		1	03/18/21 12:56	03/19/21 01:02	460-00-4	
1,2-Dichloroethane-d4 (S)	109	%	70-130		1	03/18/21 12:56	03/19/21 01:02	17060-07-0	
Percent Moisture	Analytical Method: SW-846								
	Pace Analytical Services - Charlotte								
Percent Moisture	22.3	%	0.10	0.10	1		03/18/21 15:17		N2


Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528353

Sample: RI-SB-20_SO_0.5- 1.0_20210315	Lab ID:	9252835300	03 Collected	d: 03/15/2 [,]	1 14:30	) Received: 03/	17/21 10:45 Ma	atrix: Solid	
Results reported on a "dry weig	ght" basis and ar	e adjusted fo	or percent mo	oisture, sai	nple s	ize and any diluti	ons.		
Doromotoro	Populto	Linita	Report		DE	Bronarad	Applyzod		Qual
Parameters		Units		MDL		Prepared		CAS NO.	Quai
8270E MSSV Microwave	Analytical	Method: EP/	A 8270E Prep	aration Met	hod: E	PA 3546			
	Pace Anal	ytical Service	es - Charlotte						
Acenaphthene	ND	ua/ka	383	135	1	03/18/21 10:18	03/18/21 21:45	83-32-9	
Acenaphthylene	ND	ua/ka	383	135	1	03/18/21 10:18	03/18/21 21:45	208-96-8	
Aniline	ND	ua/ka	383	150	1	03/18/21 10:18	03/18/21 21:45	62-53-3	
Anthracene	ND	ua/ka	383	125	1	03/18/21 10:18	03/18/21 21:45	120-12-7	
Benzo(a)anthracene	ND	ua/ka	383	128	1	03/18/21 10:18	03/18/21 21:45	56-55-3	
Benzo(b)fluoranthene	ND	ua/ka	383	128	1	03/18/21 10:18	03/18/21 21:45	205-99-2	
Benzo(a,h,i)pervlene	ND	ua/ka	383	149	1	03/18/21 10:18	03/18/21 21:45	191-24-2	
Benzo(k)fluoranthene	ND	ua/ka	383	135	1	03/18/21 10:18	03/18/21 21:45	207-08-9	
Benzoic Acid	ND	ug/kg	1910	823	1	03/18/21 10:18	03/18/21 21:45	65-85-0	
Benzyl alcohol	ND	ug/kg	766	290	1	03/18/21 10:18	03/18/21 21:45	100-51-6	
4-Bromophenylphenyl ether	ND	ug/kg	383	147	1	03/18/21 10:18	03/18/21 21:45	101-55-3	
Butylbenzylphthalate	ND	ug/kg	383	161	1	03/18/21 10:18	03/18/21 21:45	85-68-7	v1
4-Chloro-3-methylphenol	ND	ua/ka	766	269	1	03/18/21 10:18	03/18/21 21:45	59-50-7	••
4-Chloroaniline	ND	ug/kg	766	300	1	03/18/21 10:18	03/18/21 21:45	106-47-8	
his(2-Chloroethoxy)methane	ND	ug/kg	383	159	1	03/18/21 10:18	03/18/21 21:45	111-91-1	
bis(2-Chloroethyl) ether	ND	ug/kg	383	144	1	03/18/21 10:18	03/18/21 21:45	111-44-4	
2-Chloronaphthalene		ug/kg	383	152	1	03/18/21 10:18	03/18/21 21:45	91-58-7	
2-Chlorophenol		ug/kg	383	144	1	03/18/21 10:18	03/18/21 21:45	95-57-8	
4-Chlorophenylphenyl ether		ug/kg	383	143	1	03/18/21 10:18	03/18/21 21:45	7005-72-3	
Chrysene		ug/kg	383	130	1	03/18/21 10:18	03/18/21 21:45	218-01-9	
Dibenz(a b)anthracene		ug/kg	383	147	1	03/18/21 10:18	03/18/21 21:45	53-70-3	
Dibenzofuran		ug/kg	383	138	1	03/18/21 10:18	03/18/21 21:45	132-64-9	
3 3'-Dichlorobenzidine		ug/kg	766	250	1	03/18/21 10:18	03/18/21 21:45	91-94-1	Ш
2 4-Dichlorophenol		ug/kg	383	150	1	03/18/21 10:18	03/18/21 21:45	120-83-2	15
Diethylobthalate		ug/kg	383	140	1	03/18/21 10:18	03/18/21 21:45	84-66-2	
		ug/kg	383	150	1	03/18/21 10:18	03/18/21 21:45	105-67-9	
Dimethylphthalate		ug/kg	383	130	1	03/18/21 10:18	03/18/21 21:45	131_11_3	
		ug/kg	383	120	1	03/18/21 10:18	03/18/21 21:45	84-74-2	
4.6-Dinitro-2-methylphenol		ug/kg	766	357	1	03/18/21 10:18	03/18/21 21:45	531-52-1	
2.4-Dinitrophenol		ug/kg	1010	1180	1	03/18/21 10:18	03/18/21 21:45	51-28-5	
2,4-Dinitrophenol		ug/kg	383	1/7	1	03/18/21 10:18	03/18/21 21:45	121-14-2	
2.4-Dinitiotoluene		ug/kg	383	147	1	03/18/21 10:18	03/18/21 21:45	606-20-2	
		ug/kg	383	151	1	03/18/21 10:18	03/18/21 21:45	117-84-0	v1
bic/2 Ethylboxyl)phthalato		ug/kg	203	1/0	1	03/10/21 10:10	03/10/21 21:45	117 91 7	v 1 v 1
Fluoranthono		ug/kg	203	143	1	03/10/21 10:10	03/10/21 21:45	206 44 0	VI
Fluorana		ug/kg	202	101	1	03/10/21 10.10	03/10/21 21:45	200-44-0	
Hoveblorobonzono		ug/kg	303	150	1	03/10/21 10.10	03/10/21 21:45	119 74 1	
Hexachioroberizerie		ug/kg	303	210	1	03/10/21 10.10	03/10/21 21.43	77 47 4	
		ug/kg	303	219	1	03/10/21 10.10	03/10/21 21.43	67 70 4	
		ug/kg	303	140	1	03/10/21 10:18	02/10/21 21:45	102 20 5	
Indeno(1,2,3-cd)pyrene		ug/kg	383	151	T A	03/10/21 10:18	03/10/21 21:45	193-39-5	
		ug/kg	383	1/1	1	03/10/21 10:18	03/10/21 21:45	10-09-1	
		ug/kg	383	135	T A	03/10/21 10:18	03/10/21 21:45	90-12-0	
∠-ivietnyinaphthalene	ND	ug/kg	383	153	1	03/18/21 10:18	03/18/21 21:45	91-57-6	



Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528353

Sample: RI-SB-20_SO_0.5- 1.0_20210315	Lab ID:	92528353003	Collected	d: 03/15/21	14:30	Received: 03/	17/21 10:45 Ma	atrix: Solid	
Results reported on a "dry weight"	basis and are	e adjusted for p	percent mo	oisture, san	nple si	ize and any diluti	ons.		
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
	Analytical	Method: EPA 8		aration Met	nod: El	PA 3546			•
	Pace Anal	vtical Services -	- Charlotte		100. LI	10040			
		, "	onanotto						
2-Methylphenol(o-Cresol)	ND	ug/kg	383	157	1	03/18/21 10:18	03/18/21 21:45	95-48-7	
3&4-Methylphenol(m&p Cresol)	ND	ug/kg	383	154	1	03/18/21 10:18	03/18/21 21:45	15831-10-4	
2-Nitroaniline	ND	ug/kg	1910	313	1	03/18/21 10:18	03/18/21 21:45	88-74-4	
3-Nitroaniline	ND	ug/kg	1910	300	1	03/18/21 10:18	03/18/21 21:45	99-09-2	
4-Nitroaniline	ND	ug/kg	766	291	1	03/18/21 10:18	03/18/21 21:45	100-01-6	
Nitrobenzene	ND	ug/kg	383	178	1	03/18/21 10:18	03/18/21 21:45	98-95-3	
2-Nitrophenol	ND	ug/kg	383	166	1	03/18/21 10:18	03/18/21 21:45	88-75-5	
4-Nitrophenol	ND	ug/kg	1910	740	1	03/18/21 10:18	03/18/21 21:45	100-02-7	
N-Nitrosodimethylamine	ND	ug/kg	383	129	1	03/18/21 10:18	03/18/21 21:45	62-75-9	
N-Nitroso-di-n-propylamine	ND	ug/kg	383	144	1	03/18/21 10:18	03/18/21 21:45	621-64-7	
N-Nitrosodiphenylamine	ND	ug/kg	383	136	1	03/18/21 10:18	03/18/21 21:45	86-30-6	
2,2'-Oxybis(1-chloropropane)	ND	ug/kg	383	182	1	03/18/21 10:18	03/18/21 21:45	108-60-1	
Pentachlorophenol	ND	ug/kg	766	375	1	03/18/21 10:18	03/18/21 21:45	87-86-5	
Phenanthrene	ND	ug/kg	383	125	1	03/18/21 10:18	03/18/21 21:45	85-01-8	
Phenol	ND	ug/kg	383	171	1	03/18/21 10:18	03/18/21 21:45	108-95-2	
Pyrene	ND	ug/kg	383	155	1	03/18/21 10:18	03/18/21 21:45	129-00-0	
Pyridine	ND	ug/kg	383	121	1	03/18/21 10:18	03/18/21 21:45	110-86-1	
2,4,5-Trichlorophenol	ND	ug/kg	383	175	1	03/18/21 10:18	03/18/21 21:45	95-95-4	
2,4,6-Trichlorophenol	ND	ug/kg	383	158	1	03/18/21 10:18	03/18/21 21:45	88-06-2	
Surrogates									
Nitrobenzene-d5 (S)	67	%	21-130		1	03/18/21 10:18	03/18/21 21:45	4165-60-0	
2-Fluorobiphenyl (S)	61	%	19-130		1	03/18/21 10:18	03/18/21 21:45	321-60-8	
Terphenyl-d14 (S)	86	%	15-130		1	03/18/21 10:18	03/18/21 21:45	1718-51-0	
Phenol-d6 (S)	61	%	18-130		1	03/18/21 10:18	03/18/21 21:45	13127-88-3	
2-Fluorophenol (S)	61	%	18-130		1	03/18/21 10:18	03/18/21 21:45	367-12-4	
2,4,6-Tribromophenol (S)	56	%	18-130		1	03/18/21 10:18	03/18/21 21:45	118-79-6	
8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA 82	260D Prep	aration Metl	hod: El	PA 5035A/5030B			
	Pace Anal	ytical Services -	Charlotte						
Acetone	ND	ug/kg	131	42.1	1	03/18/21 12:56	03/19/21 01:55	67-64-1	
Benzene	ND	ug/kg	6.6	2.6	1	03/18/21 12:56	03/19/21 01:55	71-43-2	
Bromobenzene	ND	ug/kg	6.6	2.1	1	03/18/21 12:56	03/19/21 01:55	108-86-1	
Bromochloromethane	ND	ug/kg	6.6	1.9	1	03/18/21 12:56	03/19/21 01:55	74-97-5	
Bromodichloromethane	ND	ug/kg	6.6	2.5	1	03/18/21 12:56	03/19/21 01:55	75-27-4	
Bromoform	ND	ug/kg	6.6	2.3	1	03/18/21 12:56	03/19/21 01:55	75-25-2	
Bromomethane	ND	ug/kg	13.1	10.4	1	03/18/21 12:56	03/19/21 01:55	74-83-9	L1
2-Butanone (MEK)	ND	ug/kg	131	31.5	1	03/18/21 12:56	03/19/21 01:55	78-93-3	
n-Butylbenzene	ND	ug/ka	6.6	3.1	1	03/18/21 12:56	03/19/21 01:55	104-51-8	
sec-Butvlbenzene	ND	ua/ka	6.6	2.9	1	03/18/21 12:56	03/19/21 01:55	135-98-8	
tert-Butvlbenzene	ND	ua/ka	6.6	2.3	1	03/18/21 12:56	03/19/21 01:55	98-06-6	
Carbon tetrachloride	ND	ua/ka	6.6	2.5	1	03/18/21 12:56	03/19/21 01:55	56-23-5	
Chlorobenzene	ND	ua/ka	6.6	1.3	1	03/18/21 12:56	03/19/21 01:55	108-90-7	
Chloroethane	ND	ug/kg	13.1	5.1	1	03/18/21 12:56	03/19/21 01:55	75-00-3	



Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528353

Results reported on a 'dry weight' basis and are adjusted for percent molisture, sample size and any dilutions.       Parameters     Results     Units     Limit     MDL     DF     Prepared     Analyzed     CAS No.     Qual       8260U/5035A/5030B SC Volatiles     Analytical Method: EPA 82000     Preparation     Mothod     EPA 6035A/5030B       Chioronom     ND     ug/kg     6.6     4.0     1     03/18/21 12:56     03/19/21 01:55     67-66-3       Chioronomthane     ND     ug/kg     6.6     1.2     1     03/18/21 12:56     03/19/21 01:55     67-46-3       Chioronomthane     ND     ug/kg     6.6     2.7     1     03/18/21 12:56     03/19/21 01:55     67-46-3       Dibromochioronetiane     ND     ug/kg     6.6     2.7     1     03/19/21 01:55     67-46-3       Dibromochioronetiane     ND     ug/kg     6.6     2.0     1     03/19/21 01:55     67-46-3       1.2-Dibriorochioronetiane     ND     ug/kg     6.6     2.7     1     03/19/21 01:55     67-50-1       1.2-Dibriorochiorone	Sample:     RI-SB-20_SO_0.5- 1.0_20210315     Lab ID:     92528353003     Collected:     03/15/21     14:30     Received:     03/17/21     10:45     Matrix:     Solid										
Parameters     Results     Units     Link     MDL     DF     Prepared     Analyzed     CAS No.     Qual       2820D/6035A/5030B SC Volatiles     Analytical Method: EPA 82000 Preparation Method: EPA 5035A/5030B     Pace Analytical Services - Charlotte     03/18/21 12:56     03/18/21 01:55     76-6-3       Chioronethane     ND     ug/kg     6.6     2.3     1     03/18/21 12:56     03/19/21 01:55     76-6-3       Chioronethane     ND     ug/kg     6.6     2.3     1     03/18/21 12:56     03/19/21 01:55     76-6-3       L2-Dibromo-3-chioropropane     ND     ug/kg     6.6     2.5     1     03/18/21 12:56     03/19/21 01:55     76-78-3       L2-Dichlorobenzene     ND     ug/kg     6.6     2.9     1     03/18/21 12:56     03/19/21 01:55     76-78-3       L2-Dichlorobenzene     ND     ug/kg     6.6     2.4     1     03/18/21 12:56     03/18/21 01:55     76-74-3       L3-Dichlorobenzene     ND     ug/kg     6.6     2.4     1     03/18/21 01:55     03/18/21 01:55     03/18/21 01:55     03/	Results reported on a "dry weight	" basis and ar	e adjusted f	or percent mo	oisture, sar	nple s	ize and any diluti	ons.			
ZeoD/S035A/5030B SC Volatiles     Analytical Method: EPA 8260D Preparation Method: EPA 5035A/5030B Pace Analytical Services - Charlotte       Chioromethane     ND     ug/kg     6.6     4.0     1     03/18/21 12:56     03/19/21 01:55     67-66-3       Chioromethane     ND     ug/kg     6.6     2.3     1     03/18/21 12:56     03/19/21 01:55     69-49-8       4-Chiorotoluene     ND     ug/kg     6.6     2.3     1     03/18/21 12:56     03/19/21 01:55     66-12-8       Dibromo-3-chioropropane     ND     ug/kg     6.6     2.5     1     03/18/21 12:56     03/19/21 01:55     16-63-4       12-Dibromoethane     ND     ug/kg     6.6     2.9     1     03/18/21 12:56     03/19/21 01:55     16-64-7       12-Dichorobenzene     ND     ug/kg     6.6     2.0     1     03/18/21 12:56     03/19/21 01:55     16-64-7       1.4-Dichorobenzene     ND     ug/kg     6.6     2.7     1     03/18/21 12:56     03/19/21 01:55     16-64-7       1.1-Dichorobenzene     ND     ug/kg     6.6     2.7	Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
Pace Analytical Services - Charlotter       Chioronethane     ND     ug/kg     6.6     4.0     03/18/21 12:56     03/18/21 12:56     03/18/21 12:56     03/18/21 12:56     03/18/21 12:56     03/18/21 12:56     03/18/21 12:56     03/18/21 12:56     03/18/21 12:56     03/18/21 12:56     03/18/21 12:56     03/18/21 12:56     03/18/21 12:56     03/18/21 12:56     03/18/21 12:56     03/18/21 12:56     03/18/21 12:56     03/18/21 12:56     03/18/21 12:56     03/18/21 12:56     03/18/21 12:56     03/18/21 12:56     03/18/21 12:56     03/18/21 12:56     03/18/21 12:56     03/18/21 12:55     03/18/21 12:55     03/18/21 12:55     03/18/21 12:55     03/18/21 12:55     03/18/21 12:55     03/18/21 12:55     03/18/21 12:55     03/18/21 12:55     03/18/21 12:55     03/18/21 12:55     03/18/21 12:55     03/18/21 12:55     03/18/21 12:55     03/18/21 12:55 <th c<="" td=""><td>8260D/5035A/5030B SC Volatiles</td><td>Analytical</td><td>Method: EP</td><td>– – – – A 8260D Prep</td><td>aration Met</td><td>thod: E</td><td>PA 5035A/5030B</td><td></td><td>_</td><td></td></th>	<td>8260D/5035A/5030B SC Volatiles</td> <td>Analytical</td> <td>Method: EP</td> <td>– – – – A 8260D Prep</td> <td>aration Met</td> <td>thod: E</td> <td>PA 5035A/5030B</td> <td></td> <td>_</td> <td></td>	8260D/5035A/5030B SC Volatiles	Analytical	Method: EP	– – – – A 8260D Prep	aration Met	thod: E	PA 5035A/5030B		_	
ND     ug/kg     6.6     4.0     1     03/18/21 12:56     03/19/21 01:55     74-66-3       Chiorommethane     ND     ug/kg     13.1     5.5     1     03/18/21 12:56     03/19/21 01:55     74-87-3       2-Chorotoluene     ND     ug/kg     6.6     1.2     1     03/18/21 12:56     03/19/21 01:55     74-87-3       1.2-Dibromo-chloropopane     ND     ug/kg     6.6     1.2     1     03/18/21 12:56     03/19/21 01:55     74-87-3       1.2-Dibromoethane     ND     ug/kg     6.6     3.7     1     03/18/21 12:56     03/19/21 01:55     74-86-3       1.2-Dibromoethane     ND     ug/kg     6.6     2.4     1     03/18/21 12:56     03/19/21 01:55     75-46-3       1.2-Dibromoethane     ND     ug/kg     6.6     1.7     1     03/18/21 12:56     03/19/21 01:55     75-47-3       1.2-Dibromethane     ND     ug/kg     6.6     2.7     1     03/18/21 12:56     03/19/21 01:55     75-37-4       1.1-Dibromethane     ND     ug/kg     6.6<		Pace Ana	vtical Servic	es - Charlotte							
Chlorom     ND     ug/kg     6.6     4.0     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:55     0.3/18/21 12:56     0.3/18/21 12:55     0.3/18/21 12:55     0.3/18/21 12:55     0.3/18/21 12:55     0.3/18/21 12:55     0.3/18/21 12:55     0.3/18/21 12:55     0.3/18/21 12:55     0.3/18/21 12:55     0.3/18/21 12:55     0.3/18/21 12:55     0.3/18/21 12:55     0.3/18/21 12:55     0.3/18/21 12:55 <th< td=""><td></td><td>1 400 / 114</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		1 400 / 114									
Chilomettane     ND     ug/kg     6.1     2.3     1     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/2	Chloroform	ND	ug/kg	6.6	4.0	1	03/18/21 12:56	03/19/21 01:55	67-66-3		
2-Chioratoluone     ND     ug/kg     6.6     2.3     1     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/18/21 12:56     0.3/1	Chloromethane	ND	ug/kg	13.1	5.5	1	03/18/21 12:56	03/19/21 01:55	74-87-3		
4-Chlorobluéne     ND     ugkg     6.6     1.2     1     0.318/21 12:56     0.319/21 01:55     106-34-4       L2-Dibromochloromethane     ND     ug/kg     6.6     2.5     0.318/21 12:56     0.319/21 01:55     156-44-1       L2-Dibromochlane (EDB)     ND     ug/kg     6.6     2.9     0.318/21 12:56     0.319/21 01:55     156-33-4       L3-Dibromochlane (EDB)     ND     ug/kg     6.6     2.4     1     0.318/21 12:56     0.319/21 01:55     56-3-3       1.2-Dibromochlane (ND     ug/kg     6.6     2.0     1     0.318/21 12:56     0.319/21 01:55     56-17       1.4-Dichlorobenzene     ND     ug/kg     6.6     2.0     1     0.318/21 12:56     0.319/21 01:55     56-44-7       1.4-Dichlorobenzene     ND     ug/kg     6.6     2.7     1     0.318/21 12:56     0.319/21 01:55     75-34-3       1.2-Dichloromethane     ND     ug/kg     6.6     2.3     1     0.318/21 12:56     0.319/21 01:55     75-35-4       1.2-Dichloropropane     ND     ug/kg     6.6	2-Chlorotoluene	ND	ug/kg	6.6	2.3	1	03/18/21 12:56	03/19/21 01:55	95-49-8		
1,2-bichorome3-chloropropane     ND     ug/kg     6.6     2.5     1     03/18/21 12:56     03/19/21 01:55     95-12-8       1,2-Dichoromethane (EDB)     ND     ug/kg     6.6     2.9     1     03/18/21 12:56     03/19/21 01:55     16-93-4       1,2-Dichorobenzene     ND     ug/kg     6.6     1.4     1     03/18/21 12:56     03/19/21 01:55     54-57-3       1,2-Dichorobenzene     ND     ug/kg     6.6     1.4     1     03/18/21 12:56     03/19/21 01:55     54-61-7       1,4-Dichorobenzene     ND     ug/kg     6.6     1.7     1     03/18/21 12:56     03/19/21 01:55     75-71-8       1,1-Dichorotethane     ND     ug/kg     6.6     2.7     1     03/18/21 12:56     03/19/21 01:55     75-35-4       1,1-Dichorotethane     ND     ug/kg     6.6     2.2     1     03/18/21 12:56     03/19/21 01:55     75-65-2       1,1-Dichorotethane     ND     ug/kg     6.6     2.0     1     03/18/21 12:56     03/19/21 01:55     78-67-5       1,3-Dichorotephane	4-Chlorotoluene	ND	ug/kg	6.6	1.2	1	03/18/21 12:56	03/19/21 01:55	106-43-4		
Dibromochloromethane     ND     ug/kg     6.6     3.7     1     0.3/18/21     12:56     0.3/19/21     01:55     03:49/21       Liz-Diorobenzene     ND     ug/kg     6.6     1.4     1     0.3/18/21     12:56     0.3/19/21     01:55     05:43:43       1.2-Dichlorobenzene     ND     ug/kg     6.6     2.4     1     0.3/18/21     12:56     0.3/19/21     01:55     54:1-73:1       1.4-Dichlorobenzene     ND     ug/kg     6.6     2.7     1     0.3/18/21     12:56     0.3/19/21     01:55     75:34:3       1.1-Dichloroethane     ND     ug/kg     6.6     2.7     1     0.3/18/21     12:56     0.3/19/21     01:55     75:34:3       1.2-Dichloroethane     ND     ug/kg     6.6     2.7     1     0.3/18/21     12:56     0.3/19/21     01:55     75:34:3       1.2-Dichloroethane     ND     ug/kg     6.6     2.0     1     0.3/18/21     12:56     0.3/19/21     01:55     75:45:45:6-4       1.2-Dichloroethane	1,2-Dibromo-3-chloropropane	ND	ug/kg	6.6	2.5	1	03/18/21 12:56	03/19/21 01:55	96-12-8		
1,2-biormoethane (EDB)   ND   ug/kg   6.6   2.9   1   0.3/18/21 12:56   0.3/19/21 01:55   106-93-4     1,2-Dichlorobenzene   ND   ug/kg   6.6   2.4   1   0.3/18/21 12:56   0.3/19/21 01:55   95-50-1     1,3-Dichlorobenzene   ND   ug/kg   6.6   2.4   1   0.3/18/21 12:56   0.3/19/21 01:55   106-67     1,4-Dichlorobenzene   ND   ug/kg   6.6   1.7   1   0.3/18/21 12:56   0.3/19/21 01:55   75-71-8     1,1-Dichloroethane   ND   ug/kg   6.6   2.7   1   0.3/18/21 12:56   0.3/19/21 01:55   156-59-2     1,1-Dichloroethane   ND   ug/kg   6.6   2.3   1   0.3/18/21 12:56   0.3/19/21 01:55   156-59-2     1,3-Dichloroethane   ND   ug/kg   6.6   2.0   1   0.3/18/21 12:56   0.3/19/21 01:55   156-59-2     1,3-Dichloroethane   ND   ug/kg   6.6   2.0   1   0.3/18/21 12:56   0.3/19/21 01:55   156-59-2     1,3-Dichloropropane   ND   ug/kg   6.6   2.1   1   0.3/18/21 12:56 <td>Dibromochloromethane</td> <td>ND</td> <td>ug/kg</td> <td>6.6</td> <td>3.7</td> <td>1</td> <td>03/18/21 12:56</td> <td>03/19/21 01:55</td> <td>124-48-1</td> <td></td>	Dibromochloromethane	ND	ug/kg	6.6	3.7	1	03/18/21 12:56	03/19/21 01:55	124-48-1		
Dibromentane     ND     ug/kg     6.6     1.4     1     0.3/19/21 10:155     95-01       1,3-Dichlorobenzene     ND     ug/kg     6.6     2.0     1     0.3/18/21 12:56     0.3/19/21 01:55     55-0-1       1,3-Dichlorobenzene     ND     ug/kg     6.6     1.7     1     0.3/18/21 12:56     0.3/19/21 01:55     75-71-8       1,1-Dichlorotehane     ND     ug/kg     6.6     2.7     1     0.3/18/21 12:56     0.3/19/21 01:55     75-71-8       1,1-Dichlorotehane     ND     ug/kg     6.6     2.7     1     0.3/18/21 12:56     0.3/19/21 01:55     75-34-3       1,2-Dichlorotehane     ND     ug/kg     6.6     2.7     1     0.3/18/21 12:56     0.3/19/21 01:55     75-35-4       1,2-Dichlorotehane     ND     ug/kg     6.6     2.0     1     0.3/18/21 12:56     0.3/19/21 01:55     75-35-4       1,2-Dichlorotehane     ND     ug/kg     6.6     2.0     1     0.3/18/21 12:56     0.3/19/21 01:55     75-35-4       1,2-Dichlorotehane     ND     ug/kg<	1,2-Dibromoethane (EDB)	ND	ug/kg	6.6	2.9	1	03/18/21 12:56	03/19/21 01:55	106-93-4		
1,2-Dichlorobenzene   ND   ug/kg   6.6   2.4   1   0.3/18/21   12:56   0.3/19/21   0.155   95-50-1     1,3-Dichlorobenzene   ND   ug/kg   6.6   1.7   1   0.3/18/21   12:56   0.3/19/21   0.155   16/4-6-7     Dichlorodifluoromethane   ND   ug/kg   6.6   1.7   1   0.3/18/21   12:56   0.3/19/21   0.155   75-34-3     1,1-Dichloroethane   ND   ug/kg   6.6   2.7   1   0.3/18/21   12:56   0.3/19/21   0.155   156-59-2     trans-1,2-Dichloroethene   ND   ug/kg   6.6   2.3   1   0.3/18/21   12:56   0.3/19/21   0.155   156-59-2     trans-1,2-Dichloroethene   ND   ug/kg   6.6   2.0   1   0.3/18/21   12:56   0.3/19/21   0.155   156-69-5     1,2-Dichloropropane   ND   ug/kg   6.6   2.0   1   0.3/18/21   12:56   0.3/19/21   0.155   56-60-5     1,2-Dichloropropane   ND   ug/kg   6.6   2.1   1   0.3/18/21   12:	Dibromomethane	ND	ug/kg	6.6	1.4	1	03/18/21 12:56	03/19/21 01:55	74-95-3		
1,3-Dichlorobenzene   ND   ug/kg   6.6   2.0   1   03/18/21   12:56   03/19/21   01:55   541-73-1     1,4-Dichlorobenzene   ND   ug/kg   6.6   1.7   1   03/18/21   12:56   03/19/21   01:55   75-71-8     1,1-Dichloroethane   ND   ug/kg   6.6   2.7   1   03/18/21   12:56   03/19/21   01:55   75-34-3     1,2-Dichloroethane   ND   ug/kg   6.6   2.7   1   03/18/21   12:56   03/19/21   01:55   75-35-4     1,2-Dichloroethane   ND   ug/kg   6.6   2.3   1   03/18/21   12:56   03/19/21   01:55   75-35-4     1,2-Dichloroptopane   ND   ug/kg   6.6   2.0   1   03/18/21   12:56   03/19/21   01:55   75-87-5     1,2-Dichloroptopane   ND   ug/kg   6.6   2.0   1   03/18/21   12:56   03/19/21   01:55   75-87-5     1,2-Dichloroptopane   ND   ug/kg   6.6   2.1   1   03/18/21   12:56   03/19/21	1,2-Dichlorobenzene	ND	ug/kg	6.6	2.4	1	03/18/21 12:56	03/19/21 01:55	95-50-1		
1,4-Dichlorobbenzene   ND   ug/kg   6.6   1.7   1   03/18/21 12:56   03/19/21 01:55   106:46-7     1,1-Dichlorobethane   ND   ug/kg   6.6   2.7   1   03/18/21 12:56   03/19/21 01:55   75:71-8     1,1-Dichloroethane   ND   ug/kg   6.6   2.7   1   03/18/21 12:56   03/19/21 01:55   107:06-2     1,1-Dichloroethene   ND   ug/kg   6.6   2.7   1   03/18/21 12:56   03/19/21 01:55   156:59-2     trans-1,2-Dichloroethene   ND   ug/kg   6.6   2.0   1   03/18/21 12:56   03/19/21 01:55   166:60-5     1,3-Dichloropropane   ND   ug/kg   6.6   2.0   1   03/18/21 12:56   03/19/21 01:55   168:20-7     1,3-Dichloropropane   ND   ug/kg   6.6   2.1   1   03/18/21 12:56   03/19/21 01:55   58:42-87     1,3-Dichloropropane   ND   ug/kg   6.6   1.8   1   03/18/21 12:56   03/19/21 01:55   106:10-2-6     Disopropit ether   ND   ug/kg   6.6   1.8   1   03/18/21 12:56 <t< td=""><td>1,3-Dichlorobenzene</td><td>ND</td><td>ug/kg</td><td>6.6</td><td>2.0</td><td>1</td><td>03/18/21 12:56</td><td>03/19/21 01:55</td><td>541-73-1</td><td></td></t<>	1,3-Dichlorobenzene	ND	ug/kg	6.6	2.0	1	03/18/21 12:56	03/19/21 01:55	541-73-1		
Dicklorodifluoromethane     ND     ug/kg     13.1     2.8     1     0.31/12/21 2:56     0.31/19/21 01:55     75-71-8       1.1-Dickloroethane     ND     ug/kg     6.6     2.7     1     0.31/18/21 12:56     0.31/19/21 01:55     75-34-3       1.2-Dickloroethene     ND     ug/kg     6.6     2.7     1     0.31/18/21 12:56     0.31/19/21 01:55     75-35-4       cis-1.2-Dickloroethene     ND     ug/kg     6.6     2.3     1     0.31/18/21 12:56     0.31/19/21 01:55     75-37-5       1.2-Dickloropropane     ND     ug/kg     6.6     2.0     1     0.31/18/21 12:56     0.31/19/21 01:55     78-75-5       1.3-Dickloropropane     ND     ug/kg     6.6     2.0     1     0.31/18/21 12:56     0.31/19/21 01:55     542-20-7       1.1-Dickloropropane     ND     ug/kg     6.6     2.3     1     0.31/18/21 12:56     0.31/19/21 01:55     504-20-7       1.1-Dickloropropene     ND     ug/kg     6.6     1.8     1     0.31/18/21 12:56     0.31/19/21 01:55     10061-01-5	1,4-Dichlorobenzene	ND	ug/kg	6.6	1.7	1	03/18/21 12:56	03/19/21 01:55	106-46-7		
1,1-Dichloroethane   ND   ug/kg   6.6   2.7   1   03/18/21 12:56   03/18/21 01:55   75:34-3     1,2-Dichloroethane   ND   ug/kg   6.6   4.3   1   03/18/21 12:56   03/19/21 01:55   75:35-4     cis-1,2-Dichloroethane   ND   ug/kg   6.6   2.7   1   03/18/21 12:56   03/19/21 01:55   75:35-4     i:ans-1,2-Dichloroethane   ND   ug/kg   6.6   2.3   1   03/18/21 12:56   03/19/21 01:55   78:35-4     1,2-Dichloropropane   ND   ug/kg   6.6   2.0   1   03/18/21 12:56   03/19/21 01:55   78:37-5     1,3-Dichloropropane   ND   ug/kg   6.6   2.0   1   03/18/21 12:56   03/19/21 01:55   594:20-7     1,1-Dichloropropane   ND   ug/kg   6.6   2.3   1   03/18/21 12:56   03/19/21 01:55   10061-01-5     1/1-Dichloropropene   ND   ug/kg   6.6   1.8   1   03/18/21 12:56   03/19/21 01:55   10061-02-6     Disopropylether   ND   ug/kg   6.6   3.1   1   03/18/21 12:56 <td< td=""><td>Dichlorodifluoromethane</td><td>ND</td><td>ug/kg</td><td>13.1</td><td>2.8</td><td>1</td><td>03/18/21 12:56</td><td>03/19/21 01:55</td><td>75-71-8</td><td></td></td<>	Dichlorodifluoromethane	ND	ug/kg	13.1	2.8	1	03/18/21 12:56	03/19/21 01:55	75-71-8		
1,2-Dichloroethane   ND   ug/kg   6.6   4.3   1   03/18/21 12:56   03/18/21 12:56   03/18/21 01:55   75-35-4     1,1-Dichloroethene   ND   ug/kg   6.6   2.7   1   03/18/21 12:56   03/19/21 01:55   75-35-4     1,2-Dichloroethene   ND   ug/kg   6.6   2.2   1   03/18/21 12:56   03/19/21 01:55   75-35-4     1,3-Dichloropropane   ND   ug/kg   6.6   2.0   1   03/18/21 12:56   03/19/21 01:55   78-87-5     1,3-Dichloropropane   ND   ug/kg   6.6   2.0   1   03/18/21 12:56   03/19/21 01:55   542-28-9     2,2-Dichloropropane   ND   ug/kg   6.6   2.2   1   03/18/21 12:56   03/19/21 01:55   542-28-9     2,3-Dichloropropane   ND   ug/kg   6.6   1.8   1   03/18/21 12:56   03/19/21 01:55   506-60-5     1,1-Dichloropropane   ND   ug/kg   6.6   1.8   1   03/18/21 12:56   03/19/21 01:55   10061-02-5     1/1 casichloropropane   ND   ug/kg   6.6   3.1   1   03/	1,1-Dichloroethane	ND	ug/kg	6.6	2.7	1	03/18/21 12:56	03/19/21 01:55	75-34-3		
1,1-Dichloroethene   ND   ug/kg   6.6   2.7   1   03/18/21 12:56   03/19/21 01:55   75-35-4     cis-1,2-Dichloroethene   ND   ug/kg   6.6   2.2   1   03/18/21 12:56   03/19/21 01:55   156-60-5     1,2-Dichloropropane   ND   ug/kg   6.6   2.0   1   03/18/21 12:56   03/19/21 01:55   156-60-5     1,3-Dichloropropane   ND   ug/kg   6.6   2.0   1   03/18/21 12:56   03/19/21 01:55   142-28-9     2,2-Dichloropropane   ND   ug/kg   6.6   3.2   1   03/18/21 12:56   03/19/21 01:55   163-63-58-6     cis-1,3-Dichloropropene   ND   ug/kg   6.6   3.2   1   03/18/21 12:56   03/19/21 01:55   10061-02-6     Disopropyl ether   ND   ug/kg   6.6   1.8   1   03/18/21 12:56   03/19/21 01:55   100-41-4     Hexachloro-1,3-butatiene   ND   ug/kg   6.6   3.1   1   03/18/21 12:56   03/19/21 01:55   100-41-4     Hexachloro-1,3-butatiene   ND   ug/kg   6.6   3.1   03/18/21 12:56	1,2-Dichloroethane	ND	ug/kg	6.6	4.3	1	03/18/21 12:56	03/19/21 01:55	107-06-2		
cis-1,2-Dichloroethene     ND     ug/kg     6.6     2.2     1     03/18/21 12:56     03/19/21 01:55     156-69-2       trans-1,2-Dichloroptopane     ND     ug/kg     6.6     2.0     1     03/18/21 12:56     03/19/21 01:55     156-60-5       1,2-Dichloropropane     ND     ug/kg     6.6     2.0     1     03/18/21 12:56     03/19/21 01:55     584-75       1,3-Dichloropropane     ND     ug/kg     6.6     2.0     1     03/18/21 12:56     03/19/21 01:55     584-20-7       1,1-Dichloropropene     ND     ug/kg     6.6     1.8     1     03/18/21 12:56     03/19/21 01:55     1061-01-5       cis-1,3-Dichloropropene     ND     ug/kg     6.6     1.8     1     03/18/21 12:56     03/19/21 01:55     1061-02-6       Diisopropyl ether     ND     ug/kg     6.6     1.8     1     03/18/21 12:56     03/19/21 01:55     108-10-3       Ethylbenzene     ND     ug/kg     6.6     2.3     1     03/18/21 12:56     03/19/21 01:55     591-78-6       lsopropylbarce (Cum	1,1-Dichloroethene	ND	ug/kg	6.6	2.7	1	03/18/21 12:56	03/19/21 01:55	75-35-4		
trans-1,2-Dichloropethene   ND   ug/kg   6.6   2.3   1   03/18/21 12:56   03/19/21 01:55   156-60-5     1,2-Dichloropropane   ND   ug/kg   6.6   2.0   1   03/18/21 12:56   03/19/21 01:55   78-87-5     1,3-Dichloropropane   ND   ug/kg   6.6   2.0   1   03/18/21 12:56   03/19/21 01:55   594-20-7     1,1-Dichloropropene   ND   ug/kg   6.6   2.1   1   03/18/21 12:56   03/19/21 01:55   504-20-7     1,1-Dichloropropene   ND   ug/kg   6.6   1.8   1   03/18/21 12:56   03/19/21 01:55   10061-01-5     trans-1,3-Dichloropropene   ND   ug/kg   6.6   1.8   1   03/18/21 12:56   03/19/21 01:55   10061-02-6     Disopropyl ether   ND   ug/kg   6.6   1.8   1   03/18/21 12:56   03/19/21 01:55   87-68-3     2-Hexanone   ND   ug/kg   6.6   6.3   1   03/18/21 12:56   03/19/21 01:55   87-88-3     2-Hexanone   ND   ug/kg   6.6   6.3   1   03/18/21 12:56   03/19/21	cis-1,2-Dichloroethene	ND	ug/kg	6.6	2.2	1	03/18/21 12:56	03/19/21 01:55	156-59-2		
1,2-Dichloropropane   ND   ug/kg   6.6   2.0   1   03/18/21 12:56   03/19/21 01:55   78-7-5     1,3-Dichloropropane   ND   ug/kg   6.6   2.1   03/18/21 12:56   03/19/21 01:55   542-20-7     1,1-Dichloropropane   ND   ug/kg   6.6   3.2   1   03/18/21 12:56   03/19/21 01:55   563-58-6     cis-1,3-Dichloropropene   ND   ug/kg   6.6   1.8   1   03/18/21 12:56   03/19/21 01:55   10061-02-6     Diisopropyl ether   ND   ug/kg   6.6   1.8   1   03/18/21 12:56   03/19/21 01:55   108-20-3     Ethylbenzene   ND   ug/kg   6.6   3.1   1   03/18/21 12:56   03/19/21 01:55   106-10-6     Sigoropylbenzene (Cumene)   ND   ug/kg   6.6   3.1   1   03/18/21 12:56   03/19/21 01:55   591-78-6     Isopropylbenzene (Cumene)   ND   ug/kg   6.6   2.2   1   03/18/21 12:56   03/19/21 01:55   598-82-8     p-Isopropylboluene   ND   ug/kg   6.6   3.2   1   03/18/21 12:56   03/19/21 01	trans-1,2-Dichloroethene	ND	ug/kg	6.6	2.3	1	03/18/21 12:56	03/19/21 01:55	156-60-5		
1,3-Dichloropropane   ND   ug/kg   6.6   2.0   1   03/18/21 12:56   03/19/21 01:55   142-28-9     2,2-Dichloropropane   ND   ug/kg   6.6   2.1   1   03/18/21 12:56   03/19/21 01:55   594-20-7     1,1-Dichloropropene   ND   ug/kg   6.6   1.8   1   03/18/21 12:56   03/19/21 01:55   10061-01-5     trans-1,3-Dichloropropene   ND   ug/kg   6.6   1.8   1   03/18/21 12:56   03/19/21 01:55   10061-02-6     Disopropyl ether   ND   ug/kg   6.6   1.8   1   03/18/21 12:56   03/19/21 01:55   100-41-4     Hexachloro-1,3-butadiene   ND   ug/kg   6.6   3.1   1   03/18/21 12:56   03/19/21 01:55   87-68-3     2-Hexanone   ND   ug/kg   6.6   3.2   1   03/18/21 12:56   03/19/21 01:55   89-82-8     2-Hexanone   ND   ug/kg   6.6   3.2   1   03/18/21 12:56   03/19/21 01:55   99-87-6     Kethylene Chloride   ND   ug/kg   6.6   3.2   1   03/18/21 12:56   03/19/21 0	1,2-Dichloropropane	ND	ug/kg	6.6	2.0	1	03/18/21 12:56	03/19/21 01:55	78-87-5		
2,2-Dichloropropane     ND     ug/kg     6.6     2.1     1     03/18/21 12:56     03/19/21 01:55     594-20-7       1,1-Dichloropropene     ND     ug/kg     6.6     3.2     1     03/18/21 12:56     03/19/21 01:55     5063-58-6       cis-1,3-Dichloropropene     ND     ug/kg     6.6     1.8     1     03/18/21 12:56     03/19/21 01:55     10061-02-6       Diisopropyl ether     ND     ug/kg     6.6     1.8     1     03/18/21 12:56     03/19/21 01:55     100-41-4       Hexachloro-1,3-butadiene     ND     ug/kg     6.6     3.1     1     03/18/21 12:56     03/19/21 01:55     100-41-4       Hexachloro-1,3-butadiene     ND     ug/kg     6.6     6.3     1     03/18/21 12:56     03/19/21 01:55     591-78-6       Isopropylbenzene (Cumene)     ND     ug/kg     6.6     3.2     1     03/18/21 12:56     03/19/21 01:55     591-78-6       Isopropyltoluene     ND     ug/kg     6.6     3.2     1     03/18/21 12:56     03/19/21 01:55     59-92-2       4-Meth	1,3-Dichloropropane	ND	ug/kg	6.6	2.0	1	03/18/21 12:56	03/19/21 01:55	142-28-9		
1,1-Dichloropropene   ND   ug/kg   6.6   3.2   1   03/18/21 12:56   03/19/21 01:55   563-58-6     cis-1,3-Dichloropropene   ND   ug/kg   6.6   1.8   1   03/18/21 12:56   03/19/21 01:55   10061-01-5     trans-1,3-Dichloropropene   ND   ug/kg   6.6   2.3   1   03/18/21 12:56   03/19/21 01:55   10061-02-6     Diisopropyl ether   ND   ug/kg   6.6   3.1   1   03/18/21 12:56   03/19/21 01:55   100-41-4     Hexachloro-1,3-butadiene   ND   ug/kg   6.6   3.1   1   03/18/21 12:56   03/19/21 01:55   591-78-6     Isopropylbenzene (Cumene)   ND   ug/kg   6.6   6.3   1   03/18/21 12:56   03/19/21 01:55   59-87-68-3     Isopropylbenzene (Cumene)   ND   ug/kg   6.6   6.2   1   03/18/21 12:56   03/19/21 01:55   59-87-68-3     Jelsopropylbulene   ND   ug/kg   6.6   6.3   1   03/18/21 12:56   03/19/21 01:55   59-87-68-3     Methyl-er-boride   ND   ug/kg   6.6   6.3   1	2,2-Dichloropropane	ND	ug/kg	6.6	2.1	1	03/18/21 12:56	03/19/21 01:55	594-20-7		
cis-1,3-DichloropropeneNDug/kg6.61.8103/18/21 12:5603/19/21 01:5510061-01-5trans-1,3-DichloropropeneNDug/kg6.62.3103/18/21 12:5603/19/21 01:5510061-02-6Diisopropyl etherNDug/kg6.61.8103/18/21 12:5603/19/21 01:55100-41-4Hexachloro-1,3-butadieneNDug/kg6.63.1103/18/21 12:5603/19/21 01:55591-78-62-HexanoneNDug/kg6.66.3103/18/21 12:5603/19/21 01:55591-78-6Isopropylbuzene (Cumene)NDug/kg6.62.2103/18/21 12:5603/19/21 01:55591-78-6IsopropylbueneNDug/kg6.63.2103/18/21 12:5603/19/21 01:5559-87-6Methylene ChlorideNDug/kg6.63.2103/18/21 12:5603/19/21 01:5575-09-24-Methyl-2-pentanone (MIBK)NDug/kg6.66.3103/18/21 12:5603/19/21 01:55108-10-1MethyleneNDug/kg6.62.5103/18/21 12:5603/19/21 01:55103-65-1StyreneNDug/kg6.63.5103/18/21 12:5603/19/21 01:55103-65-1StyreneNDug/kg6.61.7103/18/21 12:5603/19/21 01:55103-65-11,1,2-TetrachloroethaneNDug/kg6.61.7103/18/21 12:5603/19/21 01:55103-45	1,1-Dichloropropene	ND	ug/kg	6.6	3.2	1	03/18/21 12:56	03/19/21 01:55	563-58-6		
trans-1,3-DichloropropeneNDug/kg6.62.3103/18/2112:5603/19/2101:5510061-02-6Diisopropyl etherNDug/kg6.61.8103/18/2112:5603/19/2101:55108-20-3EthylbenzeneNDug/kg6.63.1103/18/2112:5603/19/2101:5550-41-4Hexachloro-1,3-butadieneNDug/kg13.110.7103/18/2112:5603/19/2101:55591-78-6Isopropylbenzene (Cumene)NDug/kg6.62.2103/18/2112:5603/19/2101:55591-78-6Isopropylbenzene (Cumene)NDug/kg6.63.2103/18/2112:5603/19/2101:55591-78-6Isopropylbenzene (MIBK)NDug/kg6.63.2103/18/2112:5603/19/2101:55591-78-6Methyl-er-butyl etherNDug/kg6.63.2103/18/2112:5603/19/2101:55176-09-2A-Methyl-2-pentanone (MIBK)NDug/kg6.62.5103/18/2112:5603/19/2101:55103-65-1Methyl-ler-butyl etherNDug/kg6.63.5103/18/2112:5603/19/2101:5510-42-5NP-ropylbenzeneNDug/kg6.61.7103/18/2112:5603/19/2101:5510-42-51,1,2-TetrachloroethaneNDug/kg6.61.7	cis-1,3-Dichloropropene	ND	ug/kg	6.6	1.8	1	03/18/21 12:56	03/19/21 01:55	10061-01-5		
Diisopropyl etherNDug/kg6.61.8103/18/21 12:5603/19/21 01:55108-20-3EthylbenzeneNDug/kg6.63.1103/18/21 12:5603/19/21 01:55100-41-4Hexachloro-1,3-butadieneNDug/kg6.63.1103/18/21 12:5603/19/21 01:5587-68-32-HexanoneNDug/kg6.62.2103/18/21 12:5603/19/21 01:55591-78-6Isopropylbozene (Cumene)NDug/kg6.63.2103/18/21 12:5603/19/21 01:55598-82-8p-IsopropyltolueneNDug/kg6.63.2103/18/21 12:5603/19/21 01:55598-87-6Methylene ChlorideNDug/kg6.63.2103/18/21 12:5603/19/21 01:55108-10-1Methyl-2-pentanone (MIBK)NDug/kg6.63.5103/18/21 12:5603/19/21 01:551634-04-4NaphthaleneNDug/kg6.63.5103/18/21 12:5603/19/21 01:55108-10-1NPropylbenzeneNDug/kg6.63.5103/18/21 12:5603/19/21 01:55103-65-11,1,2-TetrachloroethaneNDug/kg6.63.5103/18/21 12:5603/19/21 01:55100-42-51,1,2-TetrachloroethaneNDug/kg6.61.7103/18/21 12:5603/19/21 01:55100-42-51,1,2-TetrachloroethaneNDug/kg6.61.7103/18/21 12:5603/19/21 01:55 <td>trans-1,3-Dichloropropene</td> <td>ND</td> <td>ug/kg</td> <td>6.6</td> <td>2.3</td> <td>1</td> <td>03/18/21 12:56</td> <td>03/19/21 01:55</td> <td>10061-02-6</td> <td></td>	trans-1,3-Dichloropropene	ND	ug/kg	6.6	2.3	1	03/18/21 12:56	03/19/21 01:55	10061-02-6		
EthylbenzeneNDug/kg6.63.1103/18/21 12:5603/19/21 01:55100-41-4Hexachloro-1,3-butadieneNDug/kg13.110.7103/18/21 12:5603/19/21 01:5587-68-32-HexanoneNDug/kg65.66.3103/18/21 12:5603/19/21 01:55591-78-6Isopropylbenzene (Cumene)NDug/kg6.62.2103/18/21 12:5603/19/21 01:55598-82-8p-IsopropylbolueneNDug/kg6.63.2103/18/21 12:5603/19/21 01:5557-09-24-Methyl-2-pentanone (MIBK)NDug/kg65.66.3103/18/21 12:5603/19/21 01:55168-10-1Methyl-tert-butyl etherNDug/kg6.62.5103/18/21 12:5603/19/21 01:55163-04-4NaphthaleneNDug/kg6.63.5103/18/21 12:5603/19/21 01:55163-04-4NaphthaleneNDug/kg6.62.5103/18/21 12:5603/19/21 01:55103-65-1StyreneNDug/kg6.61.7103/18/21 12:5603/19/21 01:55103-42-51,1,2-TetrachloroethaneNDug/kg6.62.5103/18/21 12:5603/19/21 01:5579-34-5TetrachloroethaneNDug/kg6.61.7103/18/21 12:5603/19/21 01:5579-34-5TetrachloroethaneNDug/kg6.62.5103/18/21 12:5603/19/21 01:5579-34-5 <td>Diisopropyl ether</td> <td>ND</td> <td>ug/kg</td> <td>6.6</td> <td>1.8</td> <td>1</td> <td>03/18/21 12:56</td> <td>03/19/21 01:55</td> <td>108-20-3</td> <td></td>	Diisopropyl ether	ND	ug/kg	6.6	1.8	1	03/18/21 12:56	03/19/21 01:55	108-20-3		
Hexachloro-1,3-butadieneNDug/kg13.110.7103/18/21 12:5603/19/21 01:5587-68-32-HexanoneNDug/kg65.66.3103/18/21 12:5603/19/21 01:55591-78-6Isopropylbenzene (Cumene)NDug/kg6.62.2103/18/21 12:5603/19/21 01:5598-82-8p-Isopropylbenzene (ChlorideNDug/kg6.63.2103/18/21 12:5603/19/21 01:5599-87-6Methylene ChlorideNDug/kg26.318.0103/18/21 12:5603/19/21 01:5575-09-24-Methyl-2-pentanone (MIBK)NDug/kg6.66.3103/18/21 12:5603/19/21 01:551634-04-4Methyl-tert-butyl etherNDug/kg6.63.5103/18/21 12:5603/19/21 01:551634-04-4NaphthaleneNDug/kg6.63.5103/18/21 12:5603/19/21 01:551634-04-4NaphthaleneNDug/kg6.63.5103/18/21 12:5603/19/21 01:5510-42-5StyreneNDug/kg6.61.7103/18/21 12:5603/19/21 01:5510-42-51,1,2-TetrachloroethaneNDug/kg6.62.5103/18/21 12:5603/19/21 01:5579-34-5TetrachloroethaneNDug/kg6.61.9103/18/21 12:5603/19/21 01:55127-18-41,2,3-TrichloroethaneNDug/kg6.65.3103/18/21 12:5603/19/21 01:5	Ethylbenzene	ND	ug/kg	6.6	3.1	1	03/18/21 12:56	03/19/21 01:55	100-41-4		
2-HexanoneNDug/kg65.66.3103/18/2112:5603/19/2101:55591-78-6Isopropylbenzene (Cumene)NDug/kg6.62.2103/18/2112:5603/19/2101:5598-82-8p-IsopropylbueneNDug/kg6.63.2103/18/2112:5603/19/2101:5599-87-6Methylene ChlorideNDug/kg26.318.0103/18/2112:5603/19/2101:5575-09-24-Methyl-2-pentanone (MIBK)NDug/kg65.66.3103/18/2112:5603/19/2101:55108-10-1Methyl-tert-butyl etherNDug/kg6.62.5103/18/2112:5603/19/2101:55104-44NaphthaleneNDug/kg6.62.3103/18/2112:5603/19/2101:55103-65-1StyreneNDug/kg6.62.3103/18/2112:5603/19/2101:55103-42-51,1,2-TetrachloroethaneNDug/kg6.62.5103/18/2112:5603/19/2101:55104-42-51,1,2-TetrachloroethaneNDug/kg6.62.5103/18/2112:5603/19/2101:55103-45-11,1,2-TetrachloroethaneNDug/kg6.62.5103/18/2112:5603/19/2101:55178-451,2,3-TrichloroethaneNDug/kg6.62.1103/18/2112:56	Hexachloro-1,3-butadiene	ND	ug/kg	13.1	10.7	1	03/18/21 12:56	03/19/21 01:55	87-68-3		
Isopropylbenzene (Cumene)NDug/kg6.62.2103/18/21 12:5603/19/21 01:5598-82-8p-IsopropyltolueneNDug/kg6.63.2103/18/21 12:5603/19/21 01:5599-87-6Methylene ChlorideNDug/kg26.318.0103/18/21 12:5603/19/21 01:5575-09-24-Methyl-2-pentanone (MIBK)NDug/kg65.66.3103/18/21 12:5603/19/21 01:55108-10-1Methyl-tert-butyl etherNDug/kg6.62.5103/18/21 12:5603/19/21 01:55108-10-1NaphthaleneNDug/kg6.62.5103/18/21 12:5603/19/21 01:55108-10-1NaphthaleneNDug/kg6.62.3103/18/21 12:5603/19/21 01:55103-45-1StyreneNDug/kg6.61.7103/18/21 12:5603/19/21 01:55100-42-51,1,2-TetrachloroethaneNDug/kg6.62.5103/18/21 12:5603/19/21 01:55630-20-61,1,2-TetrachloroethaneNDug/kg6.62.1103/18/21 12:5603/19/21 01:5579-34-5TetrachloroethaneNDug/kg6.62.1103/18/21 12:5603/19/21 01:55127-18-4Toluene14.1ug/kg6.61.9103/18/21 12:5603/19/21 01:55128-83-31,2,3-TrichlorobenzeneNDug/kg6.65.5103/18/21 12:5603/19/21 01:55120	2-Hexanone	ND	ug/kg	65.6	6.3	1	03/18/21 12:56	03/19/21 01:55	591-78-6		
p-IsopropyltolueneNDug/kg6.63.2103/18/21 12:5603/19/21 01:5599-87-6Methylene ChlorideNDug/kg26.318.0103/18/21 12:5603/19/21 01:5575-09-24-Methyl-2-pentanone (MIBK)NDug/kg65.66.3103/18/21 12:5603/19/21 01:55108-10-1Methyl-tert-butyl etherNDug/kg6.62.5103/18/21 12:5603/19/21 01:551634-04-4NaphthaleneNDug/kg6.63.5103/18/21 12:5603/19/21 01:5591-20-3n-PropylbenzeneNDug/kg6.62.3103/18/21 12:5603/19/21 01:55103-65-1StyreneNDug/kg6.61.7103/18/21 12:5603/19/21 01:55100-42-51,1,2-TetrachloroethaneNDug/kg6.62.5103/18/21 12:5603/19/21 01:55630-20-61,1,2-TetrachloroethaneNDug/kg6.61.7103/18/21 12:5603/19/21 01:5579-34-5TetrachloroethaneNDug/kg6.62.1103/18/21 12:5603/19/21 01:5579-34-5TetrachloroethaneNDug/kg6.62.3103/18/21 12:5603/19/21 01:5570-61,2,4-TrichlorobenzeneNDug/kg6.65.3103/18/21 12:5603/19/21 01:55108-88-31,2,4-TrichloroethaneNDug/kg6.65.5103/18/21 12:5603/19/21 01:55 <td< td=""><td>Isopropylbenzene (Cumene)</td><td>ND</td><td>ug/kg</td><td>6.6</td><td>2.2</td><td>1</td><td>03/18/21 12:56</td><td>03/19/21 01:55</td><td>98-82-8</td><td></td></td<>	Isopropylbenzene (Cumene)	ND	ug/kg	6.6	2.2	1	03/18/21 12:56	03/19/21 01:55	98-82-8		
Methylene ChlorideNDug/kg26.318.0103/18/21 12:5603/19/21 01:5575-09-24-Methyl-2-pentanone (MIBK)NDug/kg65.66.3103/18/21 12:5603/19/21 01:55108-10-1Methyl-tert-butyl etherNDug/kg6.62.5103/18/21 12:5603/19/21 01:551634-04-4NaphthaleneNDug/kg6.63.5103/18/21 12:5603/19/21 01:5591-20-3n-PropylbenzeneNDug/kg6.62.3103/18/21 12:5603/19/21 01:55103-65-1StyreneNDug/kg6.61.7103/18/21 12:5603/19/21 01:55100-42-51,1,2-TetrachloroethaneNDug/kg6.62.5103/18/21 12:5603/19/21 01:55630-20-61,1,2,2-TetrachloroethaneNDug/kg6.61.7103/18/21 12:5603/19/21 01:5579-34-5TetrachloroethaneNDug/kg6.62.1103/18/21 12:5603/19/21 01:55127-18-4Toluene14.1ug/kg6.61.9103/18/21 12:5603/19/21 01:55108-88-31,2,3-TrichlorobenzeneNDug/kg6.65.3103/18/21 12:5603/19/21 01:55120-82-11,1,1-TrichlorobenzeneNDug/kg6.65.5103/18/21 12:5603/19/21 01:5571-55-61,1,2-TrichloroethaneNDug/kg6.65.5103/18/21 12:5603/19/21 01:55	p-Isopropyltoluene	ND	ug/kg	6.6	3.2	1	03/18/21 12:56	03/19/21 01:55	99-87-6		
4-Methyl-2-pentanone (MIBK)NDug/kg65.66.3103/18/21 12:5603/19/21 01:55108-10-1Methyl-tert-butyl etherNDug/kg6.62.5103/18/21 12:5603/19/21 01:551634-04-4NaphthaleneNDug/kg6.63.5103/18/21 12:5603/19/21 01:5591-20-3n-PropylbenzeneNDug/kg6.62.3103/18/21 12:5603/19/21 01:55103-65-1StyreneNDug/kg6.61.7103/18/21 12:5603/19/21 01:55100-42-51,1,2-TetrachloroethaneNDug/kg6.62.5103/18/21 12:5603/19/21 01:55630-20-61,1,2,2-TetrachloroethaneNDug/kg6.61.7103/18/21 12:5603/19/21 01:5579-34-5TetrachloroethaneNDug/kg6.62.1103/18/21 12:5603/19/21 01:5579-34-5TetrachloroetheneNDug/kg6.61.9103/18/21 12:5603/19/21 01:55127-18-4Toluene14.1ug/kg6.61.9103/18/21 12:5603/19/21 01:55108-88-31,2,3-TrichlorobenzeneNDug/kg6.65.3103/18/21 12:5603/19/21 01:55120-82-11,1,1-TrichlorobenzeneNDug/kg6.65.5103/18/21 12:5603/19/21 01:55120-82-11,1,2-TrichloroethaneNDug/kg6.65.5103/18/21 12:5603/19/21 01:55 <t< td=""><td>Methylene Chloride</td><td>ND</td><td>ug/kg</td><td>26.3</td><td>18.0</td><td>1</td><td>03/18/21 12:56</td><td>03/19/21 01:55</td><td>75-09-2</td><td></td></t<>	Methylene Chloride	ND	ug/kg	26.3	18.0	1	03/18/21 12:56	03/19/21 01:55	75-09-2		
Methyl-tert-butyl etherNDug/kg6.62.5103/18/21 12:5603/19/21 01:551634-04-4NaphthaleneNDug/kg6.63.5103/18/21 12:5603/19/21 01:5591-20-3n-PropylbenzeneNDug/kg6.62.3103/18/21 12:5603/19/21 01:55103-65-1StyreneNDug/kg6.61.7103/18/21 12:5603/19/21 01:55100-42-51,1,2-TetrachloroethaneNDug/kg6.62.5103/18/21 12:5603/19/21 01:55630-20-61,1,2.2-TetrachloroethaneNDug/kg6.61.7103/18/21 12:5603/19/21 01:55630-20-61,1,2.2-TetrachloroethaneNDug/kg6.61.7103/18/21 12:5603/19/21 01:5579-34-5TetrachloroethaneNDug/kg6.62.1103/18/21 12:5603/19/21 01:55127-18-4Toluene14.1ug/kg6.61.9103/18/21 12:5603/19/21 01:55108-88-31,2,3-TrichlorobenzeneNDug/kg6.65.3103/18/21 12:5603/19/21 01:5587-61-61,2,4-TrichlorobenzeneNDug/kg6.65.5103/18/21 12:5603/19/21 01:55120-82-11,1,1-TrichloroethaneNDug/kg6.65.5103/18/21 12:5603/19/21 01:5571-55-61,1,2-TrichloroethaneNDug/kg6.62.2103/18/21 12:5603/19/21 01:55 <t< td=""><td>4-Methyl-2-pentanone (MIBK)</td><td>ND</td><td>ug/kg</td><td>65.6</td><td>6.3</td><td>1</td><td>03/18/21 12:56</td><td>03/19/21 01:55</td><td>108-10-1</td><td></td></t<>	4-Methyl-2-pentanone (MIBK)	ND	ug/kg	65.6	6.3	1	03/18/21 12:56	03/19/21 01:55	108-10-1		
NaphthaleneNDug/kg6.63.5103/18/21 12:5603/19/21 01:5591-20-3n-PropylbenzeneNDug/kg6.62.3103/18/21 12:5603/19/21 01:55103-65-1StyreneNDug/kg6.61.7103/18/21 12:5603/19/21 01:55100-42-51,1,1,2-TetrachloroethaneNDug/kg6.62.5103/18/21 12:5603/19/21 01:55630-20-61,1,2,2-TetrachloroethaneNDug/kg6.61.7103/18/21 12:5603/19/21 01:5579-34-5TetrachloroethaneNDug/kg6.62.1103/18/21 12:5603/19/21 01:55127-18-4Toluene14.1ug/kg6.61.9103/18/21 12:5603/19/21 01:55108-88-31,2,3-TrichlorobenzeneNDug/kg6.65.3103/18/21 12:5603/19/21 01:55120-82-11,1,1-TrichlorobenzeneNDug/kg6.65.5103/18/21 12:5603/19/21 01:55120-82-11,1,2-TrichloroethaneNDug/kg6.65.5103/18/21 12:5603/19/21 01:55120-82-11,1,2-TrichloroethaneNDug/kg6.63.4103/18/21 12:5603/19/21 01:5571-55-61,1,2-TrichloroethaneNDug/kg6.62.2103/18/21 12:5603/19/21 01:5571-55-61,1,2-TrichloroethaneNDug/kg6.62.2103/18/21 12:5603/19/21 01:5571-	Methyl-tert-butyl ether	ND	ug/kg	6.6	2.5	1	03/18/21 12:56	03/19/21 01:55	1634-04-4		
n-PropylbenzeneNDug/kg6.62.3103/18/21 12:5603/19/21 01:55103-65-1StyreneNDug/kg6.61.7103/18/21 12:5603/19/21 01:55100-42-51,1,1,2-TetrachloroethaneNDug/kg6.62.5103/18/21 12:5603/19/21 01:55630-20-61,1,2,2-TetrachloroethaneNDug/kg6.61.7103/18/21 12:5603/19/21 01:5579-34-5TetrachloroethaneNDug/kg6.62.1103/18/21 12:5603/19/21 01:55127-18-4Toluene14.1ug/kg6.61.9103/18/21 12:5603/19/21 01:55108-88-31,2,3-TrichlorobenzeneNDug/kg6.65.3103/18/21 12:5603/19/21 01:55120-82-11,1,1-TrichloroethaneNDug/kg6.65.5103/18/21 12:5603/19/21 01:55120-82-11,1,2-TrichloroethaneNDug/kg6.63.4103/18/21 12:5603/19/21 01:55120-82-11,1,2-TrichloroethaneNDug/kg6.63.4103/18/21 12:5603/19/21 01:5571-55-61,1,2-TrichloroethaneNDug/kg6.62.2103/18/21 12:5603/19/21 01:5571-55-61,1,2-TrichloroethaneNDug/kg6.62.2103/18/21 12:5603/19/21 01:5579-00-5	Naphthalene	ND	ug/kg	6.6	3.5	1	03/18/21 12:56	03/19/21 01:55	91-20-3		
StyreneNDug/kg6.61.7103/18/21 12:5603/19/21 01:55100-42-51,1,1,2-TetrachloroethaneNDug/kg6.62.5103/18/21 12:5603/19/21 01:55630-20-61,1,2,2-TetrachloroethaneNDug/kg6.61.7103/18/21 12:5603/19/21 01:5579-34-5TetrachloroethaneNDug/kg6.62.1103/18/21 12:5603/19/21 01:55127-18-4Toluene14.1ug/kg6.61.9103/18/21 12:5603/19/21 01:55108-88-31,2,3-TrichlorobenzeneNDug/kg6.65.3103/18/21 12:5603/19/21 01:55108-88-31,2,4-TrichlorobenzeneNDug/kg6.65.5103/18/21 12:5603/19/21 01:55120-82-11,1,1-TrichloroethaneNDug/kg6.63.4103/18/21 12:5603/19/21 01:55120-82-11,1,2-TrichloroethaneNDug/kg6.62.2103/18/21 12:5603/19/21 01:5571-55-61,1,2-TrichloroethaneNDug/kg6.62.2103/18/21 12:5603/19/21 01:5579-00-5	n-Propylbenzene	ND	ug/kg	6.6	2.3	1	03/18/21 12:56	03/19/21 01:55	103-65-1		
1,1,2-TetrachloroethaneNDug/kg6.62.5103/18/21 12:5603/19/21 01:55630-20-61,1,2,2-TetrachloroethaneNDug/kg6.61.7103/18/21 12:5603/19/21 01:5579-34-5TetrachloroethaneNDug/kg6.62.1103/18/21 12:5603/19/21 01:55127-18-4Toluene14.1ug/kg6.61.9103/18/21 12:5603/19/21 01:55108-88-31,2,3-TrichlorobenzeneNDug/kg6.65.3103/18/21 12:5603/19/21 01:5587-61-61,2,4-TrichlorobenzeneNDug/kg6.65.5103/18/21 12:5603/19/21 01:55120-82-11,1,1-TrichloroethaneNDug/kg6.63.4103/18/21 12:5603/19/21 01:5571-55-61,1,2-TrichloroethaneNDug/kg6.62.2103/18/21 12:5603/19/21 01:5571-55-6	Styrene	ND	ug/kg	6.6	1.7	1	03/18/21 12:56	03/19/21 01:55	100-42-5		
1,1,2,2-TetrachloroethaneNDug/kg6.61.7103/18/21 12:5603/19/21 01:5579-34-5TetrachloroetheneNDug/kg6.62.1103/18/21 12:5603/19/21 01:55127-18-4Toluene14.1ug/kg6.61.9103/18/21 12:5603/19/21 01:55108-88-31,2,3-TrichlorobenzeneNDug/kg6.65.3103/18/21 12:5603/19/21 01:5587-61-61,2,4-TrichlorobenzeneNDug/kg6.65.5103/18/21 12:5603/19/21 01:55120-82-11,1,1-TrichloroethaneNDug/kg6.63.4103/18/21 12:5603/19/21 01:5571-55-61,1,2-TrichloroethaneNDug/kg6.62.2103/18/21 12:5603/19/21 01:5579-00-5	1,1,2-Tetrachloroethane	ND	ug/kg	6.6	2.5	1	03/18/21 12:56	03/19/21 01:55	630-20-6		
Tetrachloroethene     ND     ug/kg     6.6     2.1     1     03/18/21 12:56     03/19/21 01:55     127-18-4       Toluene     14.1     ug/kg     6.6     1.9     1     03/18/21 12:56     03/19/21 01:55     108-88-3       1,2,3-Trichlorobenzene     ND     ug/kg     6.6     5.3     1     03/18/21 12:56     03/19/21 01:55     87-61-6       1,2,4-Trichlorobenzene     ND     ug/kg     6.6     5.5     1     03/18/21 12:56     03/19/21 01:55     120-82-1       1,1,1-Trichloroethane     ND     ug/kg     6.6     3.4     1     03/18/21 12:56     03/19/21 01:55     71-55-6       1,1,2-Trichloroethane     ND     ug/kg     6.6     2.2     1     03/18/21 12:56     03/19/21 01:55     79-00-5	1,1,2,2-Tetrachloroethane	ND	ug/ka	6.6	1.7	1	03/18/21 12:56	03/19/21 01:55	79-34-5		
Toluene     14.1     ug/kg     6.6     1.9     1     03/18/21     12:56     03/19/21     01:55     108-88-3       1,2,3-Trichlorobenzene     ND     ug/kg     6.6     5.3     1     03/18/21     12:56     03/19/21     01:55     108-88-3       1,2,4-Trichlorobenzene     ND     ug/kg     6.6     5.5     1     03/18/21     12:56     03/19/21     01:55     120-82-1       1,1,1-Trichloroethane     ND     ug/kg     6.6     3.4     1     03/18/21     12:56     03/19/21     01:55     71-55-6       1,1,2-Trichloroethane     ND     ug/kg     6.6     2.2     1     03/18/21     12:56     03/19/21     01:55     79-00-5	Tetrachloroethene	ND	ug/ka	6.6	2.1	1	03/18/21 12:56	03/19/21 01:55	127-18-4		
1,2,3-Trichlorobenzene   ND   ug/kg   6.6   5.3   1   03/18/21   12:56   03/19/21   01:55   87-61-6     1,2,4-Trichlorobenzene   ND   ug/kg   6.6   5.5   1   03/18/21   12:56   03/19/21   01:55   120-82-1     1,1,1-Trichloroethane   ND   ug/kg   6.6   3.4   1   03/18/21   12:56   03/19/21   01:55   71-55-6     1,1,2-Trichloroethane   ND   ug/kg   6.6   2.2   1   03/18/21   12:56   03/19/21   01:55   79-00-5	Toluene	14.1	ua/ka	6.6	1.9	1	03/18/21 12:56	03/19/21 01:55	108-88-3		
1,2,4-Trichlorobenzene   ND   ug/kg   6.6   5.5   1   03/18/21   12:56   03/19/21   01:55   120-82-1     1,1,1-Trichloroethane   ND   ug/kg   6.6   3.4   1   03/18/21   12:56   03/19/21   01:55   71-55-6     1,1,2-Trichloroethane   ND   ug/kg   6.6   2.2   1   03/18/21   12:56   03/19/21   01:55   79-00-5	1.2.3-Trichlorobenzene	ND	ug/ka	6.6	5.3	1	03/18/21 12:56	03/19/21 01:55	87-61-6		
1,1,1-Trichloroethane     ND     ug/kg     6.6     3.4     1     03/18/21     12:56     03/19/21     01:55     71-55-6       1,1,2-Trichloroethane     ND     ug/kg     6.6     2.2     1     03/18/21     12:56     03/19/21     01:55     79-00-5	1.2.4-Trichlorobenzene	ND	ug/ka	6.6	5.5	1	03/18/21 12:56	03/19/21 01:55	120-82-1		
1,1,2-Trichloroethane ND ug/kg 6.6 2.2 1 03/18/21 12:56 03/19/21 01:55 79-00-5	1.1.1-Trichloroethane	ND	ug/ka	6.6	3.4	1	03/18/21 12:56	03/19/21 01:55	71-55-6		
	1,1,2-Trichloroethane	ND	ug/kg	6.6	2.2	1	03/18/21 12:56	03/19/21 01:55	79-00-5		



Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528353

Sample: RI-SB-20_SO_0.5- 1.0_20210315	Lab ID:	92528353003	Collected	d: 03/15/21	14:30	Received: 03/	17/21 10:45 Ma	atrix: Solid	
Results reported on a "dry weight"	" basis and are	e adjusted for	percent mo	oisture, san	nple si	ize and any diluti	ons.		
		-	Report		-	-			
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA 8	3260D Prepa	aration Met	hod: E	PA 5035A/5030B			
	Pace Anal	ytical Services	- Charlotte						
Trichloroethene	ND	ug/kg	6.6	1.7	1	03/18/21 12:56	03/19/21 01:55	79-01-6	
Trichlorofluoromethane	ND	ug/kg	6.6	3.6	1	03/18/21 12:56	03/19/21 01:55	75-69-4	
1,2,3-Trichloropropane	ND	ug/kg	6.6	3.3	1	03/18/21 12:56	03/19/21 01:55	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/kg	6.6	1.8	1	03/18/21 12:56	03/19/21 01:55	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/kg	6.6	2.2	1	03/18/21 12:56	03/19/21 01:55	108-67-8	
Vinyl acetate	ND	ug/kg	65.6	4.8	1	03/18/21 12:56	03/19/21 01:55	108-05-4	
Vinyl chloride	ND	ug/kg	13.1	3.3	1	03/18/21 12:56	03/19/21 01:55	75-01-4	
Xylene (Total)	ND	ug/kg	13.1	3.7	1	03/18/21 12:56	03/19/21 01:55	1330-20-7	
m&p-Xylene	ND	ug/kg	13.1	4.5	1	03/18/21 12:56	03/19/21 01:55	179601-23-1	
o-Xylene	ND	ug/kg	6.6	2.9	1	03/18/21 12:56	03/19/21 01:55	95-47-6	
Surrogates									
Toluene-d8 (S)	101	%	70-130		1	03/18/21 12:56	03/19/21 01:55	2037-26-5	
4-Bromofluorobenzene (S)	94	%	69-134		1	03/18/21 12:56	03/19/21 01:55	460-00-4	
1,2-Dichloroethane-d4 (S)	106	%	70-130		1	03/18/21 12:56	03/19/21 01:55	17060-07-0	
Percent Moisture	Analytical	Method: SW-8	46						
	Pace Anal	ytical Services	- Charlotte						
Percent Moisture	13.2	%	0.10	0.10	1		03/18/21 15:17		N2



Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528353

Sample: RI-SB-20_SO_5.5- 6.0_20210315	Lab ID:	92528353004	Collecte	d: 03/15/21	14:35	Received: 03/	17/21 10:45 Ma	atrix: Solid	
Results reported on a "dry weig	ght" basis and are	e adjusted for	percent mo	oisture, san	nple si	ize and any diluti	ons.		
-			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270E MSSV Microwave	Analytical	Method: EPA 8	270E Prep	aration Met	hod: El	PA 3546			
	Pace Anal	ytical Services	- Charlotte						
Acenaphthene	ND	ua/ka	408	143	1	03/18/21 10:18	03/18/21 22:13	83-32-9	
Acenaphthylene	ND	ug/kg	408	143	1	03/18/21 10:18	03/18/21 22:13	208-96-8	
Aniline	ND	ua/ka	408	160	1	03/18/21 10:18	03/18/21 22:13	62-53-3	
Anthracene	ND	ua/ka	408	134	1	03/18/21 10:18	03/18/21 22:13	120-12-7	
Benzo(a)anthracene	ND	ug/kg	408	136	1	03/18/21 10:18	03/18/21 22:13	56-55-3	
Benzo(b)fluoranthene	ND	ug/kg	408	136	1	03/18/21 10:18	03/18/21 22:13	205-99-2	
Benzo(g h i)pervlene	ND	ug/kg	408	158	1	03/18/21 10:18	03/18/21 22:13	191-24-2	
Benzo(k)fluoranthene		ug/kg	408	143	1	03/18/21 10:18	03/18/21 22:13	207-08-9	
Benzoic Acid		ug/kg	2040	877	1	03/18/21 10:18	03/18/21 22:13	65-85-0	
Benzyl alcohol		ug/kg	816	300	1	03/18/21 10:18	03/18/21 22:13	100-51-6	
4-Bromonbenylphenyl ether		ug/kg	408	157	1	03/18/21 10:18	03/18/21 22:13	101-55-3	
Butylbenzylphthalate		ug/kg	408	172	1	03/18/21 10:18	03/18/21 22:13	85-68-7	v1
4-Chloro-3-methylphenol		ug/kg	900 816	287	1	03/18/21 10:18	03/18/21 22:13	59-50-7	VI
4-Chloroaniline		ug/kg	816	320	1	03/18/21 10:18	03/18/21 22:13	106-47-8	
his/2 Chloroothoxy/mothono		ug/kg	409	160	1	03/18/21 10:18	03/10/21 22:13	111 01 1	
bis(2 Chloroothyl) othor		ug/kg	400	103	1	03/18/21 10:18	03/10/21 22:13	111-31-1	
2 Chloropophthalopo		ug/kg	400	160	1	03/10/21 10.10	03/10/21 22.13	01 59 7	
2 Chlorophonol		ug/kg	400	102	1	03/18/21 10:18	03/10/21 22:13	05 57 9	
4 Chlorophenol		ug/kg	400	150	1	03/18/21 10:18	03/10/21 22:13	7005 72 2	
		ug/kg	400	1.10	1	03/10/21 10.10	03/10/21 22.13	219 01 0	
Dihanz(a h)anthragana		ug/kg	400	140	1	03/10/21 10.10	03/10/21 22.13	210-01-9	
Dibenzefuren		ug/kg	400	107	1	03/10/21 10.10	03/10/21 22.13	122 64 0	
2.2' Dichlorobonzidino		ug/kg	400	147	1	03/10/21 10.10	03/10/21 22.13	132-04-9	п
3,3-Dichlorophanal		ug/kg	400	270	1	03/10/21 10.10	03/10/21 22.13	91-94-1	IL.
2,4-Dichlorophenol		ug/kg	400	100	1	03/10/21 10.10	03/10/21 22.13	120-03-2	
Dietnyiphthalate	ND	ug/kg	408	100	1	03/16/21 10:16	03/16/21 22:13	04-00-2	
2,4-Dimethylphenol	ND	ug/kg	408	109	1	03/16/21 10.16	03/10/21 22:13	105-67-9	
	ND	ug/kg	408	140	1	03/16/21 10:16	03/16/21 22:13	131-11-3	
Di-n-butyiphthalate	ND	ug/kg	408	137	1	03/16/21 10:16	03/16/21 22:13	64-74-2	
4,6-Dinitro-2-methylphenol	ND	ug/kg	010	301	1	03/16/21 10:16	03/16/21 22:13	534-52-1	
2,4-Dinitrophenol	ND	ug/kg	2040	1260	1	03/18/21 10:18	03/18/21 22:13	51-28-5	
2,4-Dinitrotoluene	ND	ug/kg	408	157	1	03/18/21 10:18	03/18/21 22:13	121-14-2	
	ND	ug/kg	408	100	1	03/16/21 10:16	03/16/21 22:13	606-20-2	
bis (2) Ethylk synd) a bth a late	ND	ug/kg	408	101	1	03/16/21 10:16	03/16/21 22:13	117-64-0	V I
bis(2-Ethylnexyl)phthalate	ND	ug/kg	408	158	1	03/18/21 10:18	03/18/21 22:13	117-81-7	VI
Fluoranthene	ND	ug/kg	408	140	1	03/18/21 10:18	03/18/21 22:13	206-44-0	
Fluorene	ND	ug/kg	408	143	1	03/18/21 10:18	03/18/21 22:13	86-73-7	
Hexachiorobenzene	ND	ug/kg	408	160	1	03/18/21 10:18	03/18/21 22:13	118-74-1	
Hexachlorocyclopentadiene	ND	ug/kg	408	234	1	03/18/21 10:18	03/18/21 22:13	//-4/-4	
Hexachloroethane	ND	ug/kg	408	156	1	03/18/21 10:18	03/18/21 22:13	67-72-1	
Indeno(1,2,3-cd)pyrene	ND	ug/kg	408	161	1	03/18/21 10:18	03/18/21 22:13	193-39-5	
Isophorone	ND	ug/kg	408	182	1	03/18/21 10:18	03/18/21 22:13	78-59-1	
1-Methylnaphthalene	ND	ug/kg	408	143	1	03/18/21 10:18	03/18/21 22:13	90-12-0	
2-Methylnaphthalene	ND	ug/kg	408	163	1	03/18/21 10:18	03/18/21 22:13	91-57-6	



Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528353

Sample: RI-SB-20_SO_5.5- 6.0_20210315	Lab ID:	92528353004	Collected	d: 03/15/21	14:35	6 Received: 03/	17/21 10:45 Ma	atrix: Solid	
Results reported on a "dry weight"	" basis and are	e adjusted for	percent mo	oisture, san	nple s	ize and any diluti	ons.		
Deremetere	Populto	Linita	Report		DE	Droporod	Applyzod		Qual
Falameters					DF		Analyzeu	CAS NU.	
8270E MSSV Microwave	Analytical	Method: EPA 8	270E Prep	aration Metl	hod: E	PA 3546			
	Pace Anal	lytical Services	- Charlotte						
2-Methylphenol(o-Cresol)	ND	ug/kg	408	167	1	03/18/21 10:18	03/18/21 22:13	95-48-7	
3&4-Methylphenol(m&p Cresol)	ND	ug/kg	408	165	1	03/18/21 10:18	03/18/21 22:13	15831-10-4	
2-Nitroaniline	ND	ug/kg	2040	334	1	03/18/21 10:18	03/18/21 22:13	88-74-4	
3-Nitroaniline	ND	ua/ka	2040	320	1	03/18/21 10:18	03/18/21 22:13	99-09-2	
4-Nitroaniline	ND	ua/ka	816	310	1	03/18/21 10:18	03/18/21 22:13	100-01-6	
Nitrobenzene	ND	ua/ka	408	189	1	03/18/21 10:18	03/18/21 22:13	98-95-3	
2-Nitrophenol	ND	ua/ka	408	177	1	03/18/21 10:18	03/18/21 22:13	88-75-5	
4-Nitrophenol	ND	ua/ka	2040	789	1	03/18/21 10:18	03/18/21 22:13	100-02-7	
N-Nitrosodimethylamine	ND	ug/kg	408	137	1	03/18/21 10:18	03/18/21 22:13	62-75-9	
N-Nitroso-di-n-propylamine		ug/kg	408	153	1	03/18/21 10:18	03/18/21 22:13	621-64-7	
N-Nitrosodinhenvlamine		ug/kg	408	1/5	1	03/18/21 10:18	03/18/21 22:13	86-30-6	
$2 2' - \Omega x y bis(1 - cbloropropage)$		ug/kg	400	140	1	03/18/21 10:18	03/18/21 22:13	108-60-1	
Pontachlorophonol		ug/kg	916	400	1	03/10/21 10:10	03/10/21 22:13	97 96 5	
Phononthropo		ug/kg	409	400	1	03/10/21 10.10	03/10/21 22.13	85 01 9	
Phonol		ug/kg	400	104	1	03/10/21 10.10	03/10/21 22.13	109 05 2	
Pireno		ug/kg	400	102	1	03/10/21 10.10	03/10/21 22.13	100-90-2	
Pyrene Duridin a	ND	ug/kg	408	100	1	03/18/21 10:18	03/18/21 22:13	129-00-0	
Pyridine	ND	ug/kg	408	129	1	03/18/21 10:18	03/18/21 22:13	110-86-1	
	ND	ug/kg	408	187	1	03/18/21 10:18	03/18/21 22:13	95-95-4	
	ND	ug/kg	408	168	1	03/18/21 10:18	03/18/21 22:13	88-06-2	
Surrogates	60	0/	21 120		1	02/10/21 10.10	02/10/21 22.12	4165 60 0	
2 Elyerobiobenul (S)	69	70	21-130		1	03/10/21 10.10	03/10/21 22.13	4103-00-0	
	62	% 0/	19-130		1	03/18/21 10.18	03/16/21 22:13	321-00-0	
Physical de (0)	66	%	15-130		1	03/18/21 10:18	03/18/21 22:13	1718-51-0	
	64	%	18-130		1	03/18/21 10:18	03/18/21 22:13	13127-88-3	
2-Fluorophenol (S)	64	%	18-130		1	03/18/21 10:18	03/18/21 22:13	367-12-4	
2,4,6-Tribromophenol (S)	64	%	18-130		1	03/18/21 10:18	03/18/21 22:13	118-79-6	
8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA 8	260D Prep	aration Met	hod: E	PA 5035A/5030B			
	Pace Anal	lytical Services	- Charlotte						
Acetone	ND	ug/kg	126	40.6	1	03/18/21 12:56	03/19/21 01:20	67-64-1	
Benzene	ND	ug/kg	6.3	2.5	1	03/18/21 12:56	03/19/21 01:20	71-43-2	
Bromobenzene	ND	ua/ka	6.3	2.1	1	03/18/21 12:56	03/19/21 01:20	108-86-1	
Bromochloromethane	ND	ua/ka	6.3	1.9	1	03/18/21 12:56	03/19/21 01:20	74-97-5	
Bromodichloromethane	ND	ua/ka	6.3	2.4	1	03/18/21 12:56	03/19/21 01:20	75-27-4	
Bromoform	ND	ua/ka	6.3	22	1	03/18/21 12:56	03/19/21 01:20	75-25-2	
Bromomethane	ND	ug/kg	12.6	10	1	03/18/21 12:56	03/19/21 01:20	74-83-9	11
2-Butanone (MEK)	ND	ua/ka	126	30.3	1	03/18/21 12:56	03/19/21 01:20	78-93-3	
n-Butylbenzene		ug/kg	63	3.0	1	03/18/21 12:56	03/19/21 01:20	104-51-8	
sec-Butylbenzene		ug/kg	6.0	0.0 2 Q	1	03/18/21 12:50	03/10/21 01:20	135-08-8	
tort-Butylbenzene		ug/kg	0.0	∠.∪ วว	1	03/18/21 12.00	03/10/21 01.20	08-06 6	v2
Carbon tetrachlorido		ug/kg	0.0 6.2	2.3 2.4	1	03/18/21 12.00	03/10/21 01.20	56-00-0	٧Z
Chlorobonzono		ug/kg	0.0	∠.4 1 0	1	03/10/21 12.30	03/10/21 01.20	109 00 7	
Chloroothana		ug/kg	0.3	1.2	1	03/10/21 12:30	03/19/21 01:20	75 00 0	
Chioroethane	ND	ug/ĸg	12.6	4.9	1	03/18/21 12:56	03/19/21 01:20	10-00-3	



Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528353

Sample: RI-SB-20_SO_5.5- 6.0_20210315	Lab ID:	925283530	04 Collecte	d: 03/15/2′	1 14:35	5 Received: 03/	17/21 10:45 Ma	atrix: Solid	
Results reported on a "dry weight	" basis and are	e adjusted f	or percent m	oisture, sar	nple s	ize and any diluti	ons.		
_			Report						
Parameters	Results	Units		MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A/5030B SC Volatiles	Analytical	Method: EP	A 8260D Prec	paration Met	thod: E	PA 5035A/5030B			
	Pace Anal	vtical Servic	es - Charlotte						
	1 400 / 114		enditette						
Chloroform	ND	ug/kg	6.3	3.8	1	03/18/21 12:56	03/19/21 01:20	67-66-3	
Chloromethane	ND	ug/kg	12.6	5.3	1	03/18/21 12:56	03/19/21 01:20	74-87-3	
2-Chlorotoluene	ND	ug/kg	6.3	2.2	1	03/18/21 12:56	03/19/21 01:20	95-49-8	
4-Chlorotoluene	ND	ug/kg	6.3	1.1	1	03/18/21 12:56	03/19/21 01:20	106-43-4	
1,2-Dibromo-3-chloropropane	ND	ug/kg	6.3	2.5	1	03/18/21 12:56	03/19/21 01:20	96-12-8	
Dibromochloromethane	ND	ug/kg	6.3	3.6	1	03/18/21 12:56	03/19/21 01:20	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/kg	6.3	2.8	1	03/18/21 12:56	03/19/21 01:20	106-93-4	
Dibromomethane	ND	ug/kg	6.3	1.4	1	03/18/21 12:56	03/19/21 01:20	74-95-3	
1,2-Dichlorobenzene	ND	ug/kg	6.3	2.3	1	03/18/21 12:56	03/19/21 01:20	95-50-1	
1,3-Dichlorobenzene	ND	ug/kg	6.3	2.0	1	03/18/21 12:56	03/19/21 01:20	541-73-1	
1,4-Dichlorobenzene	ND	ug/kg	6.3	1.6	1	03/18/21 12:56	03/19/21 01:20	106-46-7	
Dichlorodifluoromethane	ND	ug/kg	12.6	2.7	1	03/18/21 12:56	03/19/21 01:20	75-71-8	
1,1-Dichloroethane	ND	ug/kg	6.3	2.6	1	03/18/21 12:56	03/19/21 01:20	75-34-3	
1,2-Dichloroethane	ND	ug/kg	6.3	4.2	1	03/18/21 12:56	03/19/21 01:20	107-06-2	
1,1-Dichloroethene	ND	ug/kg	6.3	2.6	1	03/18/21 12:56	03/19/21 01:20	75-35-4	
cis-1,2-Dichloroethene	ND	ug/kg	6.3	2.2	1	03/18/21 12:56	03/19/21 01:20	156-59-2	
trans-1,2-Dichloroethene	ND	ug/kg	6.3	2.2	1	03/18/21 12:56	03/19/21 01:20	156-60-5	
1,2-Dichloropropane	ND	ug/kg	6.3	1.9	1	03/18/21 12:56	03/19/21 01:20	78-87-5	
1,3-Dichloropropane	ND	ug/kg	6.3	2.0	1	03/18/21 12:56	03/19/21 01:20	142-28-9	
2,2-Dichloropropane	ND	ug/kg	6.3	2.1	1	03/18/21 12:56	03/19/21 01:20	594-20-7	
1,1-Dichloropropene	ND	ug/kg	6.3	3.0	1	03/18/21 12:56	03/19/21 01:20	563-58-6	
cis-1,3-Dichloropropene	ND	ug/kg	6.3	1.7	1	03/18/21 12:56	03/19/21 01:20	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/kg	6.3	2.2	1	03/18/21 12:56	03/19/21 01:20	10061-02-6	
Diisopropyl ether	ND	ug/kg	6.3	1.7	1	03/18/21 12:56	03/19/21 01:20	108-20-3	
Ethylbenzene	ND	ug/kg	6.3	2.9	1	03/18/21 12:56	03/19/21 01:20	100-41-4	
Hexachloro-1,3-butadiene	ND	ug/kg	12.6	10.3	1	03/18/21 12:56	03/19/21 01:20	87-68-3	IK
2-Hexanone	ND	ug/kg	63.2	6.1	1	03/18/21 12:56	03/19/21 01:20	591-78-6	
Isopropylbenzene (Cumene)	ND	ug/kg	6.3	2.1	1	03/18/21 12:56	03/19/21 01:20	98-82-8	
p-Isopropyltoluene	ND	ug/kg	6.3	3.1	1	03/18/21 12:56	03/19/21 01:20	99-87-6	
Methylene Chloride	ND	ug/kg	25.3	17.3	1	03/18/21 12:56	03/19/21 01:20	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	63.2	6.1	1	03/18/21 12:56	03/19/21 01:20	108-10-1	
Methyl-tert-butyl ether	ND	ug/kg	6.3	2.4	1	03/18/21 12:56	03/19/21 01:20	1634-04-4	
Naphthalene	ND	ug/kg	6.3	3.3	1	03/18/21 12:56	03/19/21 01:20	91-20-3	
n-Propylbenzene	ND	ug/kg	6.3	2.3	1	03/18/21 12:56	03/19/21 01:20	103-65-1	
Styrene	ND	ug/kg	6.3	1.7	1	03/18/21 12:56	03/19/21 01:20	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/kg	6.3	2.4	1	03/18/21 12:56	03/19/21 01:20	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/kg	6.3	1.7	1	03/18/21 12:56	03/19/21 01:20	79-34-5	
Tetrachloroethene	ND	ug/kg	6.3	2.0	1	03/18/21 12:56	03/19/21 01:20	127-18-4	
Toluene	5.0J	ug/kg	6.3	1.8	1	03/18/21 12:56	03/19/21 01:20	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/kg	6.3	5.1	1	03/18/21 12:56	03/19/21 01:20	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/kg	6.3	5.3	1	03/18/21 12:56	03/19/21 01:20	120-82-1	
1,1,1-Trichloroethane	ND	ug/kg	6.3	3.3	1	03/18/21 12:56	03/19/21 01:20	71-55-6	
1,1,2-Trichloroethane	ND	ug/kg	6.3	2.1	1	03/18/21 12:56	03/19/21 01:20	79-00-5	



Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528353

Sample: RI-SB-20_SO_5.5- 6.0_20210315	Lab ID:	92528353004	Collected	d: 03/15/21	14:35	Received: 03/	17/21 10:45 Ma	atrix: Solid	
Results reported on a "dry weight"	" basis and are	e adjusted for	percent mo	isture, san	nple si	ize and any diluti	ons.		
		-	Report		-	-			
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA	3260D Prepa	aration Met	hod: E	PA 5035A/5030B			
	Pace Anal	ytical Services	- Charlotte						
Trichloroethene	ND	ug/kg	6.3	1.6	1	03/18/21 12:56	03/19/21 01:20	79-01-6	
Trichlorofluoromethane	ND	ug/kg	6.3	3.5	1	03/18/21 12:56	03/19/21 01:20	75-69-4	
1,2,3-Trichloropropane	ND	ug/kg	6.3	3.2	1	03/18/21 12:56	03/19/21 01:20	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/kg	6.3	1.7	1	03/18/21 12:56	03/19/21 01:20	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/kg	6.3	2.1	1	03/18/21 12:56	03/19/21 01:20	108-67-8	
Vinyl acetate	ND	ug/kg	63.2	4.6	1	03/18/21 12:56	03/19/21 01:20	108-05-4	
Vinyl chloride	ND	ug/kg	12.6	3.2	1	03/18/21 12:56	03/19/21 01:20	75-01-4	
Xylene (Total)	ND	ug/kg	12.6	3.6	1	03/18/21 12:56	03/19/21 01:20	1330-20-7	
m&p-Xylene	ND	ug/kg	12.6	4.3	1	03/18/21 12:56	03/19/21 01:20	179601-23-1	
o-Xylene	ND	ug/kg	6.3	2.8	1	03/18/21 12:56	03/19/21 01:20	95-47-6	
Surrogates									
Toluene-d8 (S)	102	%	70-130		1	03/18/21 12:56	03/19/21 01:20	2037-26-5	
4-Bromofluorobenzene (S)	93	%	69-134		1	03/18/21 12:56	03/19/21 01:20	460-00-4	
1,2-Dichloroethane-d4 (S)	109	%	70-130		1	03/18/21 12:56	03/19/21 01:20	17060-07-0	
Percent Moisture	Analytical	Method: SW-8	346						
	Pace Anal	ytical Services	- Charlotte						
Percent Moisture	18.9	%	0.10	0.10	1		03/18/21 15:17		N2



#### Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528353

Sample: TRIP BLANK Lab	ID: 92528353005	Collected	d: 03/17/2	1 00:00	Received: 03	B/17/21 10:45 Ma	atrix: Water	
		Report						
Parameters Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Low Level SC Analy	tical Method: EPA	8260D						
Pace	Analytical Services	s - Charlotte						
Acetone	ID ug/L	25.0	5.1	1		03/22/21 13:48	67-64-1	
Benzene	ID ug/L	1.0	0.34	1		03/22/21 13:48	71-43-2	
Bromobenzene	ID ug/L	1.0	0.29	1		03/22/21 13:48	108-86-1	
Bromochloromethane N	ID ug/L	1.0	0.47	1		03/22/21 13:48	74-97-5	
Bromodichloromethane N	ID ug/L	1.0	0.31	1		03/22/21 13:48	75-27-4	
Bromoform N	ID ug/L	1.0	0.34	1		03/22/21 13:48	75-25-2	IK
Bromomethane	ID ug/L	2.0	1.7	1		03/22/21 13:48	74-83-9	
2-Butanone (MEK)	ID ug/L	5.0	4.0	1		03/22/21 13:48	78-93-3	
Carbon tetrachloride N	ID ug/L	1.0	0.33	1		03/22/21 13:48	56-23-5	
Chlorobenzene	ID ug/L	1.0	0.28	1		03/22/21 13:48	108-90-7	
Chloroethane N	ID ug/L	1.0	0.65	1		03/22/21 13:48	75-00-3	
Chloroform N	ID ug/L	5.0	1.6	1		03/22/21 13:48	67-66-3	
Chloromethane N	ID ug/L	1.0	0.54	1		03/22/21 13:48	74-87-3	
2-Chlorotoluene	ID ug/L	1.0	0.32	1		03/22/21 13:48	95-49-8	
4-Chlorotoluene	ID ug/L	1.0	0.32	1		03/22/21 13:48	106-43-4	
1,2-Dibromo-3-chloropropane	ID ug/L	2.0	0.34	1		03/22/21 13:48	96-12-8	
Dibromochloromethane	ID ug/L	1.0	0.36	1		03/22/21 13:48	124-48-1	
Dibromomethane	ID ug/L	1.0	0.39	1		03/22/21 13:48	74-95-3	
1,2-Dichlorobenzene	ID ug/L	1.0	0.34	1		03/22/21 13:48	95-50-1	
1,3-Dichlorobenzene	ID ug/L	1.0	0.34	1		03/22/21 13:48	541-73-1	
1,4-Dichlorobenzene	ID ug/L	1.0	0.33	1		03/22/21 13:48	106-46-7	
Dichlorodifluoromethane	ID uɑ/L	1.0	0.35	1		03/22/21 13:48	75-71-8	
1,1-Dichloroethane N	ID ug/L	1.0	0.37	1		03/22/21 13:48	75-34-3	
1,2-Dichloroethane	ID ug/L	1.0	0.32	1		03/22/21 13:48	107-06-2	
1.1-Dichloroethene	ID uɑ/L	1.0	0.35	1		03/22/21 13:48	75-35-4	
cis-1.2-Dichloroethene	ID ug/L	1.0	0.38	1		03/22/21 13:48	156-59-2	
trans-1.2-Dichloroethene	ID ug/L	1.0	0.40	1		03/22/21 13:48	156-60-5	
1.2-Dichloropropane	ID ug/L	1.0	0.36	1		03/22/21 13:48	78-87-5	
1.3-Dichloropropane	ID ug/L	1.0	0.28	1		03/22/21 13:48	142-28-9	
2.2-Dichloropropane	ID ug/L	1.0	0.39	1		03/22/21 13:48	594-20-7	
1.1-Dichloropropene	ID ug/L	1.0	0.43	1		03/22/21 13:48	563-58-6	
cis-1.3-Dichloropropene	ID ug/L	1.0	0.36	1		03/22/21 13:48	10061-01-5	
trans-1.3-Dichloropropene	ID ug/L	1.0	0.36	1		03/22/21 13:48	10061-02-6	
Diisopropyl ether	ID ug/L	1.0	0.31	1		03/22/21 13:48	108-20-3	
Ethylbenzene	ID ug/l	1.0	0.30	1		03/22/21 13:48	100-41-4	
Hexachloro-1.3-butadiene	ID ug/l	2.0	1.5	1		03/22/21 13:48	87-68-3	
2-Hexanone	ID ug/l	5.0	0.48	1		03/22/21 13:48	591-78-6	
p-Isopropyltoluene	ID ug/l	1.0	0.41	1		03/22/21 13:48	99-87-6	
Methylene Chloride	ID ug/l	5.0	2.0	1		03/22/21 13:48	75-09-2	
4-Methyl-2-pentanone (MIBK)	ID ug/L	5.0	2.0	1		03/22/21 13:48	108-10-1	
Methyl-tert-butyl ether	ID ua/l	1.0	0.42	1		03/22/21 13:48	1634-04-4	
Naphthalene N	ID ua/l	1.0	0.42	1		03/22/21 13:48	91-20-3	
Styrene N	ID ua/l	1.0	0.04	1		03/22/21 13:48	100-42-5	
1.1.1.2-Tetrachloroethane	ID ua/l	1.0	0.31	1		03/22/21 13:48	630-20-6	
1,1,2,2-Tetrachloroethane	ID ug/L	1.0	0.22	1		03/22/21 13:48	79-34-5	



#### Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528353

Sample: TRIP BLANK	Lab ID:	92528353005	Collecte	d: 03/17/21	00:00	Received: 03	/17/21 10:45 Ma	atrix: Water	
Poromotoro	Populto	Linito	Report		DE	Droporod	Applyzod		Qual
						Fiepaleu			Quai
8260 MSV Low Level SC	Analytical	Method: EPA 8	260D						
	Pace Anal	tical Services	- Charlotte						
Tetrachloroethene	ND	ug/L	1.0	0.29	1		03/22/21 13:48	127-18-4	
Toluene	ND	ug/L	1.0	0.48	1		03/22/21 13:48	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	0.81	1		03/22/21 13:48	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	0.64	1		03/22/21 13:48	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	0.33	1		03/22/21 13:48	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	0.32	1		03/22/21 13:48	79-00-5	
Trichloroethene	ND	ug/L	1.0	0.38	1		03/22/21 13:48	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	0.30	1		03/22/21 13:48	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	0.26	1		03/22/21 13:48	96-18-4	
Vinyl acetate	ND	ug/L	2.0	1.3	1		03/22/21 13:48	108-05-4	
Vinyl chloride	ND	ug/L	1.0	0.39	1		03/22/21 13:48	75-01-4	
Xylene (Total)	ND	ug/L	1.0	0.34	1		03/22/21 13:48	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	0.71	1		03/22/21 13:48	179601-23-1	
o-Xylene	ND	ug/L	1.0	0.34	1		03/22/21 13:48	95-47-6	
Surrogates									
4-Bromofluorobenzene (S)	102	%	70-130		1		03/22/21 13:48	460-00-4	
1,2-Dichloroethane-d4 (S)	107	%	70-130		1		03/22/21 13:48	17060-07-0	
Toluene-d8 (S)	103	%	70-130		1		03/22/21 13:48	2037-26-5	



Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.:	92528353
-------------------	----------

QC Batch:	

QC Batch:	608197	Analysis Method:	EPA 8260D
QC Batch Method:	EPA 8260D	Analysis Description:	8260 MSV Low Level SC
		Laboratory:	Pace Analytical Services - Charlotte
Associated Lab Samp	oles: 92528353005		
METHOD BLANK:	3204047	Matrix: Water	

Associated Lab Samples: 92528353005

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	1.0	0.31	03/22/21 12:38	·
1,1,1-Trichloroethane	ug/L	ND	1.0	0.33	03/22/21 12:38	
1,1,2,2-Tetrachloroethane	ug/L	ND	1.0	0.22	03/22/21 12:38	
1,1,2-Trichloroethane	ug/L	ND	1.0	0.32	03/22/21 12:38	
1,1-Dichloroethane	ug/L	ND	1.0	0.37	03/22/21 12:38	
1,1-Dichloroethene	ug/L	ND	1.0	0.35	03/22/21 12:38	
1,1-Dichloropropene	ug/L	ND	1.0	0.43	03/22/21 12:38	
1,2,3-Trichlorobenzene	ug/L	ND	1.0	0.81	03/22/21 12:38	
1,2,3-Trichloropropane	ug/L	ND	1.0	0.26	03/22/21 12:38	
1,2,4-Trichlorobenzene	ug/L	ND	1.0	0.64	03/22/21 12:38	
1,2-Dibromo-3-chloropropane	ug/L	ND	2.0	0.34	03/22/21 12:38	
1,2-Dichlorobenzene	ug/L	ND	1.0	0.34	03/22/21 12:38	
1,2-Dichloroethane	ug/L	ND	1.0	0.32	03/22/21 12:38	
1,2-Dichloropropane	ug/L	ND	1.0	0.36	03/22/21 12:38	
1,3-Dichlorobenzene	ug/L	ND	1.0	0.34	03/22/21 12:38	
1,3-Dichloropropane	ug/L	ND	1.0	0.28	03/22/21 12:38	
1,4-Dichlorobenzene	ug/L	ND	1.0	0.33	03/22/21 12:38	
2,2-Dichloropropane	ug/L	ND	1.0	0.39	03/22/21 12:38	
2-Butanone (MEK)	ug/L	ND	5.0	4.0	03/22/21 12:38	
2-Chlorotoluene	ug/L	ND	1.0	0.32	03/22/21 12:38	
2-Hexanone	ug/L	ND	5.0	0.48	03/22/21 12:38	
4-Chlorotoluene	ug/L	ND	1.0	0.32	03/22/21 12:38	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	5.0	2.7	03/22/21 12:38	
Acetone	ug/L	ND	25.0	5.1	03/22/21 12:38	
Benzene	ug/L	ND	1.0	0.34	03/22/21 12:38	
Bromobenzene	ug/L	ND	1.0	0.29	03/22/21 12:38	
Bromochloromethane	ug/L	ND	1.0	0.47	03/22/21 12:38	
Bromodichloromethane	ug/L	ND	1.0	0.31	03/22/21 12:38	
Bromoform	ug/L	ND	1.0	0.34	03/22/21 12:38	IK
Bromomethane	ug/L	ND	2.0	1.7	03/22/21 12:38	
Carbon tetrachloride	ug/L	ND	1.0	0.33	03/22/21 12:38	
Chlorobenzene	ug/L	ND	1.0	0.28	03/22/21 12:38	
Chloroethane	ug/L	ND	1.0	0.65	03/22/21 12:38	
Chloroform	ug/L	ND	5.0	1.6	03/22/21 12:38	
Chloromethane	ug/L	ND	1.0	0.54	03/22/21 12:38	
cis-1,2-Dichloroethene	ug/L	ND	1.0	0.38	03/22/21 12:38	
cis-1,3-Dichloropropene	ug/L	ND	1.0	0.36	03/22/21 12:38	
Dibromochloromethane	ug/L	ND	1.0	0.36	03/22/21 12:38	
Dibromomethane	ug/L	ND	1.0	0.39	03/22/21 12:38	
Dichlorodifluoromethane	ug/L	ND	1.0	0.35	03/22/21 12:38	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528353

#### METHOD BLANK: 3204047 Matrix: Water Associated Lab Samples: 92528353005 Blank Reporting Parameter Units Result Limit MDL Analyzed Qualifiers Diisopropyl ether ug/L ND 1.0 0.31 03/22/21 12:38 ug/L 0.30 Ethylbenzene ND 1.0 03/22/21 12:38 ND 2.0 03/22/21 12:38 Hexachloro-1,3-butadiene ug/L 1.5 ug/L ND 03/22/21 12:38 m&p-Xylene 2.0 0.71 ug/L Methyl-tert-butyl ether ND 0.42 03/22/21 12:38 1.0 Methylene Chloride ug/L ND 5.0 2.0 03/22/21 12:38 Naphthalene ug/L ND 1.0 0.64 03/22/21 12:38 o-Xylene ug/L ND 1.0 0.34 03/22/21 12:38 p-Isopropyltoluene ug/L ND 1.0 0.41 03/22/21 12:38 ND 1.0 0.29 03/22/21 12:38 Styrene ug/L Tetrachloroethene ug/L ND 1.0 0.29 03/22/21 12:38 Toluene ug/L ND 1.0 0.48 03/22/21 12:38 trans-1,2-Dichloroethene ug/L ND 1.0 0.40 03/22/21 12:38 ND trans-1,3-Dichloropropene 1.0 0.36 03/22/21 12:38 ug/L Trichloroethene ND 03/22/21 12:38 ug/L 1.0 0.38 ND 03/22/21 12:38 Trichlorofluoromethane ug/L 1.0 0.30 Vinyl acetate ug/L ND 2.0 1.3 03/22/21 12:38 Vinyl chloride ug/L ND 1.0 0.39 03/22/21 12:38 Xylene (Total) ug/L ND 1.0 0.34 03/22/21 12:38 1,2-Dichloroethane-d4 (S) % 103 70-130 03/22/21 12:38 4-Bromofluorobenzene (S) % 103 70-130 03/22/21 12:38 Toluene-d8 (S) % 104 70-130 03/22/21 12:38

#### LABORATORY CONTROL SAMPLE: 3204048

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	49.0	98	70-130	
1,1,1-Trichloroethane	ug/L	50	46.7	93	70-130	
1,1,2,2-Tetrachloroethane	ug/L	50	48.3	97	70-130	
1,1,2-Trichloroethane	ug/L	50	49.0	98	70-130	
1,1-Dichloroethane	ug/L	50	44.8	90	70-130	
1,1-Dichloroethene	ug/L	50	46.3	93	70-130	
1,1-Dichloropropene	ug/L	50	46.0	92	70-130	
1,2,3-Trichlorobenzene	ug/L	50	47.9	96	70-130	
1,2,3-Trichloropropane	ug/L	50	48.1	96	70-130	
1,2,4-Trichlorobenzene	ug/L	50	49.3	99	70-130	
1,2-Dibromo-3-chloropropane	ug/L	50	49.2	98	70-130	
1,2-Dichlorobenzene	ug/L	50	46.4	93	70-130	
1,2-Dichloroethane	ug/L	50	48.6	97	70-130	
1,2-Dichloropropane	ug/L	50	47.5	95	70-130	
1,3-Dichlorobenzene	ug/L	50	45.9	92	70-130	
1,3-Dichloropropane	ug/L	50	47.2	94	70-130	
1,4-Dichlorobenzene	ug/L	50	46.3	93	70-130	
2.2-Dichloropropane	ua/L	50	47.8	96	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528353

#### LABORATORY CONTROL SAMPLE: 3204048

Parameter     Units     Conc.     Result     % Rec     Limits     Qualifiers       2-Butanone (MEK)     ugL     100     108     108     70-130       2-Chorotoluene     ugL     100     108     108     70-130       2-Hexanore     ugL     100     107     107     70-130       4-Chorotoluene     ugL     50     45.5     91     70-130       Actonor     ugL     50     45.5     91     70-130       Berzene     ugL     50     45.5     91     70-130       Bromochromethane     ugL     50     46.4     93     70-130       Bromochromethane     ugL     50     46.5     91     70-130       Bromochromethane     ugL     50     46.5     93     70-130       Chorotomane     ugL     50     36.3     73     70-130       Chorotomane     ugL     50     47.4     95     70-130       Chorotomane     ugL     50     45.1     90			Spike	LCS	LCS	% Rec	
2-Butanone (MEK)     ug/L     100     108     108     70-130       2-Chiorotoluene     ug/L     50     45.6     91     70-130       2-Hexanone     ug/L     100     108     70-130       4-Chiorotoluene     ug/L     100     107     177     70-130       4-Achiorobluene     ug/L     100     106     106     70-130       Acetone     ug/L     50     45.5     91     70-130       Bromochioromethane     ug/L     50     45.5     91     70-130       Bromochioromethane     ug/L     50     46.4     93     70-130       Bromochioromethane     ug/L     50     44.7     89     70-130       Bromochioromethane     ug/L     50     47.4     95     70-130       Catoon tetrachloride     ug/L     50     47.4     97     70-130       Chioroethane     ug/L     50     47.4     97     70-130       Chioroethane     ug/L     50     45.1     90     70-1	Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
2-Chiorobulone     ug/L     50     45.6     91     70-130       2-Hexanone     ug/L     100     108     108     70-130       4-Chiorobulone     ug/L     50     45.3     91     70-130       Acetione     ug/L     100     107     107     70-130       Benzene     ug/L     50     45.6     91     70-130       Bromochloromethane     ug/L     50     45.4     93     70-130       Bromochloromethane     ug/L     50     46.4     93     70-130       Bromochloromethane     ug/L     50     46.3     93     70-130       Bromochloromethane     ug/L     50     48.9     96     70-130       Bromochloromethane     ug/L     50     47.4     95     70-130       Chiorobenzane     ug/L     50     47.4     95     70-130       Chiorobenzane     ug/L     50     47.4     95     70-130       Chiorobenzane     ug/L     50     45.1     103	2-Butanone (MEK)	ug/L		108	108	70-130	
2-Hexanone     ug/L     100     108     108     70-130       4-Chiorochunene     ug/L     100     107     70-130       Actiona     ug/L     100     106     106     70-130       Acetone     ug/L     50     45.6     91     70-130       Bromochioromethane     ug/L     50     45.5     91     70-130       Bromochioromethane     ug/L     50     46.4     93     70-130       Bromochioromethane     ug/L     50     44.7     89     70-130       Bromochioromethane     ug/L     50     44.8     100     70-130       Bromochioromethane     ug/L     50     47.4     87     70-130       Chiorobarzene     ug/L     50     47.4     87     70-130       Chiorobarzene     ug/L     50     47.6     70     70-130       Chiorobardene     ug/L     50     45.6     73     70-130       Chiorobarbane     ug/L     50     45.6     89     70-130 <	2-Chlorotoluene	ug/L	50	45.6	91	70-130	
4-Chiorobluene     ug/L     50     45.3     91     70-130       4-Methyl-2-pentanone (MIBK)     ug/L     100     106     106     70-130       Acetone     ug/L     50     45.6     91     70-130       Benzene     ug/L     50     45.6     91     70-130       Bromochioromethane     ug/L     50     46.4     93     70-130       Bromochioromethane     ug/L     50     44.7     89     70-130       Bromochioromethane     ug/L     50     44.7     89     70-130       Bromochioromethane     ug/L     50     47.4     95     70-130       Chiorobenzene     ug/L     50     47.4     95     70-130       Chiorobenzene     ug/L     50     45.1     90	2-Hexanone	ug/L	100	108	108	70-130	
4-Methyl-2-pentianone (MIBK)     ug/L     100     107     107     70-130       Acetone     ug/L     50     45.6     91     70-130       Bromochloromethane     ug/L     50     45.6     91     70-130       Bromochloromethane     ug/L     50     46.4     93     70-130       Bromochloromethane     ug/L     50     48.9     98     70-130       Bromochloromethane     ug/L     50     44.7     89     70-130       Bromochloromethane     ug/L     50     45.8     100     70-130       Carbon tetrachloride     ug/L     50     37.8     76     70-130       Chlorobethane     ug/L     50     37.8     76     70-130       Chloromethane     ug/L     50     36.6     73     70-130       Chloromethane     ug/L     50     45.1     90     70-130       Chloromethane     ug/L     50     45.6     93     70-130       Dibromochloromethane     ug/L     50     45.6	4-Chlorotoluene	ug/L	50	45.3	91	70-130	
Action   ug/L   100   106   106   70-130     Benzene   ug/L   50   45.6   91   70-130     Bromobenzene   ug/L   50   46.4   93   70-130     Bromochloromethane   ug/L   50   46.4   93   70-130     Bromochloromethane   ug/L   50   44.7   89   70-130     Bromochloromethane   ug/L   50   44.7   89   70-130     Bromochrom   ug/L   50   47.4   95   70-130     Chiorobenzene   ug/L   50   47.4   95   70-130     Chioroethane   ug/L   50   37.8   70   70-130     Chioroethane   ug/L   50   36.6   73   70-130     Chioroethane   ug/L   50   36.6   73   70-130     Cis-1.3-Dichloroptene   ug/L   50   36.6   73   70-130     Disconorptiethane   ug/L   50   39.2   78   70-130     Disconorptiethane   ug/L   50   46.5   91	4-Methyl-2-pentanone (MIBK)	ug/L	100	107	107	70-130	
Benzene     ug/L     50     45.6     91     70-130       Bromochloromethane     ug/L     50     45.5     91     70-130       Bromochloromethane     ug/L     50     48.9     98     70-130       Bromochloromethane     ug/L     50     48.7     98     70-130       Bromochloromethane     ug/L     50     36.3     73     70-130       Carbon tetrachloride     ug/L     50     48.4     98     70-130       Chorobenzene     ug/L     50     45.1     90     70-130       Chlorobenzene     ug/L     50     37.8     76     70-130       Chloroberthane     ug/L     50     46.6     99     70-130       Chloroberthane     ug/L     50     46.6     90     70-130       Dibromochloromethane     ug/L     50     51.2     104     70-130       Dibromochloromethane     ug/L     50     46.5     93     70-130       Dibromochloromethane     ug/L     50     46.5	Acetone	ug/L	100	106	106	70-130	
Bromochloromethane     ug/L     50     45.5     91     70-130       Bromochloromethane     ug/L     50     46.4     93     70-130       Bromochloromethane     ug/L     50     44.7     89     70-130       Bromochloromethane     ug/L     50     44.7     89     70-130       Carbon tetrachloride     ug/L     50     44.8     100     70-130       Chirobenzene     ug/L     50     47.4     95     70-130       Chirorotenane     ug/L     50     37.8     76     70-130       Chirorotenane     ug/L     50     45.1     90     70-130       Chirorotenane     ug/L     50     46.6     89     70-130       Chirorotenane     ug/L     50     51.4     103     70-130       Dibromochiromethane     ug/L     50     45.5     93     70-130       Dibromochiromethane     ug/L     50     46.3     93     70-130       Dibromochiromethane     ug/L     50     46.5 <td>Benzene</td> <td>ug/L</td> <td>50</td> <td>45.6</td> <td>91</td> <td>70-130</td> <td></td>	Benzene	ug/L	50	45.6	91	70-130	
Bromochloromethane     ug/L     50     46.4     93     70-130       Bromolchloromethane     ug/L     50     48.9     98     70-130       Bromolorm     ug/L     50     44.7     89     70-130     IK       Bromolorm     ug/L     50     36.3     73     70-130       Carbon tetrachloride     ug/L     50     47.4     95     70-130       Chlorobenzene     ug/L     50     37.8     76     70-130       Chloroberhane     ug/L     50     36.6     73     70-130       Chloroberhane     ug/L     50     36.6     73     70-130       Chloroberhane     ug/L     50     44.6     89     70-130       Chloroberhane     ug/L     50     44.6     89     70-130       Dibromochhane     ug/L     50     44.6     89     70-130       Dibromochhane     ug/L     50     46.5     93     70-130       Dibromochhane     ug/L     50     46.5     93	Bromobenzene	ug/L	50	45.5	91	70-130	
Bromodichloromethane     ug/L     50     48.9     98     70-130       Bromortm     ug/L     50     44.7     89     70-130     IK       Bromorethane     ug/L     50     44.7     89     70-130     IK       Carbon tetrachloride     ug/L     50     49.8     100     70-130       Chorothane     ug/L     50     37.8     76     70-130       Chlorothane     ug/L     50     37.8     70-130     70-130       Chlorothane     ug/L     50     44.6     89     70-130       cis-1,2-Dichloropropene     ug/L     50     51.4     103     70-130       Dibromochtomethane     ug/L     50     45.6     73     70-130       Dibromochtomethane     ug/L     50     45.6     93     70-130       Dibromochtomethane     ug/L     50     46.3     93     70-130       Dibromochtomethane     ug/L     50     46.3     93     70-130       Dibromochtomethane     ug/L	Bromochloromethane	ug/L	50	46.4	93	70-130	
Bromotorm     ug/L     50     44.7     89     70-130       Bromomethane     ug/L     50     36.3     73     70-130       Chlorobenzene     ug/L     50     47.4     95     70-130       Chlorobenzene     ug/L     50     47.4     95     70-130       Chlorobenzene     ug/L     50     45.1     90     70-130       Chloromethane     ug/L     50     36.6     73     70-130       Chloromethane     ug/L     50     51.4     103     70-130       Chloromethane     ug/L     50     51.4     103     70-130       Dibromomethane     ug/L     50     52.2     104     70-130       Dibromomethane     ug/L     50     46.5     93     70-130       Dibromomethane     ug/L     50     46.5     93     70-130       Dibromomethane     ug/L     50     46.5     93     70-130       Dibromomethane     ug/L     50     46.5     91     70-130 <td>Bromodichloromethane</td> <td>ug/L</td> <td>50</td> <td>48.9</td> <td>98</td> <td>70-130</td> <td></td>	Bromodichloromethane	ug/L	50	48.9	98	70-130	
Bromomethane     ug/L     50     36.3     73     70-130       Carbon tetrachloride     ug/L     50     49.8     100     70-130       Chlorobenzene     ug/L     50     37.8     76     70-130       Chloroothane     ug/L     50     37.8     76     70-130       Chloroothane     ug/L     50     46.1     90     70-130       Cis-1,2-Dichloroothane     ug/L     50     44.6     89     70-130       Cis-1,3-Dichloroothane     ug/L     50     51.4     103     70-130       Dibromochtoromethane     ug/L     50     49.9     100     70-130       Dibromochtoromethane     ug/L     50     46.5     93     70-130       Discoropyl ether     ug/L     50     46.5     93     70-130       Discoropyl ether     ug/L     50     46.5     93     70-130       Methyl-tert-butyl ether     ug/L     50     45.6     91     70-130       Methyl-tert-butyl ether     ug/L     50	Bromoform	ug/L	50	44.7	89	70-130	IK
Carbon tetrachloride     ug/L     50     49.8     100     70-130       Chlorobenzene     ug/L     50     47.4     95     70-130       Chlorothane     ug/L     50     47.4     95     70-130       Chlorothane     ug/L     50     45.1     90     70-130       Chlorothane     ug/L     50     36.6     73     70-130       cis-1.2-Dichloropthene     ug/L     50     51.4     103     70-130       cis-1.2-Dichloropthene     ug/L     50     51.4     103     70-130       Dibromothane     ug/L     50     52.2     104     70-130       Dibromothane     ug/L     50     46.5     93     70-130       Dishorophyl ether     ug/L     50     46.5     93     70-130       Dishorophyl ether     ug/L     50     45.6     91     70-130       Methylenzene     ug/L     50     45.7     91     70-130       Dishorophyl ether     ug/L     50     47.6	Bromomethane	ug/L	50	36.3	73	70-130	
Chlorobenzene     ug/L     50     47.4     95     70-130       Chloroferhane     ug/L     50     37.8     76     70-130       Chloroform     ug/L     50     36.6     73     70-130       Chloromethane     ug/L     50     36.6     73     70-130       cis-1,3-Dichloroptopene     ug/L     50     51.4     103     70-130       Dibromochloromethane     ug/L     50     52.2     104     70-130       Dibromomethane     ug/L     50     39.2     78     70-130       Dibromothloromethane     ug/L     50     46.5     93     70-130       Dibromothloromethane     ug/L     50     46.5     93     70-130       Dibromothloromethane     ug/L     50     46.5     93     70-130       Dibromothloromethane     ug/L     50     45.6     91     70-130       Methyl-tert-butyl ether     ug/L     50     47.7     95     70-130       Methylene Chloride     ug/L     50	Carbon tetrachloride	ug/L	50	49.8	100	70-130	
Chloroethane     ug/L     50     37.8     76     70-130       Chloroethane     ug/L     50     45.1     90     70-130       Chloroethane     ug/L     50     44.6     89     70-130       cis-1,2-Dichloroethene     ug/L     50     51.4     103     70-130       Dibromoethane     ug/L     50     52.2     104     70-130       Dibromoethane     ug/L     50     39.2     78     70-130       Dibromoethane     ug/L     50     46.5     93     70-130       Dibromoethane     ug/L     50     46.5     93     70-130       Disopropyl ether     ug/L     50     46.5     93     70-130       Hexachloro-1,3-butadiene     ug/L     50     45.6     91     70-130       Methyl-terb-utyl ether     ug/L     50     45.7     91     70-130       Pisopropyltoluene     ug/L     50     47.6     95     70-130       Pisopropyltoluene     ug/L     50     47.7	Chlorobenzene	ug/L	50	47.4	95	70-130	
Chloroform     ug/L     50     45.1     90     70-130       Chloromethane     ug/L     50     36.6     73     70-130       cis-1,2-Dichloroptopene     ug/L     50     51.4     103     70-130       cis-1,3-Dichloroptopene     ug/L     50     51.4     103     70-130       Dibromochloromethane     ug/L     50     49.9     100     70-130       Dibromothloromethane     ug/L     50     46.5     93     70-130       Disopropyl ether     ug/L     50     46.5     93     70-130       Hexachloro-1,3-butadiene     ug/L     50     46.5     93     70-130       Methylenc-Chloride     ug/L     50     46.5     93     70-130       Methylenc-Chloride     ug/L     50     45.6     91     70-130       Methylenc-Chloride     ug/L     50     47.7     95     70-130       Naphthalene     ug/L     50     47.6     95     70-130       Styrene     ug/L     50 <td< td=""><td>Chloroethane</td><td>ug/L</td><td>50</td><td>37.8</td><td>76</td><td>70-130</td><td></td></td<>	Chloroethane	ug/L	50	37.8	76	70-130	
Chloromethane   ug/L   50   36.6   73   70-130     cis-1,2-Dichloroethene   ug/L   50   44.6   89   70-130     cis-1,3-Dichloropropene   ug/L   50   51.4   103   70-130     Dibromochloromethane   ug/L   50   49.9   100   70-130     Dichorodfluoromethane   ug/L   50   49.9   100   70-130     Disopropyl ether   ug/L   50   46.3   93   70-130     Ethylbenzene   ug/L   50   46.3   93   70-130     Methyl-terbutyl ether   ug/L   50   46.3   93   70-130     Methyl-terbutyl ether   ug/L   50   45.6   91   70-130     Methyl-terbutyl ether   ug/L   50   45.5   89   70-130     Methylene Chloride   ug/L   50   47.5   89   70-130     versene   ug/L   50   47.5   95   70-130     p-lsopropyltoluene   ug/L   50   47.5   95   70-130     Styrene   ug/L   50	Chloroform	ug/L	50	45.1	90	70-130	
cis-1,2-Dichloropene   ug/L   50   44.6   89   70-130     vis-1,3-Dichloropropene   ug/L   50   51.4   103   70-130     Dibromochloromethane   ug/L   50   52.2   104   70-130     Dibromomethane   ug/L   50   49.9   100   70-130     Dichlorodifluoromethane   ug/L   50   46.5   93   70-130     Disopropyl ether   ug/L   50   46.5   93   70-130     Hexachloro-1,3-butadiene   ug/L   50   45.6   91   70-130     m&p-Xylene   ug/L   50   45.7   91   70-130     Methyl-tert-butyl ether   ug/L   50   45.7   91   70-130     Naphthalene   ug/L   50   47.6   95   70-130     o-Xylene   ug/L   50   47.7   95   70-130     p-lsopropyltoluene   ug/L   50   47.5   95   70-130     tetrashloroethene   ug/L   50   47.5   95   70-130     Tottashloroethene   ug/L   50<	Chloromethane	ug/L	50	36.6	73	70-130	
cis-1,3-Dichloropropene     ug/L     50     51.4     103     70-130       Dibromochloromethane     ug/L     50     52.2     104     70-130       Dibromomethane     ug/L     50     39.2     78     70-130       Dibromomethane     ug/L     50     39.2     78     70-130       Disopropyl ether     ug/L     50     46.5     93     70-130       Ethylbenzene     ug/L     50     46.6     91     70-130       Methyl-tert-butyl ether     ug/L     50     45.6     91     70-130       Methyl-tert-butyl ether     ug/L     50     45.7     91     70-130       Methylene Chloride     ug/L     50     47.6     95     70-130       Naphthalene     ug/L     50     47.5     95     70-130       o-Xylene     ug/L     50     47.5     95     70-130       p-lsopropyloluene     ug/L     50     47.4     95     70-130       Totachorothene     ug/L     50     45.4 <td>cis-1,2-Dichloroethene</td> <td>ug/L</td> <td>50</td> <td>44.6</td> <td>89</td> <td>70-130</td> <td></td>	cis-1,2-Dichloroethene	ug/L	50	44.6	89	70-130	
Dibromochloromethane     ug/L     50     52.2     104     70-130       Dibromomethane     ug/L     50     49.9     100     70-130       Dichlorodifluoromethane     ug/L     50     49.9     78     70-130       Disopropyl ether     ug/L     50     46.5     93     70-130       Ethylbenzene     ug/L     50     46.6     91     70-130       Mexachloro-1,3-butadiene     ug/L     50     45.6     91     70-130       Methyl-tert-butyl ether     ug/L     50     45.7     91     70-130       Methyl-tert-butyl ether     ug/L     50     47.6     95     70-130       Naphthalene     ug/L     50     47.6     95     70-130       o-Xylene     ug/L     50     47.5     95     70-130       p-Isopropyltoluene     ug/L     50     47.5     95     70-130       ttrans-1,2-Dichloroethene     ug/L     50     47.4     95     70-130       ttrans-1,2-Dichloroethene     ug/L <td< td=""><td>cis-1,3-Dichloropropene</td><td>ug/L</td><td>50</td><td>51.4</td><td>103</td><td>70-130</td><td></td></td<>	cis-1,3-Dichloropropene	ug/L	50	51.4	103	70-130	
Dibromomethane     ug/L     50     49.9     100     70-130       Dichlorodifluoromethane     ug/L     50     39.2     78     70-130       Disopropyl ether     ug/L     50     46.5     93     70-130       Ethylbenzene     ug/L     50     46.6     91     70-130       Hexachloro-1,3-butadiene     ug/L     50     45.6     91     70-130       Methyl-tert-butyl ether     ug/L     50     45.7     91     70-130       Methyl-tert-butyl ether     ug/L     50     45.7     91     70-130       Naphthalene     ug/L     50     47.6     95     70-130       Naphthalene     ug/L     50     47.7     95     70-130       o-Xylene     ug/L     50     47.7     95     70-130       styrene     ug/L     50     47.4     95     70-130       Tolanee     ug/L     50     45.4     91     70-130       Tolanee     ug/L     50     45.4     91	Dibromochloromethane	ug/L	50	52.2	104	70-130	
Dichlorodifluoromethane     ug/L     50     39.2     78     70-130       Diisopropyl ether     ug/L     50     46.5     93     70-130       Ethylbenzene     ug/L     50     46.3     93     70-130       Hexachloro-1,3-butadiene     ug/L     100     92.8     93     70-130       Methyl-tert-butyl ether     ug/L     50     45.7     91     70-130       Methyl-tert-butyl ether     ug/L     50     45.7     91     70-130       Naphthalene     ug/L     50     47.6     95     70-130       Naphthalene     ug/L     50     47.7     95     70-130       o-Xylene     ug/L     50     47.7     95     70-130       p-lsopropyltoluene     ug/L     50     47.7     95     70-130       trans-1,2-Dichloroethene     ug/L     50     45.6     91     70-130       trans-1,3-Dichloropropene     ug/L     50     45.4     91     70-130       trans-1,3-Dichloroethene     ug/L <td< td=""><td>Dibromomethane</td><td>ug/L</td><td>50</td><td>49.9</td><td>100</td><td>70-130</td><td></td></td<>	Dibromomethane	ug/L	50	49.9	100	70-130	
Disopropyl ether     ug/L     50     46.5     93     70-130       Ethylbenzene     ug/L     50     46.3     93     70-130       Hexachlorc-1,3-butadiene     ug/L     50     45.6     91     70-130       m&p-Xylene     ug/L     100     92.8     93     70-130       Methyl-tert-butyl ether     ug/L     50     45.7     91     70-130       Methyl-tert-butyl ether     ug/L     50     47.6     95     70-130       Naphthalene     ug/L     50     47.7     95     70-130       o-Xylene     ug/L     50     47.7     95     70-130       styrene     ug/L     50     47.7     95     70-130       Styrene     ug/L     50     47.7     95     70-130       Toluene     ug/L     50     47.4     95     70-130       trans-1,2-Dichloroethene     ug/L     50     45.4     91     70-130       trans-1,2-Dichloropthane     ug/L     50     39.7     79 </td <td>Dichlorodifluoromethane</td> <td>ug/L</td> <td>50</td> <td>39.2</td> <td>78</td> <td>70-130</td> <td></td>	Dichlorodifluoromethane	ug/L	50	39.2	78	70-130	
Ethylbenzene     ug/L     50     46.3     93     70-130       Hexachloro-1,3-butadiene     ug/L     50     45.6     91     70-130       m&p-Xylene     ug/L     100     92.8     93     70-130       Methyl-tert-butyl ether     ug/L     50     45.7     91     70-130       Methyl-tert-butyl ether     ug/L     50     45.7     89     70-130       Naphthalene     ug/L     50     47.6     95     70-130       o-Xylene     ug/L     50     47.7     95     70-130       o-Xylene     ug/L     50     47.7     95     70-130       styrene     ug/L     50     47.7     95     70-130       Styrene     ug/L     50     47.4     95     70-130       Toluene     ug/L     50     45.4     91     70-130       trans-1,3-Dichloroptopene     ug/L     50     30.3     101     70-130       Trichlorofluoromethane     ug/L     50     37.3     75	Diisopropyl ether	ug/L	50	46.5	93	70-130	
Hexachloro-1,3-butadiene   ug/L   50   45.6   91   70-130     m&p-Xylene   ug/L   100   92.8   93   70-130     Methyl-tert-butyl ether   ug/L   50   45.7   91   70-130     Methylene Chloride   ug/L   50   44.5   89   70-130     Naphthalene   ug/L   50   47.6   95   70-130     o-Xylene   ug/L   50   47.7   95   70-130     p-lsopropyltoluene   ug/L   50   47.7   95   70-130     p-lsopropyltoluene   ug/L   50   47.7   95   70-130     Styrene   ug/L   50   47.7   95   70-130     Tetrachloroethene   ug/L   50   47.4   95   70-130     trans-1,2-Dichloroptopene   ug/L   50   45.6   91   70-130     trans-1,3-Dichloropropene   ug/L   50   45.7   97   70-130     Trichlorofthene   ug/L   50   39.7   79   70-130     Vinyl acetate   ug/L   100 <t< td=""><td>Ethylbenzene</td><td>ug/L</td><td>50</td><td>46.3</td><td>93</td><td>70-130</td><td></td></t<>	Ethylbenzene	ug/L	50	46.3	93	70-130	
m&p-Xylene     ug/L     100     92.8     93     70-130       Methyl-tert-butyl ether     ug/L     50     45.7     91     70-130       Methylene Chloride     ug/L     50     44.5     89     70-130       Naphthalene     ug/L     50     47.6     95     70-130       o-Xylene     ug/L     50     47.7     95     70-130       p-lsopropyltoluene     ug/L     50     47.7     95     70-130       Styrene     ug/L     50     47.7     95     70-130       Tetrachloroethene     ug/L     50     45.6     91     70-130       Toluene     ug/L     50     45.6     91     70-130       trans-1,2-Dichloroethene     ug/L     50     45.4     91     70-130       trans-1,3-Dichloropropene     ug/L     50     48.7     97     70-130       Trichloroftuoromethane     ug/L     50     39.7     79     70-130       Vinyl acetate     ug/L     100     117     <	Hexachloro-1,3-butadiene	ug/L	50	45.6	91	70-130	
Methyl-tert-butyl ether     ug/L     50     45.7     91     70-130       Methylene Chloride     ug/L     50     44.5     89     70-130       Naphthalene     ug/L     50     47.6     95     70-130       o-Xylene     ug/L     50     47.7     95     70-130       p-lsopropyltoluene     ug/L     50     47.7     95     70-130       Styrene     ug/L     50     47.7     95     70-130       Tetrachloroethene     ug/L     50     47.7     95     70-130       Toluene     ug/L     50     47.4     95     70-130       Trans-1,2-Dichloroethene     ug/L     50     45.4     91     70-130       trans-1,3-Dichloropropene     ug/L     50     50.3     101     70-130       Trichloroethene     ug/L     50     39.7     79     70-130       Trichlorofluoromethane     ug/L     50     37.3     75     70-130       Vinyl acetate     ug/L     100     117	m&p-Xylene	ug/L	100	92.8	93	70-130	
Methylene Chloride     ug/L     50     44.5     89     70-130       Naphthalene     ug/L     50     47.6     95     70-130       o-Xylene     ug/L     50     47.7     95     70-130       p-lsopropyltoluene     ug/L     50     47.7     95     70-130       Styrene     ug/L     50     47.7     95     70-130       Tetrachloroethene     ug/L     50     47.4     95     70-130       Toluene     ug/L     50     47.4     95     70-130       trans-1,2-Dichloroethene     ug/L     50     45.6     91     70-130       trans-1,3-Dichloropropene     ug/L     50     45.4     91     70-130       trans-1,3-Dichloropropene     ug/L     50     50.3     101     70-130       Trichloroethene     ug/L     50     39.7     79     70-130       Vinyl acetate     ug/L     50     37.3     75     70-130       Vinyl chloride     ug/L     150     140 <t< td=""><td>Methyl-tert-butyl ether</td><td>ug/L</td><td>50</td><td>45.7</td><td>91</td><td>70-130</td><td></td></t<>	Methyl-tert-butyl ether	ug/L	50	45.7	91	70-130	
Naphthalene     ug/L     50     47.6     95     70-130       o-Xylene     ug/L     50     47.7     95     70-130       p-lsopropyltoluene     ug/L     50     47.5     95     70-130       Styrene     ug/L     50     47.7     95     70-130       Tetrachloroethene     ug/L     50     47.7     95     70-130       Tetrachloroethene     ug/L     50     45.6     91     70-130       Toluene     ug/L     50     45.4     91     70-130       trans-1,2-Dichloroethene     ug/L     50     45.4     91     70-130       trans-1,3-Dichloropropene     ug/L     50     48.7     97     70-130       Trichloroethene     ug/L     50     39.7     79     70-130       Trichloroflucromethane     ug/L     50     37.3     75     70-130       Vinyl acetate     ug/L     50     37.3     75     70-130       Vinyl chloride     ug/L     50     37.3     75<	Methylene Chloride	ug/L	50	44.5	89	70-130	
o-Xylene     ug/L     50     47.7     95     70-130       p-lsopropyltoluene     ug/L     50     47.5     95     70-130       Styrene     ug/L     50     47.7     95     70-130       Tetrachloroethene     ug/L     50     47.4     95     70-130       Toluene     ug/L     50     47.4     95     70-130       trans-1,2-Dichloroethene     ug/L     50     45.4     91     70-130       trans-1,3-Dichloropropene     ug/L     50     50.3     101     70-130       Trichloroethene     ug/L     50     39.7     79     70-130       Trichlorofluoromethane     ug/L     50     39.7     79     70-130       Vinyl acetate     ug/L     100     117     117     70-130       Vinyl chloride     ug/L     50     37.3     75     70-130       Vinyl chloride     ug/L     150     140     94     70-130       1,2-Dichloroethane-d4 (S)     %     99     70-130	Naphthalene	ug/L	50	47.6	95	70-130	
p-Isopropyltoluene     ug/L     50     47.5     95     70-130       Styrene     ug/L     50     47.7     95     70-130       Tetrachloroethene     ug/L     50     45.6     91     70-130       Toluene     ug/L     50     47.4     95     70-130       trans-1,2-Dichloroethene     ug/L     50     45.4     91     70-130       trans-1,3-Dichloroptopene     ug/L     50     50.3     101     70-130       Trichloroethene     ug/L     50     39.7     79     70-130       Vinyl acetate     ug/L     100     117     117     70-130       Vinyl chloride     ug/L     50     37.3     75     70-130       Vinyl chloride     ug/L     150     140     94     70-130       Xylene (Total)     ug/L     150     140     94     70-130       1,2-Dichloroethane-d4 (S)     %     99     70-130     99     70-130       4-Bromofluorobenzene (S)     %     99     70-130 </td <td>o-Xylene</td> <td>ug/L</td> <td>50</td> <td>47.7</td> <td>95</td> <td>70-130</td> <td></td>	o-Xylene	ug/L	50	47.7	95	70-130	
Styrene     ug/L     50     47.7     95     70-130       Tetrachloroethene     ug/L     50     45.6     91     70-130       Toluene     ug/L     50     47.4     95     70-130       trans-1,2-Dichloroethene     ug/L     50     45.4     91     70-130       trans-1,3-Dichloropropene     ug/L     50     50.3     101     70-130       Trichloroethene     ug/L     50     48.7     97     70-130       Trichlorofluoromethane     ug/L     50     39.7     79     70-130       Vinyl acetate     ug/L     100     117     117     70-130       Vinyl chloride     ug/L     50     37.3     75     70-130       Vinyl chloride     ug/L     150     140     94     70-130       Xylene (Total)     ug/L     150     140     94     70-130       1,2-Dichloroethane-d4 (S)     %     99     70-130     99     70-130       4-Bromofluorobenzene (S)     %     99     70-1	p-Isopropyltoluene	ug/L	50	47.5	95	70-130	
Tetrachloroethene     ug/L     50     45.6     91     70-130       Toluene     ug/L     50     47.4     95     70-130       trans-1,2-Dichloroethene     ug/L     50     45.4     91     70-130       trans-1,3-Dichloropropene     ug/L     50     50.3     101     70-130       Trichloroethene     ug/L     50     48.7     97     70-130       Trichlorofluoromethane     ug/L     50     39.7     79     70-130       Vinyl acetate     ug/L     100     117     117     70-130       Vinyl chloride     ug/L     50     37.3     75     70-130       Vinyl chloride     ug/L     50     37.3     75     70-130       Vinyl chloride     ug/L     150     140     94     70-130       Xylene (Total)     ug/L     150     140     94     70-130       1,2-Dichloroethane-d4 (S)     %     99     70-130     99     70-130       4-Bromofluorobenzene (S)     %     99     <	Styrene	ug/L	50	47.7	95	70-130	
Toluene     ug/L     50     47.4     95     70-130       trans-1,2-Dichloroethene     ug/L     50     45.4     91     70-130       trans-1,3-Dichloropropene     ug/L     50     50.3     101     70-130       Trichloroethene     ug/L     50     48.7     97     70-130       Trichlorofluoromethane     ug/L     50     39.7     79     70-130       Vinyl acetate     ug/L     100     117     117     70-130       Vinyl chloride     ug/L     50     37.3     75     70-130       Xylene (Total)     ug/L     150     140     94     70-130       1,2-Dichloroethane-d4 (S)     %     100     70-130     70-130       4-Bromofluorobenzene (S)     %     99     70-130       Toluene-d8 (S)     %     99     70-130	Tetrachloroethene	ug/L	50	45.6	91	70-130	
trans-1,2-Dichloroethene   ug/L   50   45.4   91   70-130     trans-1,3-Dichloropropene   ug/L   50   50.3   101   70-130     Trichloroethene   ug/L   50   48.7   97   70-130     Trichlorofluoromethane   ug/L   50   39.7   79   70-130     Vinyl acetate   ug/L   100   117   117   70-130     Vinyl chloride   ug/L   50   37.3   75   70-130     Vinyl chloride   ug/L   50   37.3   75   70-130     Xylene (Total)   ug/L   150   140   94   70-130     1,2-Dichloroethane-d4 (S)   %   100   70-130   70-130     4-Bromofluorobenzene (S)   %   99   70-130     Toluene-d8 (S)   %   99   70-130	Toluene	ug/L	50	47.4	95	70-130	
trans-1,3-Dichloropropene   ug/L   50   50.3   101   70-130     Trichloroethene   ug/L   50   48.7   97   70-130     Trichlorofluoromethane   ug/L   50   39.7   79   70-130     Vinyl acetate   ug/L   100   117   117   70-130     Vinyl chloride   ug/L   50   37.3   75   70-130     Xylene (Total)   ug/L   150   140   94   70-130     1,2-Dichloroethane-d4 (S)   %   100   70-130   70-130     4-Bromofluorobenzene (S)   %   99   70-130     Toluene-d8 (S)   %   99   70-130	trans-1,2-Dichloroethene	ug/L	50	45.4	91	70-130	
Trichloroethene     ug/L     50     48.7     97     70-130       Trichlorofluoromethane     ug/L     50     39.7     79     70-130       Vinyl acetate     ug/L     100     117     117     70-130       Vinyl acetate     ug/L     50     37.3     75     70-130       Vinyl chloride     ug/L     50     37.3     75     70-130       Xylene (Total)     ug/L     150     140     94     70-130       1,2-Dichloroethane-d4 (S)     %     100     70-130       4-Bromofluorobenzene (S)     %     99     70-130       Toluene-d8 (S)     %     99     70-130	trans-1,3-Dichloropropene	ug/L	50	50.3	101	70-130	
Trichlorofluoromethane     ug/L     50     39.7     79     70-130       Vinyl acetate     ug/L     100     117     117     70-130       Vinyl chloride     ug/L     50     37.3     75     70-130       Xylene (Total)     ug/L     150     140     94     70-130       1,2-Dichloroethane-d4 (S)     %     100     70-130       4-Bromofluorobenzene (S)     %     99     70-130       Toluene-d8 (S)     %     99     70-130	Trichloroethene	ug/L	50	48.7	97	70-130	
Vinyl acetate     ug/L     100     117     117     70-130       Vinyl chloride     ug/L     50     37.3     75     70-130       Xylene (Total)     ug/L     150     140     94     70-130       1,2-Dichloroethane-d4 (S)     %     100     70-130       4-Bromofluorobenzene (S)     %     99     70-130       Toluene-d8 (S)     %     99     70-130	Trichlorofluoromethane	ug/L	50	39.7	79	70-130	
Vinyl chloride     ug/L     50     37.3     75     70-130       Xylene (Total)     ug/L     150     140     94     70-130       1,2-Dichloroethane-d4 (S)     %     100     70-130       4-Bromofluorobenzene (S)     %     99     70-130       Toluene-d8 (S)     %     99     70-130	Vinyl acetate	ug/L	100	117	117	70-130	
Xylene (Total) ug/L 150 140 94 70-130   1,2-Dichloroethane-d4 (S) % 100 70-130   4-Bromofluorobenzene (S) % 99 70-130   Toluene-d8 (S) % 99 70-130	Vinyl chloride	ug/L	50	37.3	75	70-130	
1,2-Dichloroethane-d4 (S) % 100 70-130   4-Bromofluorobenzene (S) % 99 70-130   Toluene-d8 (S) % 99 70-130	Xylene (Total)	ug/L	150	140	94	70-130	
4-Bromofluorobenzene (S) % 99 70-130 Toluene-d8 (S) % 99 70-130	1,2-Dichloroethane-d4 (S)	%			100	70-130	
Toluene-d8 (S) % 99 70-130	4-Bromofluorobenzene (S)	%			99	70-130	
	Toluene-d8 (S)	%			99	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528353

MATRIX SPIKE & MATRIX SP	PIKE DUP	LICATE: 3204	049		3204050							
			MS	MSD								
		92527658007	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1,2-Tetrachloroethane	ug/L	ND	20	20	20.8	20.8	104	104	73-134	0	30	
1,1,1-Trichloroethane	ug/L	ND	20	20	24.6	23.2	123	116	82-143	6	30	
1,1,2,2-Tetrachloroethane	ug/L	ND	20	20	20.8	21.2	104	106	70-136	2	30	
1,1,2-Trichloroethane	ug/L	ND	20	20	22.2	22.1	111	110	70-135	1	30	
1,1-Dichloroethane	ug/L	ND	20	20	23.0	21.6	115	108	70-139	6	30	
1,1-Dichloroethene	ug/L	ND	20	20	25.3	23.1	127	115	70-154	9	30	
1,1-Dichloropropene	ug/L	ND	20	20	23.1	23.6	116	118	70-149	2	30	
1,2,3-Trichlorobenzene	ug/L	ND	20	20	20.4	20.7	102	104	70-135	1	30	
1,2,3-Trichloropropane	ug/L	ND	20	20	22.1	21.7	110	109	71-137	2	30	
1,2,4-Trichlorobenzene	ug/L	ND	20	20	20.4	22.1	102	110	73-140	8	30	
1,2-Dibromo-3- chloropropane	ug/L	ND	20	20	19.4	19.0	97	95	65-134	2	30	
1,2-Dichlorobenzene	ug/L	ND	20	20	20.4	20.0	102	100	70-133	2	30	
1,2-Dichloroethane	ug/L	ND	20	20	23.9	22.9	120	114	70-137	4	30	
1,2-Dichloropropane	ug/L	ND	20	20	22.6	21.2	113	106	70-140	6	30	
1,3-Dichlorobenzene	ug/L	ND	20	20	19.8	20.3	99	102	70-135	3	30	
1,3-Dichloropropane	ug/L	ND	20	20	21.4	20.6	107	103	70-143	4	30	
1,4-Dichlorobenzene	ug/L	ND	20	20	19.7	20.6	99	103	70-133	4	30	
2,2-Dichloropropane	ug/L	ND	20	20	23.8	23.6	119	118	61-148	1	30	
2-Butanone (MEK)	ug/L	ND	40	40	48.0	45.9	120	115	60-139	4	30	
2-Chlorotoluene	ug/L	ND	20	20	20.3	20.1	101	101	70-144	1	30	
2-Hexanone	ug/L	ND	40	40	44.5	43.0	111	108	65-138	3	30	
4-Chlorotoluene	ug/L	ND	20	20	19.6	20.0	98	100	70-137	2	30	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	40	40	45.5	43.6	114	109	65-135	4	30	
Acetone	ug/L	ND	40	40	47.3	45.7	118	114	60-148	3	30	
Benzene	ug/L	ND	20	20	22.0	21.1	110	105	70-151	4	30	
Bromobenzene	ug/L	ND	20	20	19.5	19.3	98	97	70-136	1	30	
Bromochloromethane	ug/L	ND	20	20	23.8	22.4	119	112	70-141	6	30	
Bromodichloromethane	ug/L	ND	20	20	22.0	21.0	110	105	70-138	5	30	
Bromoform	ug/L	ND	20	20	17.3	17.6	87	88	63-130	1	30	IK
Bromomethane	ug/L	ND	20	20	20.1	19.1	100	96	15-152	5	30	
Carbon tetrachloride	ug/L	ND	20	20	24.7	23.2	124	116	70-143	6	30	
Chlorobenzene	ug/L	ND	20	20	21.4	20.6	107	103	70-138	3	30	
Chloroethane	ug/L	ND	20	20	23.7	22.5	118	112	52-163	5	30	
Chloroform	ug/L	ND	20	20	23.0	22.5	115	113	70-139	2	30	
Chloromethane	ug/L	ND	20	20	19.0	18.4	95	92	41-139	3	30	
cis-1,2-Dichloroethene	ug/L	ND	20	20	22.4	21.4	112	107	70-141	5	30	
cis-1,3-Dichloropropene	ug/L	ND	20	20	22.4	21.6	112	108	70-137	4	30	
Dibromochloromethane	ug/L	ND	20	20	21.9	21.3	110	107	70-134	3	30	
Dibromomethane	ug/L	ND	20	20	23.2	22.7	116	113	70-138	2	30	
Dichlorodifluoromethane	ug/L	ND	20	20	22.2	20.9	111	104	47-155	6	30	
Diisopropyl ether	ug/L	ND	20	20	21.6	20.5	108	103	63-144	5	30	
Ethylbenzene	ug/L	ND	20	20	21.2	20.8	106	104	66-153	2	30	
Hexachloro-1,3-butadiene	ug/L	ND	20	20	20.5	20.5	103	103	65-149	0	30	
m&p-Xylene	ug/L	ND	40	40	41.8	41.5	105	104	69-152	1	30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528353

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3204	049		3204050	1						
			MS	MSD								
		92527658007	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Methyl-tert-butyl ether	ug/L	ND	20	20	21.7	20.5	108	102	54-156	6	30	
Methylene Chloride	ug/L	ND	20	20	22.4	21.6	112	108	42-159	4	30	
Naphthalene	ug/L	ND	20	20	18.5	19.7	93	98	61-148	6	30	
o-Xylene	ug/L	ND	20	20	21.1	20.9	105	105	70-148	1	30	
p-Isopropyltoluene	ug/L	ND	20	20	21.7	21.2	108	106	70-146	2	30	
Styrene	ug/L	ND	20	20	20.5	20.9	102	104	70-135	2	30	
Tetrachloroethene	ug/L	ND	20	20	21.7	21.1	109	105	59-143	3	30	
Toluene	ug/L	ND	20	20	22.2	21.3	111	106	59-148	4	30	
trans-1,2-Dichloroethene	ug/L	ND	20	20	23.7	22.7	118	114	70-146	4	30	
trans-1,3-Dichloropropene	ug/L	ND	20	20	21.5	20.9	108	105	70-135	3	30	
Trichloroethene	ug/L	ND	20	20	23.3	22.1	116	110	70-147	5	30	
Trichlorofluoromethane	ug/L	ND	20	20	23.8	22.3	119	112	70-148	6	30	
Vinyl acetate	ug/L	ND	40	40	52.7	50.2	132	126	49-151	5	30	
Vinyl chloride	ug/L	ND	20	20	20.2	19.6	101	98	70-156	3	30	
Xylene (Total)	ug/L	ND	60	60	62.9	62.4	105	104	63-158	1	30	
1,2-Dichloroethane-d4 (S)	%						104	105	70-130			
4-Bromofluorobenzene (S)	%						100	100	70-130			
Toluene-d8 (S)	%						100	98	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528353

QC Batch:	607623	Analysis Method:	EPA 8260D
QC Batch Method:	EPA 5035A/5030B	Analysis Description:	8260D 5035A 5030B SC
		Laboratory:	Pace Analytical Services - Charlotte
Associated Lab Samp	bles: 92528353002, 92528353003, 92	2528353004	
METHOD BLANK: 3	3200879	Matrix: Solid	

Associated Lab Samples: 92528353002, 92528353003, 92528353004

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	ND	5.0	1.9	03/18/21 17:44	
1,1,1-Trichloroethane	ug/kg	ND	5.0	2.6	03/18/21 17:44	
1,1,2,2-Tetrachloroethane	ug/kg	ND	5.0	1.3	03/18/21 17:44	
1,1,2-Trichloroethane	ug/kg	ND	5.0	1.7	03/18/21 17:44	
1,1-Dichloroethane	ug/kg	ND	5.0	2.1	03/18/21 17:44	
1,1-Dichloroethene	ug/kg	ND	5.0	2.1	03/18/21 17:44	
1,1-Dichloropropene	ug/kg	ND	5.0	2.4	03/18/21 17:44	
1,2,3-Trichlorobenzene	ug/kg	ND	5.0	4.0	03/18/21 17:44	
1,2,3-Trichloropropane	ug/kg	ND	5.0	2.5	03/18/21 17:44	
1,2,4-Trichlorobenzene	ug/kg	ND	5.0	4.2	03/18/21 17:44	
1,2,4-Trimethylbenzene	ug/kg	ND	5.0	1.4	03/18/21 17:44	
1,2-Dibromo-3-chloropropane	ug/kg	ND	5.0	1.9	03/18/21 17:44	
1,2-Dibromoethane (EDB)	ug/kg	ND	5.0	2.2	03/18/21 17:44	
1,2-Dichlorobenzene	ug/kg	ND	5.0	1.8	03/18/21 17:44	
1,2-Dichloroethane	ug/kg	ND	5.0	3.3	03/18/21 17:44	
1,2-Dichloropropane	ug/kg	ND	5.0	1.5	03/18/21 17:44	
1,3,5-Trimethylbenzene	ug/kg	ND	5.0	1.7	03/18/21 17:44	
1,3-Dichlorobenzene	ug/kg	ND	5.0	1.6	03/18/21 17:44	
1,3-Dichloropropane	ug/kg	ND	5.0	1.6	03/18/21 17:44	
1,4-Dichlorobenzene	ug/kg	ND	5.0	1.3	03/18/21 17:44	
2,2-Dichloropropane	ug/kg	ND	5.0	1.6	03/18/21 17:44	
2-Butanone (MEK)	ug/kg	ND	100	24.0	03/18/21 17:44	
2-Chlorotoluene	ug/kg	ND	5.0	1.8	03/18/21 17:44	
2-Hexanone	ug/kg	ND	50.0	4.8	03/18/21 17:44	
4-Chlorotoluene	ug/kg	ND	5.0	0.88	03/18/21 17:44	
4-Methyl-2-pentanone (MIBK)	ug/kg	ND	50.0	4.8	03/18/21 17:44	
Acetone	ug/kg	ND	100	32.1	03/18/21 17:44	
Benzene	ug/kg	ND	5.0	2.0	03/18/21 17:44	
Bromobenzene	ug/kg	ND	5.0	1.6	03/18/21 17:44	
Bromochloromethane	ug/kg	ND	5.0	1.5	03/18/21 17:44	
Bromodichloromethane	ug/kg	ND	5.0	1.9	03/18/21 17:44	
Bromoform	ug/kg	ND	5.0	1.8	03/18/21 17:44	
Bromomethane	ug/kg	ND	10.0	7.9	03/18/21 17:44	IH,IK,v1
Carbon tetrachloride	ug/kg	ND	5.0	1.9	03/18/21 17:44	
Chlorobenzene	ug/kg	ND	5.0	0.96	03/18/21 17:44	
Chloroethane	ug/kg	ND	10.0	3.9	03/18/21 17:44	
Chloroform	ug/kg	ND	5.0	3.0	03/18/21 17:44	
Chloromethane	ug/kg	ND	10.0	4.2	03/18/21 17:44	
cis-1,2-Dichloroethene	ug/kg	ND	5.0	1.7	03/18/21 17:44	
cis-1,3-Dichloropropene	ug/kg	ND	5.0	1.4	03/18/21 17:44	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528353

METHOD BLANK: 3200879		Matrix:	Solid			
Associated Lab Samples: 925283	53002, 92528353003	8, 92528353004				
		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Dibromochloromethane	ug/kg	ND	5.0	2.8	03/18/21 17:44	
Dibromomethane	ug/kg	ND	5.0	1.1	03/18/21 17:44	
Dichlorodifluoromethane	ug/kg	ND	10.0	2.2	03/18/21 17:44	
Diisopropyl ether	ug/kg	ND	5.0	1.4	03/18/21 17:44	
Ethylbenzene	ug/kg	ND	5.0	2.3	03/18/21 17:44	
Hexachloro-1,3-butadiene	ug/kg	ND	10.0	8.2	03/18/21 17:44	IK
Isopropylbenzene (Cumene)	ug/kg	ND	5.0	1.7	03/18/21 17:44	
m&p-Xylene	ug/kg	ND	10.0	3.4	03/18/21 17:44	
Methyl-tert-butyl ether	ug/kg	ND	5.0	1.9	03/18/21 17:44	
Methylene Chloride	ug/kg	ND	20.0	13.7	03/18/21 17:44	
n-Butylbenzene	ug/kg	ND	5.0	2.4	03/18/21 17:44	
n-Propylbenzene	ug/kg	ND	5.0	1.8	03/18/21 17:44	
Naphthalene	ug/kg	ND	5.0	2.6	03/18/21 17:44	
o-Xylene	ug/kg	ND	5.0	2.2	03/18/21 17:44	
p-Isopropyltoluene	ug/kg	ND	5.0	2.5	03/18/21 17:44	
sec-Butylbenzene	ug/kg	ND	5.0	2.2	03/18/21 17:44	
Styrene	ug/kg	ND	5.0	1.3	03/18/21 17:44	
tert-Butylbenzene	ug/kg	ND	5.0	1.8	03/18/21 17:44	v2
Tetrachloroethene	ug/kg	ND	5.0	1.6	03/18/21 17:44	
Toluene	ug/kg	ND	5.0	1.4	03/18/21 17:44	
trans-1,2-Dichloroethene	ug/kg	ND	5.0	1.8	03/18/21 17:44	
trans-1,3-Dichloropropene	ug/kg	ND	5.0	1.7	03/18/21 17:44	
Trichloroethene	ug/kg	ND	5.0	1.3	03/18/21 17:44	
Trichlorofluoromethane	ug/kg	ND	5.0	2.8	03/18/21 17:44	
Vinyl acetate	ug/kg	ND	50.0	3.6	03/18/21 17:44	
Vinyl chloride	ug/kg	ND	10.0	2.5	03/18/21 17:44	
Xylene (Total)	ug/kg	ND	10.0	2.8	03/18/21 17:44	
1,2-Dichloroethane-d4 (S)	%	112	70-130		03/18/21 17:44	
4-Bromofluorobenzene (S)	%	92	69-134		03/18/21 17:44	
Toluene-d8 (S)	%	101	70-130		03/18/21 17:44	

#### LABORATORY CONTROL SAMPLE: 3200880

Demonster	11-2-	Spike	LCS	LCS	% Rec	0
Parameter		Conc	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	1250	1280	102	70-130	
1,1,1-Trichloroethane	ug/kg	1250	1180	95	70-130	
1,1,2,2-Tetrachloroethane	ug/kg	1250	1280	102	70-130	
1,1,2-Trichloroethane	ug/kg	1250	1310	105	70-130	
1,1-Dichloroethane	ug/kg	1250	1200	96	70-130	
1,1-Dichloroethene	ug/kg	1250	1240	99	70-130	
1,1-Dichloropropene	ug/kg	1250	1200	96	70-130	
1,2,3-Trichlorobenzene	ug/kg	1250	1240	99	65-130	
1,2,3-Trichloropropane	ug/kg	1250	1280	102	70-130	
1,2,4-Trichlorobenzene	ug/kg	1250	1290	103	68-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528353

#### LABORATORY CONTROL SAMPLE: 3200880

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2,4-Trimethylbenzene	ug/kg	1250	1290	103	70-130	
1.2-Dibromo-3-chloropropane	ug/kg	1250	1170	94	70-130	
1,2-Dibromoethane (EDB)	ug/kg	1250	1320	105	70-130	
1,2-Dichlorobenzene	ug/kg	1250	1330	106	70-130	
1,2-Dichloroethane	ug/kg	1250	1150	92	63-130	
1,2-Dichloropropane	ug/kg	1250	1290	103	70-130	
1,3,5-Trimethylbenzene	ug/kg	1250	1270	102	70-130	
1,3-Dichlorobenzene	ug/kg	1250	1300	104	70-130	
1,3-Dichloropropane	ug/kg	1250	1300	104	70-130	
1,4-Dichlorobenzene	ug/kg	1250	1280	103	70-130	
2,2-Dichloropropane	ug/kg	1250	1270	101	66-130	
2-Butanone (MEK)	ug/kg	2500	2270	91	70-130	
2-Chlorotoluene	ug/kg	1250	1290	103	70-130	
2-Hexanone	ug/kg	2500	2490	99	70-130	
4-Chlorotoluene	ug/kg	1250	1340	107	70-130	
4-Methyl-2-pentanone (MIBK)	ug/kg	2500	2420	97	70-130	
Acetone	ug/kg	2500	2310	93	69-130	
Benzene	ug/kg	1250	1260	101	70-130	
Bromobenzene	ug/kg	1250	1240	99	70-130	
3romochloromethane	ug/kg	1250	1320	106	70-130	
3romodichloromethane	ug/kg	1250	1160	93	69-130	
Bromoform	ug/kg	1250	1360	109	70-130	
Bromomethane	ug/kg	1250	1820	146	52-130	IH,IK,L1,v1
arbon tetrachloride	ug/kg	1250	1220	98	70-130	
Chlorobenzene	ug/kg	1250	1290	103	70-130	
Chloroethane	ug/kg	1250	1270	102	65-130	
Chloroform	ug/kg	1250	1190	95	70-130	
Chloromethane	ug/kg	1250	1330	107	55-130	
is-1,2-Dichloroethene	ug/kg	1250	1190	95	70-130	
is-1,3-Dichloropropene	ug/kg	1250	1260	101	70-130	
Dibromochloromethane	ug/kg	1250	1360	109	70-130	
Dibromomethane	ug/kg	1250	1270	102	70-130	
Dichlorodifluoromethane	ug/kg	1250	1340	108	45-156	
Diisopropyl ether	ug/kg	1250	1200	96	70-130	
Ethylbenzene	ug/kg	1250	1340	107	70-130	
lexachloro-1,3-butadiene	ug/kg	1250	1370	109	66-130	IK
sopropylbenzene (Cumene)	ug/kg	1250	1310	105	70-130	
n&p-Xylene	ug/kg	2500	2600	104	70-130	
√lethyl-tert-butyl ether	ug/kg	1250	1180	95	70-130	
Methylene Chloride	ug/kg	1250	1240	99	65-130	
ı-Butylbenzene	ug/kg	1250	1330	107	67-130	
1-Propylbenzene	ug/kg	1250	1330	107	70-130	
Naphthalene	ug/kg	1250	1200	96	70-130	
o-Xylene	ug/kg	1250	1330	107	70-130	
p-Isopropyltoluene	ug/kg	1250	1300	104	67-130	
sec-Butylbenzene	ug/kg	1250	1280	102	69-130	
Styrene	ug/kg	1250	1350	108	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528353

#### LABORATORY CONTROL SAMPLE: 3200880

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
tert-Butylbenzene	ug/kg	1250	923	74	67-130	v2
Tetrachloroethene	ug/kg	1250	1290	103	70-130	
Toluene	ug/kg	1250	1190	95	70-130	
trans-1,2-Dichloroethene	ug/kg	1250	1260	101	70-130	
trans-1,3-Dichloropropene	ug/kg	1250	1260	101	68-130	
Trichloroethene	ug/kg	1250	1280	102	70-130	
Trichlorofluoromethane	ug/kg	1250	1230	98	70-130	
Vinyl acetate	ug/kg	2500	2920	117	70-130	
Vinyl chloride	ug/kg	1250	1250	100	61-130	
Xylene (Total)	ug/kg	3750	3940	105	70-130	
1,2-Dichloroethane-d4 (S)	%			92	70-130	
4-Bromofluorobenzene (S)	%			97	69-134	
Toluene-d8 (S)	%			97	70-130	

MATRIX SPIKE SAMPLE:	3200882						
		92528353002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	ND	1690	1890	112	70-131	
1,1,1-Trichloroethane	ug/kg	ND	1690	1860	110	65-133	
1,1,2,2-Tetrachloroethane	ug/kg	ND	1690	1820	108	66-130	
1,1,2-Trichloroethane	ug/kg	ND	1690	1970	117	66-133	
1,1-Dichloroethane	ug/kg	ND	1690	1910	113	65-130	
1,1-Dichloroethene	ug/kg	ND	1690	1950	115	10-158	
1,1-Dichloropropene	ug/kg	ND	1690	1860	110	68-133	
1,2,3-Trichlorobenzene	ug/kg	ND	1690	1610	95	27-138	
1,2,3-Trichloropropane	ug/kg	ND	1690	1770	105	67-130	
1,2,4-Trichlorobenzene	ug/kg	ND	1690	1710	101	51-134	
1,2,4-Trimethylbenzene	ug/kg	ND	1690	1890	112	63-136	
1,2-Dibromo-3-chloropropane	ug/kg	ND	1690	1430	85	32-130	
1,2-Dibromoethane (EDB)	ug/kg	ND	1690	1890	112	70-130	
1,2-Dichlorobenzene	ug/kg	ND	1690	2020	120	69-130	
1,2-Dichloroethane	ug/kg	ND	1690	1820	108	59-130	
1,2-Dichloropropane	ug/kg	ND	1690	1990	118	70-130	
1,3,5-Trimethylbenzene	ug/kg	ND	1690	1880	111	65-137	
1,3-Dichlorobenzene	ug/kg	ND	1690	1890	112	70-130	
1,3-Dichloropropane	ug/kg	ND	1690	1980	118	70-130	
1,4-Dichlorobenzene	ug/kg	ND	1690	1880	111	68-130	
2,2-Dichloropropane	ug/kg	ND	1690	1810	107	32-130	
2-Butanone (MEK)	ug/kg	ND	3370	2940	87	10-136	
2-Chlorotoluene	ug/kg	ND	1690	1930	115	69-141	
2-Hexanone	ug/kg	ND	3370	3140	93	10-144	
4-Chlorotoluene	ug/kg	ND	1690	1970	117	70-132	
4-Methyl-2-pentanone (MIBK)	ug/kg	ND	3370	3340	99	25-143	
Acetone	ug/kg	ND	3370	2430	72	10-130	
Benzene	ug/kg	ND	1690	1960	116	67-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



Project: FORMER BRAMLETTE MGP J21030498

Pace

Project No.:	92528353		
--------------	----------	--	--

MATRIX SPIKE SAMPLE:	3200882						
		92528353002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Bromobenzene	ug/kg	ND	1690	1900	112	70-130	
Bromochloromethane	ug/kg	ND	1690	2100	125	69-134	
Bromodichloromethane	ug/kg	ND	1690	1710	101	64-130	
Bromoform	ug/kg	ND	1690	1780	106	62-130	
Bromomethane	ug/kg	ND	1690	1990	118	20-176	IH,IK,v1
Carbon tetrachloride	ug/kg	ND	1690	1790	106	65-140	
Chlorobenzene	ug/kg	ND	1690	1950	116	70-130	
Chloroethane	ug/kg	ND	1690	713	42	10-130	
Chloroform	ug/kg	ND	1690	1940	115	63-130	
Chloromethane	ug/kg	ND	1690	2290	136	58-130	M1
cis-1,2-Dichloroethene	ug/kg	ND	1690	1880	112	66-130	
cis-1,3-Dichloropropene	ug/kg	ND	1690	1860	110	67-130	
Dibromochloromethane	ug/kg	ND	1690	1860	110	67-130	
Dibromomethane	ug/kg	ND	1690	1890	112	63-131	
Dichlorodifluoromethane	ug/kg	ND	1690	2000	118	44-180	
Diisopropyl ether	ug/kg	ND	1690	1850	110	63-130	
Ethylbenzene	ug/kg	9.2J	1690	2030	120	66-130	
Hexachloro-1,3-butadiene	ug/kg	ND	1690	1920	114	64-150	IK
Isopropylbenzene (Cumene)	ug/kg	ND	1690	1920	114	69-135	
m&p-Xylene	ug/kg	65.9	3370	3890	113	60-133	
Methyl-tert-butyl ether	ug/kg	ND	1690	1800	106	65-130	
Methylene Chloride	ug/kg	ND	1690	1990	118	61-130	
n-Butylbenzene	ug/kg	ND	1690	1880	111	65-140	
n-Propylbenzene	ug/kg	ND	1690	1960	116	67-140	
Naphthalene	ug/kg	ND	1690	1460	86	15-145	
o-Xylene	ug/kg	24.0	1690	1950	114	66-133	
p-Isopropyltoluene	ug/kg	ND	1690	1870	111	56-147	
sec-Butylbenzene	ug/kg	ND	1690	1900	113	65-139	
Styrene	ug/kg	ND	1690	1990	118	70-132	
tert-Butylbenzene	ug/kg	ND	1690	1400	83	62-135	v2
Tetrachloroethene	ug/kg	ND	1690	1840	109	70-135	
Toluene	ug/kg	ND	1690	1810	107	67-130	
trans-1,2-Dichloroethene	ug/kg	ND	1690	2000	119	69-130	
trans-1,3-Dichloropropene	ug/kg	ND	1690	1750	104	62-130	
Trichloroethene	ug/kg	ND	1690	1990	118	70-135	
Trichlorofluoromethane	ug/kg	ND	1690	800	47	10-130	
Vinyl acetate	ug/kg	ND	3370	4030	120	53-130	
Vinyl chloride	ug/kg	ND	1690	1930	115	61-148	
Xylene (Total)	ug/kg	89.9	5060	5840	114	63-132	
1,2-Dichloroethane-d4 (S)	%				126	70-130	
4-Bromofluorobenzene (S)	%				97	69-134	
Toluene-d8 (S)	%				99	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528353

#### SAMPLE DUPLICATE: 3200881

		92528011007	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD Qualif	fiers
1,1,1,2-Tetrachloroethane	ug/ka	ND	ND		30	
1,1,1-Trichloroethane	ug/kg	ND	ND		30	
1,1,2,2-Tetrachloroethane	ug/kg	ND	ND		30	
1,1,2-Trichloroethane	ug/kg	ND	ND		30	
1,1-Dichloroethane	ug/kg	ND	ND		30	
1,1-Dichloroethene	ug/kg	ND	ND		30	
1,1-Dichloropropene	ug/kg	ND	ND		30	
1,2,3-Trichlorobenzene	ug/kg	ND	ND		30	
1.2.3-Trichloropropane	ua/ka	ND	ND		30	
1,2,4-Trichlorobenzene	ug/kg	ND	ND		30	
1,2,4-Trimethylbenzene	ug/kg	3.4J	2.5J		30	
1,2-Dibromo-3-chloropropane	ug/kg	ND	ND		30	
1,2-Dibromoethane (EDB)	ug/ka	ND	ND		30	
1,2-Dichlorobenzene	ug/ka	ND	ND		30	
1,2-Dichloroethane	ug/ka	ND	ND		30	
1,2-Dichloropropane	ug/ka	ND	ND		30	
1,3,5-Trimethylbenzene	ug/ka	ND	ND		30	
1,3-Dichlorobenzene	ug/kg	ND	ND		30	
1.3-Dichloropropane	ua/ka	ND	ND		30	
1.4-Dichlorobenzene	ua/ka	ND	ND		30	
2.2-Dichloropropane	ua/ka	ND	ND		30	
2-Butanone (MEK)	ua/ka	ND	ND		30	
2-Chlorotoluene	ua/ka	ND	ND		30	
2-Hexanone	ua/ka	ND	ND		30	
4-Chlorotoluene	ua/ka	ND	ND		30	
4-Methyl-2-pentanone (MIBK)	ua/ka	ND	ND		30	
Acetone	ua/ka	ND	ND		30	
Benzene	ua/ka	ND	ND		30	
Bromobenzene	ua/ka	ND	ND		30	
Bromochloromethane	ua/ka	ND	ND		30	
Bromodichloromethane	ug/ka	ND	ND		30	
Bromoform	ug/ka	ND	ND		30	
Bromomethane	ug/ka	ND	ND		30 IH,IK.v1	
Carbon tetrachloride	ug/ka	ND	ND		30	
Chlorobenzene	ug/kg	ND	ND		30	
Chloroethane	ug/kg	ND	ND		30	
Chloroform	ug/kg	ND	ND		30	
Chloromethane	ug/kg	ND	ND		30	
cis-1,2-Dichloroethene	ug/kg	ND	ND		30	
cis-1,3-Dichloropropene	ug/kg	ND	ND		30	
Dibromochloromethane	ug/kg	ND	ND		30	
Dibromomethane	ug/kg	ND	ND		30	
Dichlorodifluoromethane	ug/kg	ND	ND		30	
Diisopropyl ether	ug/kg	ND	ND		30	
Ethylbenzene	ug/kg	ND	ND		30	
Hexachloro-1,3-butadiene	ug/kg	ND	ND		30 IK	
Isopropylbenzene (Cumene)	ug/kg	ND	ND		30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528353

#### SAMPLE DUPLICATE: 3200881

92528011007 Dup	Max
Parameter Units Result RPD	RPD Qualifiers
ug/kg 10.5J 8.5J	30
lethyl-tert-butyl ether ug/kg ND ND	30
lethylene Chloride ug/kg ND ND	30
-Butylbenzene ug/kg ND ND	30
-Propylbenzene ug/kg ND ND	30
aphthalene ug/kg 7.8 7.7 1	30
-Xylene ug/kg ND ND	30
-Isopropyltoluene ug/kg ND ND	30
ec-Butylbenzene ug/kg ND ND	30
tyrene ug/kg ND ND	30
ert-Butylbenzene ug/kg ND ND	30 v2
etrachloroethene ug/kg ND ND	30
oluene ug/kg 9.7 8.8 9	30
ans-1,2-Dichloroethene ug/kg ND ND	30
ans-1,3-Dichloropropene ug/kg ND ND	30
richloroethene ug/kg ND ND	30
richlorofluoromethane ug/kg ND ND	30
inyl acetate ug/kg ND ND	30
inyl chloride ug/kg ND ND	30
ylene (Total) ug/kg 10.5J ND	30
,2-Dichloroethane-d4 (S) % 108 108	
-Bromofluorobenzene (S) % 91 93	
oluene-d8 (S) % 102 102	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



Project:	FORMER BRAMLETTE MGP J21030498

Pace Project No.:	925283
-------------------	--------

Pace Project No.: 92528353						
QC Batch: 608035		Analysis Meth	iod: EP	A 8260D		
QC Batch Method: EPA 5035A/5030	В	Analysis Desc	ription: 826	60D 5035A 5030	B SC	
		Laboratory:	Pa	ce Analytical Sei	vices - Charlotte	
Associated Lab Samples: 92528353	001			,		
METHOD BLANK: 3203111		Matrix:	Solid			
Associated Lab Samples: 92528353	001					
		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg		5.0	1.9	03/19/21 15:50	
1,1,1-Trichloroethane	ug/kg	ND	5.0	2.6	03/19/21 15:50	
1,1,2,2-Tetrachloroethane	ug/kg	ND	5.0	1.3	03/19/21 15:50	
1,1,2-Trichloroethane	ug/kg	ND	5.0	1.7	03/19/21 15:50	
1,1-Dichloroethane	ug/kg	ND	5.0	2.1	03/19/21 15:50	
1,1-Dichloroethene	ug/kg	ND	5.0	2.1	03/19/21 15:50	
1,1-Dichloropropene	ug/kg	ND	5.0	2.4	03/19/21 15:50	
1,2,3-Trichlorobenzene	ug/kg	ND	5.0	4.0	03/19/21 15:50	
1,2,3-Trichloropropane	ug/kg	ND	5.0	2.5	03/19/21 15:50	
1,2,4-Trichlorobenzene	ug/kg	ND	5.0	4.2	03/19/21 15:50	
1,2,4-Trimethylbenzene	ug/kg	ND	5.0	1.4	03/19/21 15:50	
1,2-Dibromo-3-chloropropane	ug/kg	ND	5.0	1.9	03/19/21 15:50	
1.2-Dibromoethane (EDB)	ua/ka	ND	5.0	2.2	03/19/21 15:50	
1.2-Dichlorobenzene	ua/ka	ND	5.0	1.8	03/19/21 15:50	
1,2-Dichloroethane	ug/kg	ND	5.0	3.3	03/19/21 15:50	
1.2-Dichloropropane	ua/ka	ND	5.0	1.5	03/19/21 15:50	
1.3.5-Trimethylbenzene	ua/ka	ND	5.0	1.7	03/19/21 15:50	
1.3-Dichlorobenzene	ua/ka	ND	5.0	1.6	03/19/21 15:50	
1.3-Dichloropropane	ua/ka	ND	5.0	1.6	03/19/21 15:50	
1.4-Dichlorobenzene	ua/ka	ND	5.0	1.3	03/19/21 15:50	
2.2-Dichloropropane	ua/ka	ND	5.0	1.6	03/19/21 15:50	
2-Butanone (MEK)	ua/ka	ND	100	24.0	03/19/21 15:50	
2-Chlorotoluene	ua/ka	ND	5.0	1.8	03/19/21 15:50	
2-Hexanone	ua/ka	ND	50.0	4.8	03/19/21 15:50	
4-Chlorotoluene	ua/ka	ND	5.0	0.88	03/19/21 15:50	
4-Methyl-2-pentanone (MIBK)	ua/ka	ND	50.0	4.8	03/19/21 15:50	
Acetone	ua/ka	ND	100	32.1	03/19/21 15:50	
Benzene	ua/ka	ND	5.0	2.0	03/19/21 15:50	
Bromobenzene	ua/ka	ND	5.0	1.6	03/19/21 15:50	
Bromochloromethane	ug/kg	ND	5.0	1.5	03/19/21 15:50	
Bromodichloromethane	ug/kg	ND	5.0	1.9	03/19/21 15:50	
Bromoform	ug/kg	ND	5.0	1.8	03/19/21 15:50	
Bromomethane	ug/kg	ND	10.0	7.9	03/19/21 15:50	v1
Carbon tetrachloride	ua/ka	ND	5.0	1.9	03/19/21 15:50	
Chlorobenzene	ug/ka	ND	5.0	0.96	03/19/21 15:50	
Chloroethane	ug/ka	ND	10.0	3.9	03/19/21 15:50	
Chloroform	ug/ka	ND	5.0	3.0	03/19/21 15:50	
Chloromethane	ug/ka	ND	10.0	4.2	03/19/21 15:50	
cis-1,2-Dichloroethene	ug/ka	ND	5.0	1.7	03/19/21 15:50	
cis-1,3-Dichloropropene	ug/kg	ND	5.0	1.4	03/19/21 15:50	
	0.0					

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



Matrix: Solid

Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528353

# METHOD BLANK: 3203111

Associated Lab Samples:	92528353001
-------------------------	-------------

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Dibromochloromethane	ug/kg	ND	5.0	2.8	03/19/21 15:50	
Dibromomethane	ug/kg	ND	5.0	1.1	03/19/21 15:50	
Dichlorodifluoromethane	ug/kg	ND	10.0	2.2	03/19/21 15:50	
Diisopropyl ether	ug/kg	ND	5.0	1.4	03/19/21 15:50	
Ethylbenzene	ug/kg	ND	5.0	2.3	03/19/21 15:50	
Hexachloro-1,3-butadiene	ug/kg	ND	10.0	8.2	03/19/21 15:50	
Isopropylbenzene (Cumene)	ug/kg	ND	5.0	1.7	03/19/21 15:50	
m&p-Xylene	ug/kg	ND	10.0	3.4	03/19/21 15:50	
Methyl-tert-butyl ether	ug/kg	ND	5.0	1.9	03/19/21 15:50	
Methylene Chloride	ug/kg	ND	20.0	13.7	03/19/21 15:50	
n-Butylbenzene	ug/kg	ND	5.0	2.4	03/19/21 15:50	
n-Propylbenzene	ug/kg	ND	5.0	1.8	03/19/21 15:50	
Naphthalene	ug/kg	ND	5.0	2.6	03/19/21 15:50	
o-Xylene	ug/kg	ND	5.0	2.2	03/19/21 15:50	
p-Isopropyltoluene	ug/kg	ND	5.0	2.5	03/19/21 15:50	
sec-Butylbenzene	ug/kg	ND	5.0	2.2	03/19/21 15:50	
Styrene	ug/kg	ND	5.0	1.3	03/19/21 15:50	
tert-Butylbenzene	ug/kg	ND	5.0	1.8	03/19/21 15:50	
Tetrachloroethene	ug/kg	ND	5.0	1.6	03/19/21 15:50	
Toluene	ug/kg	ND	5.0	1.4	03/19/21 15:50	
trans-1,2-Dichloroethene	ug/kg	ND	5.0	1.8	03/19/21 15:50	
trans-1,3-Dichloropropene	ug/kg	ND	5.0	1.7	03/19/21 15:50	
Trichloroethene	ug/kg	ND	5.0	1.3	03/19/21 15:50	
Trichlorofluoromethane	ug/kg	ND	5.0	2.8	03/19/21 15:50	
Vinyl acetate	ug/kg	ND	50.0	3.6	03/19/21 15:50	
Vinyl chloride	ug/kg	ND	10.0	2.5	03/19/21 15:50	
Xylene (Total)	ug/kg	ND	10.0	2.8	03/19/21 15:50	
1,2-Dichloroethane-d4 (S)	%	106	70-130		03/19/21 15:50	
4-Bromofluorobenzene (S)	%	96	69-134		03/19/21 15:50	
Toluene-d8 (S)	%	100	70-130		03/19/21 15:50	

#### LABORATORY CONTROL SAMPLE: 3203112

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	1250	1260	101	70-130	
1,1,1-Trichloroethane	ug/kg	1250	1260	101	70-130	
1,1,2,2-Tetrachloroethane	ug/kg	1250	1180	94	70-130	
1,1,2-Trichloroethane	ug/kg	1250	1260	101	70-130	
1,1-Dichloroethane	ug/kg	1250	1210	97	70-130	
1,1-Dichloroethene	ug/kg	1250	1240	99	70-130	
1,1-Dichloropropene	ug/kg	1250	1250	100	70-130	
1,2,3-Trichlorobenzene	ug/kg	1250	1250	100	65-130	
1,2,3-Trichloropropane	ug/kg	1250	1160	92	70-130	
1,2,4-Trichlorobenzene	ug/kg	1250	1240	99	68-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528353

#### LABORATORY CONTROL SAMPLE: 3203112

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1.2.4-Trimethylbenzene	ua/ka	1250	1210	97	70-130	
1.2-Dibromo-3-chloropropane	ua/ka	1250	1270	101	70-130	
1.2-Dibromoethane (EDB)	ua/ka	1250	1260	101	70-130	
1.2-Dichlorobenzene	ua/ka	1250	1220	97	70-130	
1.2-Dichloroethane	ua/ka	1250	1210	97	63-130	
1.2-Dichloropropane	ug/kg	1250	1190	95	70-130	
1.3.5-Trimethylbenzene	ua/ka	1250	1160	92	70-130	
1.3-Dichlorobenzene	ua/ka	1250	1190	95	70-130	
1.3-Dichloropropane	ua/ka	1250	1230	98	70-130	
1.4-Dichlorobenzene	ua/ka	1250	1210	97	70-130	
2.2-Dichloropropane	ua/ka	1250	1190	95	66-130	
2-Butanone (MEK)	ug/kg	2500	2390	95	70-130	
2-Chlorotoluene	ug/kg	1250	1210	97	70-130	
2-Hexanone	ug/kg	2500	2250	90	70-130	
4-Chlorotoluene	ua/ka	1250	1130	90	70-130	
4-Methyl-2-pentanone (MIRK)	ug/kg	2500	2290	91	70-130	
Acetone	ug/kg	2500	2420	97	69-130	
Benzene	ug/kg	1250	1240	99	70-130	
Bromobenzene	ug/kg	1250	1240	99	70-130	
Bromochloromethane	ug/kg	1250	1240	107	70-130	
Bromodichloromethane	ug/kg	1250	1330	Q1	69-130	
Bromoform	ug/kg	1250	1320	105	70-130	
Bromomethane	ug/kg	1250	1520	105	52-130 v/	1
Carbon totrachlorido	ug/kg	1250	1300	125	70 120	1
Chlorobenzene	ug/kg	1250	1210	07	70-130	
Chloroethane	ug/kg	1250	1210	108	65-130	
Chloroform	ug/kg	1250	1160	03	70-130	
Chloromothano	ug/kg	1250	1100	30	55 130	
cis 1.2 Dichloroothono	ug/kg	1250	1100	00	70 120	
cis-1.3-Dichloropropene	ug/kg	1250	1230	93	70-130	
Dibromachloromothana	ug/kg	1250	1230	106	70-130	
Dibromomethane	ug/kg	1250	1320	100	70-130	
Dichlorodifluoromethano	ug/kg	1250	1340	107	10-130 AE 1EE	
	ug/kg	1250	1300	01	70 120	
Ethylbonzono	ug/kg	1250	1130	01	70-130	
Hevachloro-1 3-butadiene	ug/kg	1250	1260	101	66-130	
Isopropylbenzene (Cumopo)	ug/kg	1250	1200	101	70 120	
m&n-Yulene	ug/kg	2500	1200	90	70-130	
Mathyl tort butyl other	ug/kg	2000	2000	94 06	70-130	
Mothylong Chloridg	ug/kg	1200	1200	90	10-130	
	ug/kg	1200	1190	90	67 130	
	ug/kg	1250	1130	91	07-130	
	ug/kg	1250	1160	93	70-130	
	ug/kg	1250	1220	97	70-130	
	ug/kg	1250	1200	96	70-130	
	ug/kg	1250	1180	94	67-130	
sec-Butylbenzene	ug/kg	1250	1140	91	69-130	
Styrene	ug/kg	1250	1270	102	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528353

#### LABORATORY CONTROL SAMPLE: 3203112

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
tert-Butylbenzene	ug/kg	1250	1120	90	67-130	
Tetrachloroethene	ug/kg	1250	1240	99	70-130	
Toluene	ug/kg	1250	1230	99	70-130	
trans-1,2-Dichloroethene	ug/kg	1250	1210	96	70-130	
trans-1,3-Dichloropropene	ug/kg	1250	1220	97	68-130	
Trichloroethene	ug/kg	1250	1270	102	70-130	
Trichlorofluoromethane	ug/kg	1250	1380	110	70-130	
Vinyl acetate	ug/kg	2500	2600	104	70-130	
Vinyl chloride	ug/kg	1250	1280	102	61-130	
Xylene (Total)	ug/kg	3750	3550	95	70-130	
1,2-Dichloroethane-d4 (S)	%			96	70-130	
4-Bromofluorobenzene (S)	%			94	69-134	
Toluene-d8 (S)	%			100	70-130	

MATRIX SPIKE SAMPLE:	3203114						
		92528603024	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	ND	516	496	96	70-131	
1,1,1-Trichloroethane	ug/kg	ND	516	457	89	65-133	
1,1,2,2-Tetrachloroethane	ug/kg	ND	516	471	91	66-130	
1,1,2-Trichloroethane	ug/kg	ND	516	511	99	66-133	
1,1-Dichloroethane	ug/kg	ND	516	447	87	65-130	
1,1-Dichloroethene	ug/kg	ND	516	459	89	10-158	
1,1-Dichloropropene	ug/kg	ND	516	455	88	68-133	
1,2,3-Trichlorobenzene	ug/kg	ND	516	433	84	27-138	
1,2,3-Trichloropropane	ug/kg	ND	516	460	89	67-130	
1,2,4-Trichlorobenzene	ug/kg	ND	516	454	88	51-134	
1,2,4-Trimethylbenzene	ug/kg	ND	516	479	93	63-136	
1,2-Dibromo-3-chloropropane	ug/kg	ND	516	393	76	32-130	
1,2-Dibromoethane (EDB)	ug/kg	ND	516	489	95	70-130	
1,2-Dichlorobenzene	ug/kg	ND	516	505	98	69-130	
1,2-Dichloroethane	ug/kg	ND	516	427	83	59-130	
1,2-Dichloropropane	ug/kg	ND	516	499	97	70-130	
1,3,5-Trimethylbenzene	ug/kg	ND	516	487	94	65-137	
1,3-Dichlorobenzene	ug/kg	ND	516	478	93	70-130	
1,3-Dichloropropane	ug/kg	ND	516	498	97	70-130	
1,4-Dichlorobenzene	ug/kg	ND	516	476	92	68-130	
2,2-Dichloropropane	ug/kg	ND	516	450	87	32-130	
2-Butanone (MEK)	ug/kg	ND	1030	691	67	10-136	
2-Chlorotoluene	ug/kg	ND	516	488	94	69-141	
2-Hexanone	ug/kg	ND	1030	788	76	10-144	
4-Chlorotoluene	ug/kg	ND	516	490	95	70-132	
4-Methyl-2-pentanone (MIBK)	ug/kg	ND	1030	811	79	25-143	
Acetone	ug/kg	ND	1030	537	52	10-130	
Benzene	ug/kg	ND	516	498	97	67-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



Project: FORMER BRAMLETTE MGP J21030498

Pace Proje

ct No.:	92528353	

MATRIX SPIKE SAMPLE:	3203114						
		92528603024	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Bromobenzene	ua/ka	ND	516	552	107	70-130	
Bromochloromethane	ug/kg	ND	516	503		69-134	
Bromodichloromethane	ua/ka	ND	516	433	84	64-130	
Bromoform	ua/ka	ND	516	470	91	62-130	
Bromomethane	ua/ka	ND	516	381	74	20-176 v	1
Carbon tetrachloride	ua/ka	ND	516	461	89	65-140	
Chlorobenzene	ua/ka	ND	516	492	95	70-130	
Chloroethane	ua/ka	ND	516	141	27	10-130	
Chloroform	ug/kg	ND	516	473	92	63-130	
Chloromethane	ua/ka	ND	516	564	109	58-130	
cis-1.2-Dichloroethene	ua/ka	ND	516	453	88	66-130	
cis-1.3-Dichloropropene	ua/ka	ND	516	460	89	67-130	
Dibromochloromethane	ug/kg	ND	516	487	94	67-130	
Dibromomethane	ug/kg	ND	516	488	95	63-131	
Dichlorodifluoromethane	ua/ka	ND	516	499	97	44-180	
Diisopropyl ether	ua/ka	ND	516	427	83	63-130	
Ethylbenzene	ua/ka	ND	516	510	99	66-130	
Hexachloro-1.3-butadiene	ua/ka	ND	516	575	111	64-150	
Isopropylbenzene (Cumene)	ua/ka	ND	516	512	99	69-135	
m&p-Xylene	ua/ka	ND	1030	974	94	60-133	
Methyl-tert-butyl ether	ua/ka	ND	516	456	88	65-130	
Methylene Chloride	ua/ka	ND	516	468	91	61-130	
n-Butvlbenzene	ua/ka	ND	516	503	97	65-140	
n-Propylbenzene	ua/ka	ND	516	506	98	67-140	
Naphthalene	ua/ka	ND	516	407	79	15-145	
o-Xvlene	ua/ka	ND	516	508	98	66-133	
p-lsopropyltoluene	ua/ka	ND	516	501	97	56-147	
sec-Butylbenzene	ua/ka	ND	516	497	96	65-139	
Styrene	ug/kg	ND	516	504	98	70-132	
tert-Butylbenzene	ua/ka	ND	516	373	72	62-135 v	3
Tetrachloroethene	ua/ka	ND	516	471	91	70-135	-
Toluene	ua/ka	ND	516	467	90	67-130	
trans-1.2-Dichloroethene	ua/ka	ND	516	470	91	69-130	
trans-1.3-Dichloropropene	ua/ka	ND	516	448	87	62-130	
Trichloroethene	ua/ka	ND	516	504	98	70-135	
Trichlorofluoromethane	ua/ka	ND	516	161	31	10-130	
Vinvl acetate	ua/ka	ND	1030	930	90	53-130	
Vinvl chloride	ua/ka	ND	516	474	92	61-148	
Xvlene (Total)	ua/ka	ND	1550	1480	96	63-132	
1.2-Dichloroethane-d4 (S)	%				115	70-130	
4-Bromofluorobenzene (S)	%				99	69-134	
Toluene-d8 (S)	%				99	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528353

#### SAMPLE DUPLICATE: 3203113

		92528603005	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1.1.1.2-Tetrachloroethane	ua/ka		ND			
1.1.1-Trichloroethane	ua/ka	ND	ND		30	
1.1.2.2-Tetrachloroethane	ua/ka	ND	ND		30	
1.1.2-Trichloroethane	ua/ka	ND	ND		30	
1.1-Dichloroethane	ug/kg	ND	ND		30	
1 1-Dichloroethene	ua/ka	ND	ND		30	
1 1-Dichloropropene	ug/kg	ND	ND		30	
1,2 3-Trichlorobenzene	ug/kg	ND			30	
1.2.3-Trichloropropage	ug/kg	ND			30	
1.2.4-Trichlorobenzene	ug/kg	ND			30	
1.2.4-Trimethylbenzene	ug/kg	53	4.01		30	
1.2 Dibromo 3 chloropropopo	ug/kg		4.05 ND		30	
1.2 Dibromosthana (EDR)	ug/kg				30	
1,2-Diblomoethane (EDB)	ug/kg				30	
1,2-Dichlorobenzene	ug/kg		ND		30	
	ug/kg		ND		30	
1,2-Dichloropropane	ug/kg		ND		30	
1,3,5-Irimethylbenzene	ug/kg	3.6J	3.2J		30	
1,3-Dichlorobenzene	ug/kg	ND	ND		30	
1,3-Dichloropropane	ug/kg	ND	ND		30	
1,4-Dichlorobenzene	ug/kg	ND	ND		30	
2,2-Dichloropropane	ug/kg	ND	ND		30	
2-Butanone (MEK)	ug/kg	ND	ND		30	
2-Chlorotoluene	ug/kg	ND	ND		30	
2-Hexanone	ug/kg	ND	ND		30	
4-Chlorotoluene	ug/kg	ND	ND		30	
4-Methyl-2-pentanone (MIBK)	ug/kg	ND	ND		30	
Acetone	ug/kg	ND	ND		30	
Benzene	ug/kg	ND	ND		30	
Bromobenzene	ug/kg	ND	ND		30	
Bromochloromethane	ug/kg	ND	ND		30	
Bromodichloromethane	ug/kg	ND	ND		30	
Bromoform	ug/kg	ND	ND		30	
Bromomethane	ug/kg	ND	ND		30	v1
Carbon tetrachloride	ug/kg	ND	ND		30	
Chlorobenzene	ug/kg	ND	ND		30	
Chloroethane	ug/kg	ND	ND		30	
Chloroform	ua/ka	ND	ND		30	
Chloromethane	ua/ka	ND	ND		30	
cis-1.2-Dichloroethene	ua/ka	ND	ND		30	
cis-1.3-Dichloropropene	ua/ka	ND	ND		30	
Dibromochloromethane	ua/ka	ND	ND		30	
Dibromomethane	ug/kg	ND	ND		30	
Dichlorodifluoromethane	ug/kg	ND			30	
	ug/kg				30	
Ethylbonzono	ug/kg	12.5	12.0	А	30	
Luyuchlara 1.2 hutadiana	ug/kg	12.5 ND		4	30	
	ug/kg				30	
isopropyidenzene (Cumene)	ug/kg	ND	ND		30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528353

#### SAMPLE DUPLICATE: 3203113

	92528603005	Dup		Max	
Parameter Units	Result	Result	RPD	RPD	Qualifiers
m&p-Xylene ug/kg		20.6	4	30	
Methyl-tert-butyl ether ug/kg	ND	ND		30	
Methylene Chloride ug/kg	ND	ND		30	
n-Butylbenzene ug/kg	ND	ND		30	
n-Propylbenzene ug/kg	3.5J	3.3J		30	
Naphthalene ug/kg	ND	ND		30	
o-Xylene ug/kg	9.6	9.5	2	30	
p-lsopropyltoluene ug/kg	ND	ND		30	
sec-Butylbenzene ug/kg	ND	ND		30	
Styrene ug/kg	ND	ND		30	
tert-Butylbenzene ug/kg	ND	ND		30	
Tetrachloroethene ug/kg	ND	ND		30	
Toluene ug/kg	ND	ND		30	
trans-1,2-Dichloroethene ug/kg	ND	ND		30	
trans-1,3-Dichloropropene ug/kg	ND	ND		30	
Trichloroethene ug/kg	ND	ND		30	
Trichlorofluoromethane ug/kg	ND	ND		30	
Vinyl acetate ug/kg	ND	ND		30	
Vinyl chloride ug/kg	ND	ND		30	
Xylene (Total) ug/kg	31.1	30.1	3	30	
1,2-Dichloroethane-d4 (S) %	104	107			
4-Bromofluorobenzene (S) %	96	97			
Toluene-d8 (S) %	102	101			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project:	FORMER BR	AMLETTE MGP J210304	98						
Pace Project No .:	92528353								
QC Batch:	607492		Analysis Meth	nod:	EPA 8270E				
QC Batch Method:	EPA 3546		Analysis Description:		8270F Solid MSSV Microwave				
			Laboratory:		Pace Analytical Se	rvices - Charlotte			
Associated Lab Sam	nples: 9252	8353001, 92528353002, 9	92528353003, 92	2528353004		Chanolic			
METHOD BLANK:	3200335		Matrix:	Solid					
Associated Lab Sam	nples: 9252	8353001, 92528353002, 9	92528353003, 92	2528353004					
		Blank	Reporting						
Param	neter	Units	Result	Limit	MDL	Analyzed	Qualifiers		
1-Methylnaphthalen	е	ug/kg	ND	33	36 118	03/18/21 15:41			
2,2'-Oxybis(1-chloro	propane)	ug/kg	ND	33	36 160	03/18/21 15:41			
2,4,5-Trichloropheno	ol	ug/kg	ND	33	36 154	03/18/21 15:41			
2,4,6-Trichlorophene	ol	ug/kg	ND	33	36 138	03/18/21 15:41			
2,4-Dichlorophenol		ug/kg	ND	33	36 131	03/18/21 15:41			
2,4-Dimethylphenol		ug/kg	ND	33	36 139	03/18/21 15:41			
2,4-Dinitrophenol		ug/kg	ND	168	30 1040	03/18/21 15:41			
2,4-Dinitrotoluene		ug/kg	ND	33	36 129	03/18/21 15:41			
2,6-Dinitrotoluene		ug/kg	ND	33	36 123	03/18/21 15:41			
2-Chloronaphthalen	е	ug/kg	ND	33	36 133	03/18/21 15:41			
2-Chlorophenol		ug/kg	ND	33	36 126	03/18/21 15:41			
2-Methylnaphthalen	е	ug/kg	ND	33	36 134	03/18/21 15:41			
2-Methylphenol(o-C	resol)	ug/kg	ND	33	36 137	03/18/21 15:41			
2-Nitroaniline		ug/kg	ND	168	30 275	03/18/21 15:41			
2-Nitrophenol		ug/kg	ND	33	36 145	03/18/21 15:41			
3&4-Methylphenol(n	n&p Cresol)	ug/kg	ND	33	36 135	03/18/21 15:41			
3,3'-Dichlorobenzidi	ne	ug/kg	ND	67	71 227	03/18/21 15:41	IL		
3-Nitroaniline		ug/kg	ND	168	30 263	03/18/21 15:41			
4,6-Dinitro-2-methyl	phenol	ug/kg	ND	67	71 313	03/18/21 15:41			
4-Bromophenylphen	nyl ether	ug/kg	ND	33	36 129	03/18/21 15:41			
4-Chloro-3-methylph	nenol	ug/kg	ND	67	71 236	03/18/21 15:41			
4-Chloroaniline		ug/kg	ND	67	71 263	03/18/21 15:41			
4-Chlorophenylphen	nyl ether	ug/kg	ND	33	36 125	03/18/21 15:41			
4-Nitroaniline		ug/kg	ND	67	71 255	03/18/21 15:41			
4-Nitrophenol		ug/kg	ND	168	30 649	03/18/21 15:41			
Acenaphthene		ug/kg	ND	33	36 118	03/18/21 15:41			
Acenaphthylene		ug/kg	ND	33	36 118	03/18/21 15:41			
Aniline		ug/kg	ND	33	36 131	03/18/21 15:41			
Anthracene		ug/kg	ND	33	36 110	03/18/21 15:41			
Benzo(a)anthracene	9	ug/kg	ND	33	36 112	03/18/21 15:41			
Benzo(b)fluoranther	ne	ug/kg	ND	33	36 112	03/18/21 15:41			
Benzo(g,h,i)perylene	e	ug/kg	ND	33	36 130	03/18/21 15:41			
Benzo(k)fluoranthen	ne	ug/kg	ND	33	36 118	03/18/21 15:41			
Benzoic Acid		ug/kg	ND	168	30 721	03/18/21 15:41			
Benzyl alcohol		ug/kg	ND	67	71 254	03/18/21 15:41			
bis(2-Chloroethoxy)	methane	ug/kg	ND	33	36 139	03/18/21 15:41			
bis(2-Chloroethyl) et	ther	ug/kg	ND	33	36 126	03/18/21 15:41			
bis(2-Ethylhexyl)pht	halate	ug/kg	ND	33	36 130	03/18/21 15:41	v1		
Butylbenzylphthalate	e	ug/kg	ND	33	36 141	03/18/21 15:41	v1		
Chrysene		ug/kg	ND	33	36 122	03/18/21 15:41			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528353

METHOD BLANK: 320033	5	Matrix:	Solid			
Associated Lab Samples:	92528353001, 92528353002,	92528353003, 92	2528353004			
		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Di-n-butylphthalate	ug/kg	ND	336	113	03/18/21 15:41	
Di-n-octylphthalate	ug/kg	ND	336	132	03/18/21 15:41	v1
Dibenz(a,h)anthracene	ug/kg	ND	336	129	03/18/21 15:41	
Dibenzofuran	ug/kg	ND	336	121	03/18/21 15:41	
Diethylphthalate	ug/kg	ND	336	123	03/18/21 15:41	
Dimethylphthalate	ug/kg	ND	336	122	03/18/21 15:41	
Fluoranthene	ug/kg	ND	336	115	03/18/21 15:41	
Fluorene	ug/kg	ND	336	118	03/18/21 15:41	
Hexachlorobenzene	ug/kg	ND	336	131	03/18/21 15:41	
Hexachlorocyclopentadiene	ug/kg	ND	336	192	03/18/21 15:41	
Hexachloroethane	ug/kg	ND	336	128	03/18/21 15:41	
Indeno(1,2,3-cd)pyrene	ug/kg	ND	336	132	03/18/21 15:41	
Isophorone	ug/kg	ND	336	149	03/18/21 15:41	
N-Nitroso-di-n-propylamine	ug/kg	ND	336	126	03/18/21 15:41	
N-Nitrosodimethylamine	ug/kg	ND	336	113	03/18/21 15:41	
N-Nitrosodiphenylamine	ug/kg	ND	336	119	03/18/21 15:41	
Nitrobenzene	ug/kg	ND	336	156	03/18/21 15:41	
Pentachlorophenol	ug/kg	ND	671	328	03/18/21 15:41	
Phenanthrene	ug/kg	ND	336	110	03/18/21 15:41	
Phenol	ug/kg	ND	336	149	03/18/21 15:41	
Pyrene	ug/kg	ND	336	136	03/18/21 15:41	
Pyridine	ug/kg	ND	336	106	03/18/21 15:41	
2,4,6-Tribromophenol (S)	%	71	18-130		03/18/21 15:41	
2-Fluorobiphenyl (S)	%	75	19-130		03/18/21 15:41	
2-Fluorophenol (S)	%	77	18-130		03/18/21 15:41	
Nitrobenzene-d5 (S)	%	75	21-130		03/18/21 15:41	
Phenol-d6 (S)	%	70	18-130		03/18/21 15:41	
Terphenyl-d14 (S)	%	102	15-130		03/18/21 15:41	

#### LABORATORY CONTROL SAMPLE: 3200336

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/kg	1680	1170	70	54-130	
2,2'-Oxybis(1-chloropropane)	ug/kg	1680	1080	65	38-130	
2,4,5-Trichlorophenol	ug/kg	1680	1280	76	49-130	
2,4,6-Trichlorophenol	ug/kg	1680	1230	73	50-130	
2,4-Dichlorophenol	ug/kg	1680	1190	71	51-130	
2,4-Dimethylphenol	ug/kg	1680	1230	73	53-130	
2,4-Dinitrophenol	ug/kg	8390	5420	65	39-130	
2,4-Dinitrotoluene	ug/kg	1680	1250	74	53-130	
2,6-Dinitrotoluene	ug/kg	1680	1280	77	55-130	
2-Chloronaphthalene	ug/kg	1680	1270	76	48-130	
2-Chlorophenol	ug/kg	1680	1180	70	54-130	
2-Methylnaphthalene	ug/kg	1680	1180	71	57-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528353

#### LABORATORY CONTROL SAMPLE: 3200336

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
2-Methylphenol(o-Cresol)	ug/kg	1680	1190	71	50-130	
2-Nitroaniline	ug/kg	3360	2530	75	49-130	
2-Nitrophenol	ug/kg	1680	1240	74	50-130	
3&4-Methylphenol(m&p Cresol)	ug/kg	1680	1140	68	50-130	
3,3'-Dichlorobenzidine	ug/kg	3360	2290	68	47-130 I	L
3-Nitroaniline	ug/kg	3360	2610	78	45-130	
4,6-Dinitro-2-methylphenol	ug/kg	3360	2430	72	50-142	
4-Bromophenylphenyl ether	ug/kg	1680	1270	75	55-130	
4-Chloro-3-methylphenol	ug/kg	3360	2390	71	52-130	
4-Chloroaniline	ug/kg	3360	2190	65	49-130	
4-Chlorophenylphenyl ether	ug/kg	1680	1170	70	53-130	
4-Nitroaniline	ug/kg	3360	2330	70	51-130	
4-Nitrophenol	ug/kg	8390	5640	67	40-130	
Acenaphthene	ug/kg	1680	1270	76	56-130	
Acenaphthylene	ug/kg	1680	1320	78	58-130	
Aniline	ug/kg	1680	1030	61	44-130	
Anthracene	ug/kg	1680	1290	77	60-130	
Benzo(a)anthracene	ug/kg	1680	1430	85	59-130	
Benzo(b)fluoranthene	ug/kg	1680	1290	77	54-130	
Benzo(g,h,i)perylene	ug/kg	1680	1420	85	59-130	
Benzo(k)fluoranthene	ug/kg	1680	1310	78	54-130	
Benzoic Acid	ug/kg	8390	4200	50	19-130	
Benzyl alcohol	ug/kg	3360	2210	66	50-130	
bis(2-Chloroethoxy)methane	ug/kg	1680	1190	71	55-130	
bis(2-Chloroethyl) ether	ug/kg	1680	1210	72	53-130	
bis(2-Ethylhexyl)phthalate	ug/kg	1680	1430	85	58-130 v	v1
Butylbenzylphthalate	ug/kg	1680	1490	89	46-138 v	v1
Chrysene	ug/kg	1680	1440	86	57-130	
Di-n-butylphthalate	ug/kg	1680	1270	76	57-130	
Di-n-octylphthalate	ug/kg	1680	1520	91	57-130 v	v1
Dibenz(a,h)anthracene	ug/kg	1680	1400	84	60-130	
Dibenzofuran	ug/kg	1680	1250	75	54-130	
Diethylphthalate	ug/kg	1680	1260	75	55-130	
Dimethylphthalate	ug/kg	1680	1240	74	57-130	
Fluoranthene	ug/kg	1680	1240	74	57-130	
Fluorene	ug/kg	1680	1240	74	56-130	
Hexachlorobenzene	ug/kg	1680	1280	76	53-130	
Hexachlorocyclopentadiene	ug/kg	1680	843	50	23-130	
Hexachloroethane	ug/kg	1680	1190	71	48-130	
Indeno(1,2,3-cd)pyrene	ug/kg	1680	1440	86	61-130	
Isophorone	ug/kg	1680	1180	70	49-130	
N-Nitroso-di-n-propylamine	ug/kg	1680	1100	65	52-130	
N-Nitrosodimethylamine	ug/kg	1680	1270	76	45-130	
N-Nitrosodiphenylamine	ug/kg	1680	1290	77	56-130	
Nitrobenzene	ug/kg	1680	1320	79	50-130	
Pentachlorophenol	ug/kg	3360	2180	65	33-130	
Phenanthrene	ug/kg	1680	1300	78	60-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528353

#### LABORATORY CONTROL SAMPLE: 3200336

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Phenol	ug/kg	1680	1250	74	54-130	
Pyrene	ug/kg	1680	1480	88	61-130	
Pyridine	ug/kg	1680	1030	62	35-130	
2,4,6-Tribromophenol (S)	%			72	18-130	
2-Fluorobiphenyl (S)	%			71	19-130	
2-Fluorophenol (S)	%			72	18-130	
Nitrobenzene-d5 (S)	%			70	21-130	
Phenol-d6 (S)	%			67	18-130	
Terphenyl-d14 (S)	%			95	15-130	

MATRIX SPIKE SAMPLE:

3200337

<b>D</b>		92527967001	Spike	MS	MS	% Rec	0 11
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/kg	ND	1950	1230	63	30-130	
2,2'-Oxybis(1-chloropropane)	ug/kg	ND	1950	1230	63	30-130	
2,4,5-Trichlorophenol	ug/kg	ND	1950	1380	71	26-130	
2,4,6-Trichlorophenol	ug/kg	ND	1950	1220	63	23-130	
2,4-Dichlorophenol	ug/kg	ND	1950	1320	68	29-130	
2,4-Dimethylphenol	ug/kg	ND	1950	1380	71	13-130	
2,4-Dinitrophenol	ug/kg	ND	9710	ND	10	10-131	
2,4-Dinitrotoluene	ug/kg	ND	1950	1420	73	28-130	
2,6-Dinitrotoluene	ug/kg	ND	1950	1470	75	36-130	
2-Chloronaphthalene	ug/kg	ND	1950	1290	66	27-130	
2-Chlorophenol	ug/kg	ND	1950	1340	69	29-130	
2-Methylnaphthalene	ug/kg	ND	1950	1220	63	29-130	
2-Methylphenol(o-Cresol)	ug/kg	ND	1950	1320	68	20-130	
2-Nitroaniline	ug/kg	ND	3880	2930	75	29-130	
2-Nitrophenol	ug/kg	ND	1950	1380	71	26-130	
3&4-Methylphenol(m&p Cresol)	ug/kg	ND	1950	1250	64	10-176	
3,3'-Dichlorobenzidine	ug/kg	ND	3880	2900	75	15-130 II	_
3-Nitroaniline	ug/kg	ND	3880	2940	76	28-130	
4,6-Dinitro-2-methylphenol	ug/kg	ND	3880	1700	44	15-132	
4-Bromophenylphenyl ether	ug/kg	ND	1950	1290	67	35-130	
4-Chloro-3-methylphenol	ug/kg	ND	3880	2700	69	30-130	
4-Chloroaniline	ug/kg	ND	3880	2510	65	28-130	
4-Chlorophenylphenyl ether	ug/kg	ND	1950	1200	62	32-130	
4-Nitroaniline	ug/kg	ND	3880	2750	71	30-130	
4-Nitrophenol	ug/kg	ND	9710	4760	49	17-130	
Acenaphthene	ug/kg	ND	1950	1310	67	29-130	
Acenaphthylene	ug/kg	ND	1950	1350	69	31-130	
Aniline	ug/kg	ND	1950	1160	60	10-130	
Anthracene	ug/kg	ND	1950	1330	69	33-130	
Benzo(a)anthracene	ug/kg	ND	1950	1460	75	32-130	
Benzo(b)fluoranthene	ug/kg	ND	1950	1320	68	33-130	
Benzo(g,h,i)perylene	ug/kg	ND	1950	1490	77	28-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528353

MATRIX SPIKE SAMPLE:	3200337						
		92527967001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Benzo(k)fluoranthene	ug/kg	ND	1950	1370	71	31-130	
Benzoic Acid	ug/kg	ND	9710	ND	1	10-130	M1
Benzyl alcohol	ug/kg	ND	3880	2440	63	31-130	
bis(2-Chloroethoxy)methane	ug/kg	ND	1950	1310	68	30-130	
bis(2-Chloroethyl) ether	ug/kg	ND	1950	1360	70	68-130	
bis(2-Ethylhexyl)phthalate	ug/kg	ND	1950	1470	76	40-130	v1
Butylbenzylphthalate	ug/kg	ND	1950	1520	78	40-130	v1
Chrysene	ug/kg	ND	1950	1470	76	30-130	
Di-n-butylphthalate	ug/kg	ND	1950	1270	65	41-130	
Di-n-octylphthalate	ug/kg	ND	1950	1540	79	42-130	v1
Dibenz(a,h)anthracene	ug/kg	ND	1950	1530	79	27-130	
Dibenzofuran	ug/kg	ND	1950	1290	67	32-130	
Diethylphthalate	ug/kg	ND	1950	1410	72	40-130	
Dimethylphthalate	ug/kg	ND	1950	1450	75	37-130	
Fluoranthene	ug/kg	ND	1950	1280	66	26-130	
Fluorene	ug/kg	ND	1950	1270	66	31-130	
Hexachlorobenzene	ug/kg	ND	1950	1320	68	29-130	
Hexachlorocyclopentadiene	ug/kg	ND	1950	814	42	10-130	
Hexachloroethane	ug/kg	ND	1950	1280	66	21-130	
Indeno(1,2,3-cd)pyrene	ug/kg	ND	1950	1510	78	28-130	
Isophorone	ug/kg	ND	1950	1300	67	32-130	
N-Nitroso-di-n-propylamine	ug/kg	ND	1950	1230	63	31-130	
N-Nitrosodimethylamine	ug/kg	ND	1950	1350	69	20-130	
N-Nitrosodiphenylamine	ug/kg	ND	1950	1410	72	32-130	
Nitrobenzene	ug/kg	ND	1950	1450	75	25-130	
Pentachlorophenol	ug/kg	ND	3880	1950	50	10-130	
Phenanthrene	ug/kg	ND	1950	1350	70	34-130	
Phenol	ug/kg	ND	1950	1380	71	14-130	
Pyrene	ug/kg	ND	1950	1500	77	31-130	
Pyridine	ug/kg	ND	1950	1180	61	10-130	
2,4,6-Tribromophenol (S)	%				68	18-130	
2-Fluorobiphenyl (S)	%				61	19-130	
2-Fluorophenol (S)	%				65	18-130	
Nitrobenzene-d5 (S)	%				68	21-130	
Phenol-d6 (S)	%				63	18-130	
Terphenyl-d14 (S)	%				82	15-130	

#### SAMPLE DUPLICATE: 3200338

		92527967002	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1-Methylnaphthalene	ug/kg	ND	ND		30	
2,2'-Oxybis(1-chloropropane)	ug/kg	ND	ND		30	
2,4,5-Trichlorophenol	ug/kg	ND	ND		30	
2,4,6-Trichlorophenol	ug/kg	ND	ND		30	
2,4-Dichlorophenol	ug/kg	ND	ND		30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528353

#### SAMPLE DUPLICATE: 3200338

		92527967002	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
2,4-Dimethylphenol	ug/kg				30	
2.4-Dinitrophenol	ua/ka	ND	ND		30	
2.4-Dinitrotoluene	ua/ka	ND	ND		30	
2.6-Dinitrotoluene	ua/ka	ND	ND		30	
2-Chloronaphthalene	ua/ka	ND	ND		30	
2-Chlorophenol	ua/ka	ND	ND		30	
2-Methylnaphthalene	ua/ka	ND	ND		30	
2-Methylphenol(o-Cresol)	ug/kg	ND	ND		30	
2-Nitroaniline	ug/kg	ND	ND		30	
2-Nitrophenol	ug/kg	ND	ND		30	
3&4-Methylphenol(m&p Cresol)	ug/kg	ND	ND		30	
3 3'-Dichlorobenzidine	ug/kg	ND	ND		30	П
3-Nitroaniline	ug/kg	ND	ND		30	
4 6-Dinitro-2-methylphenol	ug/kg	ND	ND		30	
4-Bromophenylphenyl ether	ug/kg	ND	ND		30	
4-Chloro-3-methylphenol	ug/kg	ND	ND		30	
4-Chloroaniline	ug/kg	ND	ND		30	
4-Chlorophenylphenyl ether	ug/kg	ND	ND		30	
4-Nitroaniline	ug/kg	ND			30	
4-Nitrophenol	ug/kg	ND			30	
Acenaphthene	ug/kg	ND			30	
Acenaphthylene	ug/kg				30	
Acenaphilipene	ug/kg				30	
Anthracono	ug/kg				30	
Ronzo(a)anthracana	ug/kg		ND		30	
Benzo(b)fluoranthono	ug/kg				30	
	ug/kg				30	
Benzo(k)fluorenthene	ug/kg		ND		30	
Benzoic Asid	ug/kg		ND		30	
Benzul alashal	ug/kg		ND		30	
benzyi alconol	ug/kg		ND		30	
bis(2-Chloroethul) other	ug/kg		ND		30	
bis(2-Chioroethyr) ether	ug/kg		ND		30	v4
Dis(2-Ethylnexyl)phinalate	ug/kg		ND		30	
Butylbenzylphthalate	ug/kg		ND		30	VI
Chrysene Dia butulahthalata	ug/kg		ND		30	
Di-n-butyiphthalate	ug/kg		ND		30	
Di-n-octylphthalate	ug/kg		ND		30	V1
Dibenz(a,n)anthracene	ug/kg		ND		30	
Dibenzoturan Distlada latha lata	ug/kg		ND		30	
	ug/kg				30	
Dimethylphthalate	ug/kg	ND	ND		30	
	ug/kg	ND	ND		30	
Fluorene	ug/kg	ND	ND		30	
Hexachlorobenzene	ug/kg	ND	ND		30	
Hexachlorocyclopentadiene	ug/kg	ND	ND		30	
Hexachloroethane	ug/kg	ND	ND		30	
Indeno(1,2,3-cd)pyrene	ug/kg	ND	ND		30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528353

#### SAMPLE DUPLICATE: 3200338

	92527967002	Dup		Max	
Parameter Uni	ts Result	Result	RPD	RPD	Qualifiers
Isophorone ug/l	(g ND	ND		30	
N-Nitroso-di-n-propylamine ug/ł	kg ND	ND		30	
N-Nitrosodimethylamine ug/ł	kg ND	ND		30	
N-Nitrosodiphenylamine ug/l	kg ND	ND		30	
Nitrobenzene ug/ł	kg ND	ND		30	
Pentachlorophenol ug/ł	kg ND	ND		30	
Phenanthrene ug/l	kg ND	ND		30	
Phenol ug/l	kg ND	ND		30	
Pyrene ug/l	kg ND	ND		30	
Pyridine ug/l	kg ND	ND		30	
2,4,6-Tribromophenol (S) %	67	68			
2-Fluorobiphenyl (S) %	62	65			
2-Fluorophenol (S) %	64	71			
Nitrobenzene-d5 (S) %	67	73			
Phenol-d6 (S) %	61	67			
Terphenyl-d14 (S) %	94	92			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**


# **QUALITY CONTROL DATA**

Project:	FORMER BRAML	ETTE MGP J2103	0498					
Pace Project No.:	92528353							
QC Batch:	607682		Analysis Meth	od:	SW-846			
QC Batch Method:	SW-846		Analysis Desc	ription:	Dry Weight/Per	cent Moisture		
			Laboratory:		Pace Analytical	Services - Cha	arlotte	
Associated Lab Sar	mples: 92528353	001, 92528353002	2, 92528353003, 92	528353004				
SAMPLE DUPLICA	TE: 3201328							
_			92528230001	Dup		Max		
Parar	neter	Units	Result	Result	RPD	RPD	Qualifiers	_
Percent Moisture		%	26.7	27.	0	1	25 N2	
SAMPLE DUPLICA	TE: 3201329							
			92528389002	Dup		Max		
Parar	neter	Units	Result	Result	RPD	RPD	Qualifiers	
Percent Moisture		%	15.9	16.	9	6	25 N2	-

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



# QUALIFIERS

Project: FORMER BRAMLETTE MGP J21030498

Pace Project No.: 92528353

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### ANALYTE QUALIFIERS

- IH This analyte exceeded secondary source verification criteria high for the initial calibration. The reported results should be considered an estimated value.
- IK The recalculated concentration of the calibration standard(s) did not meet method acceptance criteria; this result should be considered an estimated value.
- IL This analyte exceeded secondary source verification criteria low for the initial calibration. The reported results should be considered an estimated value.
- L1 Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- N2 The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.
- v1 The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.
- v2 The continuing calibration verification was below the method acceptance limit. The analyte was not detected in the associated samples and the sensitivity of the instrument was verified with a reporting limit check standard.
- v3 The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have low bias.



# QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:FORMER BRAMLETTE MGP J21030498Pace Project No.:92528353

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92528353001	RI-SB-19_SO_0.5-1.0_20210315	EPA 3546	607492	EPA 8270E	607663
92528353002	RI-SB-19_SO_5.5-6.0_20210315	EPA 3546	607492	EPA 8270E	607663
92528353003	RI-SB-20_SO_0.5-1.0_20210315	EPA 3546	607492	EPA 8270E	607663
92528353004	RI-SB-20_SO_5.5-6.0_20210315	EPA 3546	607492	EPA 8270E	607663
92528353005	TRIP BLANK	EPA 8260D	608197		
92528353001	RI-SB-19_SO_0.5-1.0_20210315	EPA 5035A/5030B	608035	EPA 8260D	608070
92528353002	RI-SB-19_SO_5.5-6.0_20210315	EPA 5035A/5030B	607623	EPA 8260D	607658
92528353003	RI-SB-20_SO_0.5-1.0_20210315	EPA 5035A/5030B	607623	EPA 8260D	607658
92528353004	RI-SB-20_SO_5.5-6.0_20210315	EPA 5035A/5030B	607623	EPA 8260D	607658
92528353001	RI-SB-19_SO_0.5-1.0_20210315	SW-846	607682		
92528353002	RI-SB-19_SO_5.5-6.0_20210315	SW-846	607682		
92528353003	RI-SB-20_SO_0.5-1.0_20210315	SW-846	607682		
92528353004	RI-SB-20_SO_5.5-6.0_20210315	SW-846	607682		

Pace Analytical	* Sample Cond	ition Upon	ame: Receipt(SCUF	Document Revised: October 28, 2020 Page 1 of 2 Issuing Authority:
	F-CA	R-CS-033-1	Rev.07	Pace Carolinas Quality Office
Laboratory receiving samples: Asheville Eden Gre	eenwood 🗌 Huntersv	ville 🗹	Raleigh 🗌	Mechanicsville Atlanta Kernersville
Sample Condition Client Nar Upon Receipt	ne: Syntern	a	Proje	ct #: WO#: 92528353
Courier: Fed Ex Commercial Pace	UPS USPS			92528353
ustody Seal Present? Yes	No Seals Intact?	Yes	<b>⊡</b> No	Date/Initials Person Examining Contents: 3-18-21
acking Material: Bubble Wra	p Bubble Bags	None	Other	Biological Tissue Frozen?
iermometer:	64 Type of Ice		et 🗌 Blue	Yes No AN/A
ooler Temp:	Add/Subtract (°C) <u>0.0°C</u>	_		Temp should be above freezing to 6°C
DA Regulated Soil ( 🔲 N/A, water sa d samples originate in a quarantine zon Yes 🖉No	mple) e within the United States: CA,	NY, or SC (o	check maps)?	Did samples originate from a foreign source (internationally, including Hawaii and Puerto Rico)?  Yes  No
				Comments/Discrepancy:
Chain of Custody Present?	<b>⊉</b> Ves	ONO [	]N/A 1.	
Samples Arrived within Hold Time?	Ves		]N/A 2.	
Short Hold Time Analysis (<72 hr.)?	Yes	No [	N/A 3.	
Rush Turn Around Time Requested	Tyes	DNO C	]N/A 4.	
Sufficient Volume?	Ves		]N/A 5.	
Correct Containers Used? -Pace Containers Used?	⊠Yes ⊒Yes		]N/A 6. ]N/A	
Containers Intact?	2 Yes		]N/A 7.	
Dissolved analysis: Samples Field Filt	ered? Ves	No E	N/A 8.	
Sample Labels Match COC?	Øves ≪1	□No [	]N/A 9.	
-includes Date/Time/ID/Analysis	Matrix: OL	100	-	
Headspace in VOA Vials (>5-6mm)? Trip Blank Present?	Ves Ves		IN/A 10.	
Trip Blank Custody Seals Present?	⊡res ⊡7es		A 3 18	
COMMENTS/SAMPLE DISCREPANCY				Field Data Required? 🗌 Yes 🔲 No
			Lo	t ID of split containers:
IENT NOTIFICATION/RESOLUTION				
erson contacted:			Date/Time:	
Project Manager SCURF Review:				Date:

			P	Pac	) ce An	alytic	cal"			Document Name: Sample Condition Upon Receip Document No.: F-CAR-CS-033-Rev.07				ipt(SC	UR)	_	Dad	Pace	nt Rev P Issui Caro	vised: Page 2 Ing Au linas	Octo 2 of 2 uthor Quali	ity: ity Of	.8, 202 fice	20				
* V 5: E) *	Chec erific amp ccepti *Bot	ck ma ed an les. lons: V	ark ti nd w VOA, C half	op h ithin olifor of b	malf of the m, TC	of bo acc oc, oil s to l	x if p epta l and ( list n	oH an nce i Grease	nd/o rang e, DRC er o	Provide chlorination is a service of preservation is a service of preservation is a service of bottles a service o						Pro	ject	#	PM: CLI	O#	H1 : 92	92 2-Du	25 Dake	28 Lue Ene	33 Dato	53	<b>3</b> 03/2	2/2
ltem#	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP45-125 mL Plastic H2SO4 (pH < 2) (Cl-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP42-125 mL Plastic ZN Acetate & NaOH (>9)	BP4C-125 mL Plastic NaOH (pH > 12) (Cl-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCI (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG1S-1 liter Amber H2SO4 (pH < 2)	AG3S-250 mL Amber H2SO4 (pH < 2)	AG3A(DG3A)-250 mL Amber NH4Cl (N/A)(Cl-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na252O3 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SP5T-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A – lab)		BP3A-250 mL Plastic (NH2)2504 (9.3-9.7)	AGOU-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
0	1	-	-	-	1	1	1		1		1	-	1	1	1	-	-	-	-	-	3	5		1		-	-	
			11		1	K	1	1	1		1		1	1	1						3			7				
1	1				7	1	K	1	1				1	1							3	-		1				
	1				1	Z		$\langle \rangle$	1		1		1	7							3			7	$\sum$			
					1	1	K	V.			1		$\overline{)}$	1	1	2					-			7				
					1	1					1		1	1	1				-					1		8	1	
					1						1		1	1	7					61		( in	10	1	$\square$			F U
1					1	N				Æ,	1		1	1										1				
1						$\square$	$\square$			21			1	1										1	$\backslash$			
0										14			1	1										1	$\backslash$			
1							$\backslash$	$\backslash$					1	1				Ĩ						1				
.2	1										1		1	1										1		. 11		
									рН	Adj	ustr	nen	t Lop	g foi	Pre	serv	/ed	Sam	ples									
Sa	mple	ID	Тур	e of P	reserv	ative	pl	H upor	n recei	ipt.	Date	prese	ervatio	on adj	usted	1	ime p ac	reserv ljusted	ation d		Amo	unt o a	f Pres dded	ervati	ve		Lot #	
_			2		_		-			_						-			-									

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

		"Ca, Mg		12	11	10		00 -	1 0	U1	4	ω	N	,	ITEM #				- monthe	Phone	Email	Suite	Compa	Requi
		Fe, Mn + Hardness	ADDITIONAL COMMENTS							Trip Blank	RI-SB-20_SO_5.5-6.0_20210315	RI-SB-20_SO_0.5-1.0_20210315	RI-SB-19_S0_5.5-6.0_20210315	RI-SB-19_SO_0.5-1.0_20210315	SAMPLE ID One Character per box. (A-Z, 0-9 /, -) Sample ids must be unique				area poe pare p-day IAT	Fax	o tking@synterracorp.com	220 Greenville SC 20601	ny Synterra	ed Client Information:
	Con 19	lum.	REL												SouldSolid St. Oli Ar AR AR Other OT Tissue TS	Water WT Waste Water WW Product P	MATRIX CODE		Project Numb	Project Name	Purchase Or	Copy To:	Report To:	Required Provided Pro
	NX.	1 AV	INQU	-	-	+	-	-	-	WTG	SL G	SL G	SLG	SL G	MATRIX CODE (see	valid cod	des lo le	fl)	ē	1	ion #	Hea	Tom	oject
~	1	1-1	ISHED BY /	A		T	T		1	3/17/202	3/15/202	3/15/202	3/15/202	3/15/202	SAMPLE TYPE (G=C	GRAB C	COM	2)		Former Br		ther Smith	King	Information
SAMPLER	Sell a	- h	AFFILIATIC							1	1 1435	1 1430	1 1420	1 1415	TIME		COLLE		00.273	amlette N		3		
NAME AND Name of S	3 3	U u	Ň							Ï.	ł	1	1	1	DATE		CTED		1.00.08	IGP				
AMPL	17/2	115/	DATE							£	b.	r.	1	Ĩ.	TIME									
ER:	2 12 12	12													SAMPLE TEMP AT CO	LLECTIC	DN							
N N	120	CI ac	=	_		+	+	-		10	-	**	4	4	# OF CONTAINERS				Pace	Pace	Addr	Com	Atten	Sect
101	11200	0	m	-	+	+	+	+			+	-	-		H2SO4				Profi	Proje	SSE	VIEC	tion	ion C
	DO-	ALIA					1				+		-		HNO3	-	T	L	0井	e Ma		Name		
No Co	163	1X			1	1									HCI		rese	L	17	nage		-	1001	tion
Nit	A L	17	A												NaOH		vati		54				I	
	Nº4	2	CEPT	-	-	-	+	-			×	×	×	×	Na2S2O3	1	ves			Kev			l	
P	AL.	101	ED B			-	-	1	-	-	-	-	-	-	Methanol	-				I			L	
	JUS P	110	AIN	-		-	-	-	_	-	-		-	-	Analyses Test	t	Y/N	Н		Prrin			ł	
	2 Å L	to	FFILL				1			P	×	×	×	×	8260	-			4	2			L	
DATE	91	Càc -	ATION					1.1		2	×	× :	×	×	8270			1,					L	
Signe	N	150	-	-	-	-		-	-	*	-	-	-	-	Trip Blank			eque					L	
ä.		Chris.	-	-	+	-	-		-	+	+	+	+	+		-	-	sted	+	-	-			
5	N en 10	4							1	+	1	+	+	1		-		Analy						
1	7/2	15/2	DATE										1			-		sis F						
2	N Ta L	-						14										Itered		П				
	19 2	1	-	-							-							d (Y)		П				
	550	00	IME	+	-	-		$\left  \right $	_	-	+	+	+	+		-		S		П	7		_	_
		-	-	-	-	-	-	$\left  \right $	+	+	-	-	+	+					State		equia		Pa	
TEMP in C	2		F	-		-	-	e - 4	1	-	-	-	-		Residual Chlorine (Y/N	N)	-	4	SC SC		atory		ige :	
Received on			SAM					Π		T	T	T	Τ	ť	in a second live	.,			catio		Agen			
(Y/N)			PLE															8	3	11	C.		4	
Custody Sealed			CONE																					
Cooler (Y/N)			ITIO																				Q.	
		-	5		1			1	1				1	1						1 I			1	



Pace Analytical Services, LLC 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

April 28, 2021

Program Manager Duke Energy 13339 Hagers Ferry Road Bldg. 7405 MG30A2 Huntersville, NC 28078

RE: Project: FORMER BRAMLETTE MGP Pace Project No.: 92531096

Dear Program Manager:

Enclosed are the analytical results for sample(s) received by the laboratory on April 02, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Charlotte

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kan slang

Kevin Herring kevin.herring@pacelabs.com 1(704)875-9092 HORIZON Database Administrator

Enclosures

cc: Tom King Amber Lipsky Program Manager, Duke Energy Mike Mastbaum Todd Plating, Synterra Rick Powell B. Russo Heather Smith





Pace Analytical Services, LLC 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

## CERTIFICATIONS

Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

#### Pace Analytical Services Charlotte

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12 South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221



# SAMPLE SUMMARY

## Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92531096001	RI-SB-31_SO_0.5-1.0_20210317	Solid	03/17/21 10:25	04/02/21 09:40
92531096002	RI-SB-31_SO_5.5-6.0_20210317	Solid	03/17/21 10:30	04/02/21 09:40
92531096003	RI-SB-32_SO_0.5-1.0_20210317	Solid	03/17/21 10:50	04/02/21 09:40
92531096004	RI-SB-32_SO_5.5-6.0_20210317	Solid	03/17/21 10:55	04/02/21 09:40
92531096005	TRIP BLANK	Water	04/02/21 00:00	04/02/21 09:40



Pace Analytical Services, LLC 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

# SAMPLE ANALYTE COUNT

Project: FORMER BRAMLETTE MGP

Pace Project No.:	92531096
-------------------	----------

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92531096001		EPA 8270E	PKS	4	PASI-C
		EPA 8270E	SEM	68	PASI-C
		EPA 8260D	CL	70	PASI-C
		SW-846	KDF	1	PASI-C
92531096002	RI-SB-31_SO_5.5-6.0_20210317	EPA 8270E	PKS	4	PASI-C
		EPA 8270E	SEM	68	PASI-C
		EPA 8260D	CL	70	PASI-C
		SW-846	KDF	1	PASI-C
92531096003	RI-SB-32_SO_0.5-1.0_20210317	EPA 8270E	PKS	4	PASI-C
		EPA 8270E	SEM	68	PASI-C
		EPA 8260D	CL	70	PASI-C
		SW-846	KDF	1	PASI-C
92531096004	RI-SB-32_SO_5.5-6.0_20210317	EPA 8270E	PKS	4	PASI-C
		EPA 8270E	SEM	68	PASI-C
		EPA 8260D	CL	70	PASI-C
		SW-846	KDF	1	PASI-C
92531096005	TRIP BLANK	EPA 8260D	BSH	62	PASI-C

PASI-C = Pace Analytical Services - Charlotte



# SUMMARY OF DETECTION

Project: FORMER BRAMLETTE MGP

Pace Project No.: 92

92531096

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92531096001	RI-SB-31_SO_0.5-1.0_20210317					
EPA 8270E	Benzo(a)pyrene	10.4J	ug/kg	11.5	04/25/21 12:20	H3
EPA 8270E	Phenanthrene	177J	ug/kg	382	04/26/21 11:27	H3
EPA 8260D	Acetone	61.2J	ug/kg	114	04/22/21 20:53	H3
EPA 8260D	p-Isopropyltoluene	7.1	ug/kg	5.7	04/22/21 20:53	H3
EPA 8260D	Naphthalene	14.9	ug/kg	5.7	04/22/21 20:53	H3
EPA 8260D	Styrene	192	ug/kg	5.7	04/22/21 20:53	H3
EPA 8260D	Toluene	8.6	ug/kg	5.7	04/22/21 20:53	H3
SW-846	Percent Moisture	14.5	%	0.10	04/22/21 15:03	N2
92531096002	RI-SB-31_SO_5.5-6.0_20210317					
EPA 8270E	Benzo(a)pyrene	132	ug/kg	13.7	04/26/21 17:37	H3
EPA 8260D	Acetone	185J	ug/kg	188	04/27/21 06:59	H3
EPA 8260D	Benzene	31.1	ug/kg	9.4	04/27/21 06:59	H3
EPA 8260D	2-Butanone (MEK)	64.0J	ug/kg	188	04/27/21 06:59	H3
EPA 8260D	Chlorobenzene	30.0	ug/kg	9.4	04/27/21 06:59	H3
EPA 8260D	1,4-Dichlorobenzene	6.0J	ug/kg	9.4	04/27/21 06:59	H3
EPA 8260D	Ethylbenzene	103	ug/kg	9.4	04/27/21 06:59	H3
EPA 8260D	Isopropylbenzene (Cumene)	193	ug/kg	9.4	04/27/21 06:59	H3
EPA 8260D	p-Isopropyltoluene	98.1	ug/kg	9.4	04/27/21 06:59	H3
EPA 8260D	Naphthalene	959	ug/kg	9.4	04/27/21 06:59	H3
EPA 8260D	n-Propylbenzene	31.5	ug/kg	9.4	04/27/21 06:59	H3
EPA 8260D	Toluene	214	ug/kg	9.4	04/27/21 06:59	H3
EPA 8260D	1,2,4-Trimethylbenzene	207	ug/kg	9.4	04/27/21 06:59	H3
EPA 8260D	1,3,5-Trimethylbenzene	82.7	ug/kg	9.4	04/27/21 06:59	H3
EPA 8260D	Xylene (Total)	632	ug/kg	18.8	04/27/21 06:59	
EPA 8260D	m&p-Xylene	396	ug/kg	18.8	04/27/21 06:59	H3
EPA 8260D	o-Xylene	237	ug/kg	9.4	04/27/21 06:59	H3
SW-846	Percent Moisture	25.8	%	0.10	04/22/21 15:04	N2
92531096003	RI-SB-32_SO_0.5-1.0_20210317					
EPA 8270E	Benzo(a)pyrene	13.9	ug/kg	11.8	04/25/21 13:48	H3
EPA 8260D	p-Isopropyltoluene	25.2	ug/kg	5.8	04/22/21 21:11	H3
EPA 8260D	Naphthalene	8.3	ug/kg	5.8	04/22/21 21:11	H3
EPA 8260D	Toluene	4.6J	ug/kg	5.8	04/22/21 21:11	H3
EPA 8260D	1,2,4-Trimethylbenzene	11.8	ug/kg	5.8	04/22/21 21:11	H3
EPA 8260D	Xylene (Total)	10.1J	ug/kg	11.6	04/22/21 21:11	
EPA 8260D	m&p-Xylene	6.8J	ug/kg	11.6	04/22/21 21:11	H3
EPA 8260D	o-Xylene	3.3J	ug/kg	5.8	04/22/21 21:11	H3
SW-846	Percent Moisture	15.0	%	0.10	04/22/21 15:04	N2
92531096004	RI-SB-32_SO_5.5-6.0_20210317					
EPA 8270E	Benzo(a)pyrene	11.7J	ug/kg	12.1	04/25/21 14:10	H3
EPA 8270E	Acenaphthene	219J	ug/kg	402	04/26/21 12:50	H3
EPA 8270E	Benzo(a)anthracene	525	ug/kg	402	04/26/21 12:50	H3
EPA 8270E	Benzo(b)fluoranthene	999	ug/kg	402	04/26/21 12:50	H3
EPA 8270E	Benzo(g,h,i)perylene	782	ug/kg	402	04/26/21 12:50	H3
EPA 8270E	Benzo(k)fluoranthene	400J	ug/kg	402	04/26/21 12:50	H3
EPA 8270E	Chrysene	413	ug/kg	402	04/26/21 12:50	H3
EPA 8270E	Fluoranthene	225J	ug/kg	402	04/26/21 12:50	H3



## SUMMARY OF DETECTION

Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92531096004	RI-SB-32_SO_5.5-6.0_20210317					
EPA 8270E	Fluorene	169J	ug/kg	402	04/26/21 12:50	H3
EPA 8270E	Indeno(1,2,3-cd)pyrene	717	ug/kg	402	04/26/21 12:50	H3
EPA 8270E	1-Methylnaphthalene	304J	ug/kg	402	04/26/21 12:50	H3
EPA 8270E	2-Methylnaphthalene	319J	ug/kg	402	04/26/21 12:50	H3
EPA 8270E	Phenanthrene	398J	ug/kg	402	04/26/21 12:50	H3
EPA 8270E	Pyrene	294J	ug/kg	402	04/26/21 12:50	H3
EPA 8260D	Acetone	62.5J	ug/kg	116	04/22/21 21:29	H3
EPA 8260D	Ethylbenzene	5.7J	ug/kg	5.8	04/22/21 21:29	H3
EPA 8260D	p-Isopropyltoluene	32.1	ug/kg	5.8	04/22/21 21:29	H3
EPA 8260D	Naphthalene	18.3	ug/kg	5.8	04/22/21 21:29	H3
EPA 8260D	n-Propylbenzene	178	ug/kg	5.8	04/22/21 21:29	H3
EPA 8260D	Toluene	5.1J	ug/kg	5.8	04/22/21 21:29	H3
EPA 8260D	1,2,4-Trimethylbenzene	22.4	ug/kg	5.8	04/22/21 21:29	H3
EPA 8260D	Xylene (Total)	22.4	ug/kg	11.6	04/22/21 21:29	
EPA 8260D	m&p-Xylene	10.9J	ug/kg	11.6	04/22/21 21:29	H3
EPA 8260D	o-Xylene	11.5	ug/kg	5.8	04/22/21 21:29	H3
SW-846	Percent Moisture	18.0	%	0.10	04/22/21 15:04	N2



Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

# Method:EPA 8270EDescription:8270E MSSV MW PAH by SIMClient:Duke EnergyDate:April 28, 2021

## **General Information:**

4 samples were analyzed for EPA 8270E by Pace Analytical Services Charlotte. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

## Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

- H3: Sample was received or analysis requested beyond the recognized method holding time.
  - RI-SB-31_SO_0.5-1.0_20210317 (Lab ID: 92531096001)
  - RI-SB-31_SO_5.5-6.0_20210317 (Lab ID: 92531096002)
  - RI-SB-32_SO_0.5-1.0_20210317 (Lab ID: 92531096003)
  - RI-SB-32_SO_5.5-6.0_20210317 (Lab ID: 92531096004)

#### Sample Preparation:

The samples were prepared in accordance with EPA 3546 with any exceptions noted below.

## Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

#### Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

## Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

#### Surrogates:

All surrogates were within QC limits with any exceptions noted below.

## Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

## Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

## Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

## Additional Comments:



Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

Method:EPA 8270EDescription:8270E MSSV MicrowaveClient:Duke EnergyDate:April 28, 2021

## **General Information:**

4 samples were analyzed for EPA 8270E by Pace Analytical Services Charlotte. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

## Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

- H3: Sample was received or analysis requested beyond the recognized method holding time.
  - RI-SB-31_SO_0.5-1.0_20210317 (Lab ID: 92531096001)
  - RI-SB-31_SO_5.5-6.0_20210317 (Lab ID: 92531096002)
  - RI-SB-32_SO_0.5-1.0_20210317 (Lab ID: 92531096003)
  - RI-SB-32_SO_5.5-6.0_20210317 (Lab ID: 92531096004)

#### Sample Preparation:

The samples were prepared in accordance with EPA 3546 with any exceptions noted below.

## Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

#### Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

## Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

## Surrogates:

All surrogates were within QC limits with any exceptions noted below.

## Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

## Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

## Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

## QC Batch: 615749

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 92534135002

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 3240201)
  - Benzoic Acid



## Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

 Method:
 EPA 8270E

 Description:
 8270E MSSV Microwave

 Client:
 Duke Energy

 Date:
 April 28, 2021

# **Duplicate Sample:**

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

#### **Additional Comments:**



Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

Method:EPA 8260DDescription:8260 MSV Low Level SCClient:Duke EnergyDate:April 28, 2021

## General Information:

1 sample was analyzed for EPA 8260D by Pace Analytical Services Charlotte. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

## Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

- H1: Analysis conducted outside the EPA method holding time.
  - TRIP BLANK (Lab ID: 92531096005)

#### Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

#### **Continuing Calibration:**

All criteria were within method requirements with any exceptions noted below.

QC Batch: 615558

v1: The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.

- BLANK (Lab ID: 3239276)
  - Chloroethane
- LCS (Lab ID: 3239277)
  - Chloroethane
- TRIP BLANK (Lab ID: 92531096005)
  - Chloroethane

v3: The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have low bias.

- MS (Lab ID: 3239278)
  - Dichlorodifluoromethane
- MSD (Lab ID: 3239279)
  - Dichlorodifluoromethane

#### Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

## Surrogates:

All surrogates were within QC limits with any exceptions noted below.

## Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

## Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.



Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

Method:EPA 8260DDescription:8260 MSV Low Level SCClient:Duke EnergyDate:April 28, 2021

## QC Batch: 615558

L1: Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.

• LCS (Lab ID: 3239277)

Vinyl acetate

## Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

## Additional Comments:



Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

# Method: EPA 8260D Description: 8260D/5035A/5030B SC Volatiles Client: Duke Energy Date: April 28, 2021

## General Information:

4 samples were analyzed for EPA 8260D by Pace Analytical Services Charlotte. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

## Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

- H3: Sample was received or analysis requested beyond the recognized method holding time.
  - RI-SB-31_SO_0.5-1.0_20210317 (Lab ID: 92531096001)
  - RI-SB-31_SO_5.5-6.0_20210317 (Lab ID: 92531096002)
  - RI-SB-32_SO_0.5-1.0_20210317 (Lab ID: 92531096003)
  - RI-SB-32_SO_5.5-6.0_20210317 (Lab ID: 92531096004)

#### Sample Preparation:

The samples were prepared in accordance with EPA 5035A/5030B with any exceptions noted below.

## Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

#### Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

## Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

## Surrogates:

All surrogates were within QC limits with any exceptions noted below.

## Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

## Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

## Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

## QC Batch: 615494

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 92534491002

- R1: RPD value was outside control limits.
  - MSD (Lab ID: 3243822)
    - 2,2-Dichloropropane



Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

 Method:
 EPA 8260D

 Description:
 8260D/5035A/5030B SC Volatiles

 Client:
 Duke Energy

 Date:
 April 28, 2021

## **Duplicate Sample:**

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

#### Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.



## Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

Sample: RI-SB-31_SO_0.5- 1.0_20210317	Lab ID:	9253109600	1 Collected	d: 03/17/2 ²	10:25	5 Received: 04/	02/21 09:40 Ma	atrix: Solid	
Results reported on a "dry weight"	basis and are	adjusted fo	r percent mo	oisture, sar	nple s	ize and any diluti	ions.		
_			Report						- ·
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270E MSSV MW PAH by SIM	Analytical	Method: EPA	8270E Prepa	aration Met	hod: E	PA 3546			
	Pace Anal	vtical Service	s - Charlotte						
Benzo(a)ovrene	10 4 1	ua/ka	11 5	12	1	04/24/21 15:57	04/25/21 12:20	50-32-8	НЗ
Surrogates	10.40	ug/ng	11.5	1.2		04/24/21 10.07	04/20/21 12.20	50 52 0	110
2-Fluorobiphenyl (S)	52	%	31-130		1	04/24/21 15:57	04/25/21 12:20	321-60-8	
Nitrobenzene-d5 (S)	54	%	32-130		1	04/24/21 15:57	04/25/21 12:20	4165-60-0	
Terphenyl-d14 (S)	47	%	24-130		1	04/24/21 15:57	04/25/21 12:20	1718-51-0	
8270E MSSV Microwave	Analytical	Method: EPA	8270E Prepa	aration Met	hod: E	PA 3546			
	Pace Anal	ytical Service	s - Charlotte						
Acenaphthene	ND	ua/ka	382	134	1	04/23/21 11:32	04/26/21 11:27	83-32-9	H3
Acenaphthylene	ND	ua/ka	382	134	1	04/23/21 11:32	04/26/21 11:27	208-96-8	H3
Aniline	ND	ua/ka	382	149	1	04/23/21 11:32	04/26/21 11:27	62-53-3	H3
Anthracene	ND	ua/ka	382	125	1	04/23/21 11:32	04/26/21 11:27	120-12-7	H3
Benzo(a)anthracene	ND	ua/ka	382	127	1	04/23/21 11:32	04/26/21 11:27	56-55-3	H3
Benzo(b)fluoranthene	ND	ua/ka	382	127	1	04/23/21 11:32	04/26/21 11:27	205-99-2	H3
Benzo(a,h,i)pervlene	ND	ua/ka	382	148	1	04/23/21 11:32	04/26/21 11:27	191-24-2	H3
Benzo(k)fluoranthene	ND	ua/ka	382	134	1	04/23/21 11:32	04/26/21 11:27	207-08-9	H3
Benzoic Acid	ND	ua/ka	1910	821	1	04/23/21 11:32	04/26/21 11:27	65-85-0	H3
Benzvl alcohol	ND	ua/ka	764	290	1	04/23/21 11:32	04/26/21 11:27	100-51-6	H3
4-Bromophenylphenyl ether	ND	ua/ka	382	147	1	04/23/21 11:32	04/26/21 11:27	101-55-3	H3
Butylbenzylphthalate	ND	ua/ka	382	161	1	04/23/21 11:32	04/26/21 11:27	85-68-7	H3
4-Chloro-3-methylphenol	ND	ua/ka	764	269	1	04/23/21 11:32	04/26/21 11:27	59-50-7	H3
4-Chloroaniline	ND	ua/ka	764	300	1	04/23/21 11:32	04/26/21 11:27	106-47-8	H3
bis(2-Chloroethoxy)methane	ND	ua/ka	382	159	1	04/23/21 11:32	04/26/21 11:27	111-91-1	H3
bis(2-Chloroethyl) ether	ND	ua/ka	382	144	1	04/23/21 11:32	04/26/21 11:27	111-44-4	H3
2-Chloronaphthalene	ND	ua/ka	382	152	1	04/23/21 11:32	04/26/21 11:27	91-58-7	H3
2-Chlorophenol	ND	ua/ka	382	144	1	04/23/21 11:32	04/26/21 11:27	95-57-8	H3
4-Chlorophenylphenyl ether	ND	ua/ka	382	142	1	04/23/21 11:32	04/26/21 11:27	7005-72-3	H3
Chrvsene	ND	ua/ka	382	139	1	04/23/21 11:32	04/26/21 11:27	218-01-9	H3
Dibenz(a,h)anthracene	ND	ua/ka	382	147	1	04/23/21 11:32	04/26/21 11:27	53-70-3	H3
Dibenzofuran	ND	ua/ka	382	138	1	04/23/21 11:32	04/26/21 11:27	132-64-9	H3
3.3'-Dichlorobenzidine	ND	ua/ka	764	258	1	04/23/21 11:32	04/26/21 11:27	91-94-1	H3.IL
2.4-Dichlorophenol	ND	ua/ka	382	149	1	04/23/21 11:32	04/26/21 11:27	120-83-2	H3
Diethylphthalate	ND	ua/ka	382	140	1	04/23/21 11:32	04/26/21 11:27	84-66-2	H3
2.4-Dimethylphenol	ND	ua/ka	382	159	1	04/23/21 11:32	04/26/21 11:27	105-67-9	H3
Dimethylphthalate	ND	ua/ka	382	139	1	04/23/21 11:32	04/26/21 11:27	131-11-3	H3
Di-n-butylphthalate	ND	ua/ka	382	129	1	04/23/21 11:32	04/26/21 11:27	84-74-2	H3
4.6-Dinitro-2-methylphenol	ND	ua/ka	764	357	1	04/23/21 11:32	04/26/21 11:27	534-52-1	H3
2,4-Dinitrophenol	ND	ug/ka	1910	1180	1	04/23/21 11:32	04/26/21 11:27	51-28-5	H3
2,4-Dinitrotoluene	ND	ug/ka	382	147	1	04/23/21 11:32	04/26/21 11:27	121-14-2	H3
2.6-Dinitrotoluene	ND	ug/ka	382	140	1	04/23/21 11:32	04/26/21 11:27	606-20-2	H3
Di-n-octylphthalate	ND	ug/ka	382	151	1	04/23/21 11:32	04/26/21 11:27	117-84-0	H3
bis(2-Ethylhexyl)phthalate	ND	ug/ka	382	148	1	04/23/21 11:32	04/26/21 11:27	117-81-7	H3
Fluoranthene	ND	ug/kg	382	131	1	04/23/21 11:32	04/26/21 11:27	206-44-0	H3



Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

Sample: RI-SB-31_SO_0.5- 1.0_20210317	Lab ID:	92531096001	Collecte	d: 03/17/21	10:25	Received: 04/	02/21 09:40 Ma	atrix: Solid	
Results reported on a "dry weight"	" basis and ar	e adjusted for	percent mo	oisture, san	nple s	ize and any diluti	ons.		
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270E MSSV Microwave	Analytical	Method: EPA 8	3270E Prep	aration Met	hod: E	PA 3546			_
	Pace Ana	lytical Services	- Charlotte						
Fluorene	ND	ug/kg	382	134	1	04/23/21 11:32	04/26/21 11:27	86-73-7	H3
Hexachlorobenzene	ND	ug/kg	382	149	1	04/23/21 11:32	04/26/21 11:27	118-74-1	H3
Hexachlorocyclopentadiene	ND	ug/kg	382	219	1	04/23/21 11:32	04/26/21 11:27	77-47-4	H3
Hexachloroethane	ND	ug/kg	382	146	1	04/23/21 11:32	04/26/21 11:27	67-72-1	H3
Indeno(1,2,3-cd)pyrene	ND	ug/kg	382	151	1	04/23/21 11:32	04/26/21 11:27	193-39-5	H3
Isophorone	ND	ug/kg	382	170	1	04/23/21 11:32	04/26/21 11:27	78-59-1	H3
1-Methylnaphthalene	ND	ug/kg	382	134	1	04/23/21 11:32	04/26/21 11:27	90-12-0	H3
2-Methylnaphthalene	ND	ug/kg	382	153	1	04/23/21 11:32	04/26/21 11:27	91-57-6	H3
2-Methylphenol(o-Cresol)	ND	ug/kg	382	156	1	04/23/21 11:32	04/26/21 11:27	95-48-7	H3
3&4-Methylphenol(m&p Cresol)	ND	ug/kg	382	154	1	04/23/21 11:32	04/26/21 11:27	15831-10-4	H3
2-Nitroaniline	ND	ug/kg	1910	313	1	04/23/21 11:32	04/26/21 11:27	88-74-4	H3
3-Nitroaniline	ND	ug/kg	1910	300	1	04/23/21 11:32	04/26/21 11:27	99-09-2	H3
4-Nitroaniline	ND	ug/kg	764	291	1	04/23/21 11:32	04/26/21 11:27	100-01-6	H3
Nitrobenzene	ND	ug/kg	382	177	1	04/23/21 11:32	04/26/21 11:27	98-95-3	H3
2-Nitrophenol	ND	ug/kg	382	166	1	04/23/21 11:32	04/26/21 11:27	88-75-5	H3
4-Nitrophenol	ND	ug/kg	1910	739	1	04/23/21 11:32	04/26/21 11:27	100-02-7	H3
N-Nitrosodimethylamine	ND	ug/kg	382	129	1	04/23/21 11:32	04/26/21 11:27	62-75-9	H3
N-Nitroso-di-n-propylamine	ND	ug/kg	382	144	1	04/23/21 11:32	04/26/21 11:27	621-64-7	H3
N-Nitrosodiphenylamine	ND	ug/kg	382	136	1	04/23/21 11:32	04/26/21 11:27	86-30-6	H3
2,2'-Oxybis(1-chloropropane)	ND	ug/kg	382	182	1	04/23/21 11:32	04/26/21 11:27	108-60-1	H3
Pentachlorophenol	ND	ug/kg	764	374	1	04/23/21 11:32	04/26/21 11:27	87-86-5	H3
Phenanthrene	177J	ug/kg	382	125	1	04/23/21 11:32	04/26/21 11:27	85-01-8	H3
Phenol	ND	ug/kg	382	170	1	04/23/21 11:32	04/26/21 11:27	108-95-2	H3
Pyrene	ND	ug/kg	382	155	1	04/23/21 11:32	04/26/21 11:27	129-00-0	H3
Pyridine	ND	ug/kg	382	120	1	04/23/21 11:32	04/26/21 11:27	110-86-1	H3
2,4,5-Trichlorophenol	ND	ug/kg	382	175	1	04/23/21 11:32	04/26/21 11:27	95-95-4	H3
2,4,6-Trichlorophenol	ND	ug/kg	382	158	1	04/23/21 11:32	04/26/21 11:27	88-06-2	H3
Surrogates		0 0							
Nitrobenzene-d5 (S)	74	%	21-130		1	04/23/21 11:32	04/26/21 11:27	4165-60-0	
2-Fluorobiphenyl (S)	73	%	19-130		1	04/23/21 11:32	04/26/21 11:27	321-60-8	
Terphenyl-d14 (S)	62	%	15-130		1	04/23/21 11:32	04/26/21 11:27	1718-51-0	
Phenol-d6 (S)	66	%	18-130		1	04/23/21 11:32	04/26/21 11:27	13127-88-3	
2-Fluorophenol (S)	62	%	18-130		1	04/23/21 11:32	04/26/21 11:27	367-12-4	
2,4,6-Tribromophenol (S)	66	%	18-130		1	04/23/21 11:32	04/26/21 11:27	118-79-6	
8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA 8	260D Prep	aration Met	hod: E	PA 5035A/5030B			
	Pace Ana	lytical Services	- Charlotte						
Acetone	61.2J	ug/kg	114	36.5	1	04/22/21 11:42	04/22/21 20:53	67-64-1	H3
Benzene	ND	ug/kg	5.7	2.3	1	04/22/21 11:42	04/22/21 20:53	71-43-2	H3
Bromobenzene	ND	ug/kg	5.7	1.9	1	04/22/21 11:42	04/22/21 20:53	108-86-1	H3
Bromochloromethane	ND	ug/kg	5.7	1.7	1	04/22/21 11:42	04/22/21 20:53	74-97-5	H3
Bromodichloromethane	ND	ug/kg	5.7	2.2	1	04/22/21 11:42	04/22/21 20:53	75-27-4	H3
Bromoform	ND	ug/kg	5.7	2.0	1	04/22/21 11:42	04/22/21 20:53	75-25-2	H3



Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

Sample: RI-SB-31_SO_0.5- 1.0_20210317	Lab ID:	92531096007	1 Collecte	d: 03/17/21	10:25	5 Received: 04/	02/21 09:40 Ma	atrix: Solid	
Results reported on a "dry weight	" basis and ar	e adjusted fo	r percent m	oisture, sar	nple s	ize and any diluti	ons.		
Parameters	Results	l Inite	Report	MDI	DE	Prepared	Analyzed	CAS No	Qual
8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA	8260D Prep	paration Met	hod: E	PA 5035A/5030B			
	Pace Anal	ytical Service	s - Charlotte						
Bromomethane	ND	ug/kg	11.4	9.0	1	04/22/21 11:42	04/22/21 20:53	74-83-9	H3
2-Butanone (MEK)	ND	ug/kg	114	27.3	1	04/22/21 11:42	04/22/21 20:53	78-93-3	H3
n-Butylbenzene	ND	ug/kg	5.7	2.7	1	04/22/21 11:42	04/22/21 20:53	104-51-8	H3
sec-Butylbenzene	ND	ug/kg	5.7	2.5	1	04/22/21 11:42	04/22/21 20:53	135-98-8	H3
tert-Butylbenzene	ND	ug/kg	5.7	2.0	1	04/22/21 11:42	04/22/21 20:53	98-06-6	H3
Carbon tetrachloride	ND	ua/ka	5.7	2.1	1	04/22/21 11:42	04/22/21 20:53	56-23-5	H3
Chlorobenzene	ND	ug/kg	5.7	1.1	1	04/22/21 11:42	04/22/21 20:53	108-90-7	H3
Chloroethane	ND	ua/ka	11.4	4.4	1	04/22/21 11:42	04/22/21 20:53	75-00-3	H3
Chloroform	ND	ua/ka	5.7	3.5	1	04/22/21 11:42	04/22/21 20:53	67-66-3	H3
Chloromethane	ND	ua/ka	11.4	4.8	1	04/22/21 11:42	04/22/21 20:53	74-87-3	H3
2-Chlorotoluene	ND	ua/ka	5.7	2.0	1	04/22/21 11:42	04/22/21 20:53	95-49-8	H3
4-Chlorotoluene	ND	ug/kg	5.7	1.0	1	04/22/21 11:42	04/22/21 20:53	106-43-4	H3
1 2-Dibromo-3-chloropropane	ND	ug/kg	5.7	22	1	04/22/21 11.42	04/22/21 20:53	96-12-8	H3
Dibromochloromethane	ND	ug/kg	5.7	3.2	1	04/22/21 11:42	04/22/21 20:53	124-48-1	H3
1 2-Dibromoethane (EDB)	ND	ug/kg	5.7	2.5	1	04/22/21 11:42	04/22/21 20:53	106-93-4	НЗ
Dibromomethane		ug/kg	5.7	1.0	1	04/22/21 11:42	04/22/21 20:53	74-95-3	НЗ
1 2-Dichlorobenzene		ug/kg	5.7	2.0	1	04/22/21 11:42	04/22/21 20:53	95-50-1	НЗ
1.3-Dichlorobenzene		ug/kg	5.7	2.0	1	04/22/21 11.42	04/22/21 20:53	5/1-73-1	H3
1 4-Dichlorobenzene		ug/kg	5.7	1.0	1	04/22/21 11.42	04/22/21 20:53	106-46-7	H3
Dichlorodifluoromothana		ug/kg	11 /	1.5	1	04/22/21 11.42	04/22/21 20:53	75 71 9	113 LI2
		ug/kg	5.7	2.5	1	04/22/21 11.42	04/22/21 20.55	75-71-0	113 LI2
1, 1-Dichloroethane		ug/kg	5.7	2.3	1	04/22/21 11.42	04/22/21 20.55	107.06.2	பி
1,2-Dichloroethane		ug/kg	5.7	3.0	1	04/22/21 11.42	04/22/21 20.55	75 25 4	113 LI2
		ug/kg	5.7	2.3	1	04/22/21 11.42	04/22/21 20.55	15-55-4	по 110
cis-1,2-Dichloroethene	ND	ug/kg	5.7	1.9	1	04/22/21 11:42	04/22/21 20.53	100-09-2	п <u>э</u>
	ND	ug/kg	5.7	2.0	1	04/22/21 11:42	04/22/21 20.53	100-00-0	п <u>э</u>
1,2-Dichlerence	ND	ug/kg	5.7	1.7	1	04/22/21 11:42	04/22/21 20:53	18-81-5	H3
1,3-Dichloropropane	ND	ug/kg	5.7	1.8	1	04/22/21 11:42	04/22/21 20:53	142-28-9	
2,2-Dichloropropane	ND	ug/kg	5.7	1.9	1	04/22/21 11:42	04/22/21 20:53	594-20-7	H3
	ND	ug/kg	5.7	2.7	1	04/22/21 11:42	04/22/21 20:53	563-58-6	H3
cis-1,3-Dichloropropene	ND	ug/kg	5.7	1.5	1	04/22/21 11:42	04/22/21 20:53	10061-01-5	H3
trans-1,3-Dichloropropene	ND	ug/kg	5.7	2.0	1	04/22/21 11:42	04/22/21 20:53	10061-02-6	H3
Disopropyl ether	ND	ug/kg	5.7	1.5	1	04/22/21 11:42	04/22/21 20:53	108-20-3	H3
Ethylbenzene	ND	ug/kg	5.7	2.7	1	04/22/21 11:42	04/22/21 20:53	100-41-4	H3
Hexachloro-1,3-butadiene	ND	ug/kg	11.4	9.3	1	04/22/21 11:42	04/22/21 20:53	87-68-3	H3
2-Hexanone	ND	ug/kg	56.9	5.5	1	04/22/21 11:42	04/22/21 20:53	591-78-6	H3
Isopropylbenzene (Cumene)	ND	ug/kg	5.7	1.9	1	04/22/21 11:42	04/22/21 20:53	98-82-8	H3
p-lsopropyltoluene	7.1	ug/kg	5.7	2.8	1	04/22/21 11:42	04/22/21 20:53	99-87-6	H3
Methylene Chloride	ND	ug/kg	22.8	15.6	1	04/22/21 11:42	04/22/21 20:53	75-09-2	H3
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	56.9	5.5	1	04/22/21 11:42	04/22/21 20:53	108-10-1	H3
Methyl-tert-butyl ether	ND	ug/kg	5.7	2.1	1	04/22/21 11:42	04/22/21 20:53	1634-04-4	H3
Naphthalene	14.9	ug/kg	5.7	3.0	1	04/22/21 11:42	04/22/21 20:53	91-20-3	H3
n-Propylbenzene	ND	ug/kg	5.7	2.0	1	04/22/21 11:42	04/22/21 20:53	103-65-1	H3
Styrene	192	ug/kg	5.7	1.5	1	04/22/21 11:42	04/22/21 20:53	100-42-5	H3



Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

Sample: RI-SB-31_SO_0.5- 1.0_20210317	Lab ID:	92531096001	Collected:	03/17/21	10:25	Received: 04/	02/21 09:40 Ma	atrix: Solid	
Results reported on a "dry weight	" basis and are	e adjusted for	percent moi	sture, san	nple si	ze and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA 8	260D Prepa	ration Metl	hod: EF	PA 5035A/5030B			
	Pace Anal	ytical Services	- Charlotte						
1,1,1,2-Tetrachloroethane	ND	ug/kg	5.7	2.2	1	04/22/21 11:42	04/22/21 20:53	630-20-6	H3
1,1,2,2-Tetrachloroethane	ND	ug/kg	5.7	1.5	1	04/22/21 11:42	04/22/21 20:53	79-34-5	H3
Tetrachloroethene	ND	ug/kg	5.7	1.8	1	04/22/21 11:42	04/22/21 20:53	127-18-4	H3
Toluene	8.6	ug/kg	5.7	1.6	1	04/22/21 11:42	04/22/21 20:53	108-88-3	H3
1,2,3-Trichlorobenzene	ND	ug/kg	5.7	4.6	1	04/22/21 11:42	04/22/21 20:53	87-61-6	H3
1,2,4-Trichlorobenzene	ND	ug/kg	5.7	4.8	1	04/22/21 11:42	04/22/21 20:53	120-82-1	H3
1,1,1-Trichloroethane	ND	ug/kg	5.7	3.0	1	04/22/21 11:42	04/22/21 20:53	71-55-6	H3
1,1,2-Trichloroethane	ND	ug/kg	5.7	1.9	1	04/22/21 11:42	04/22/21 20:53	79-00-5	H3
Trichloroethene	ND	ug/kg	5.7	1.5	1	04/22/21 11:42	04/22/21 20:53	79-01-6	H3
Trichlorofluoromethane	ND	ug/kg	5.7	3.1	1	04/22/21 11:42	04/22/21 20:53	75-69-4	H3
1,2,3-Trichloropropane	ND	ug/kg	5.7	2.9	1	04/22/21 11:42	04/22/21 20:53	96-18-4	H3
1,2,4-Trimethylbenzene	ND	ug/kg	5.7	1.6	1	04/22/21 11:42	04/22/21 20:53	95-63-6	H3
1,3,5-Trimethylbenzene	ND	ug/kg	5.7	1.9	1	04/22/21 11:42	04/22/21 20:53	108-67-8	H3
Vinyl acetate	ND	ug/kg	56.9	4.1	1	04/22/21 11:42	04/22/21 20:53	108-05-4	H3
Vinyl chloride	ND	ug/kg	11.4	2.9	1	04/22/21 11:42	04/22/21 20:53	75-01-4	H3
Xylene (Total)	ND	ug/kg	11.4	3.2	1	04/22/21 11:42	04/22/21 20:53	1330-20-7	
m&p-Xylene	ND	ug/kg	11.4	3.9	1	04/22/21 11:42	04/22/21 20:53	179601-23-1	H3
o-Xylene	ND	ug/kg	5.7	2.5	1	04/22/21 11:42	04/22/21 20:53	95-47-6	H3
Surrogates									
Toluene-d8 (S)	101	%	70-130		1	04/22/21 11:42	04/22/21 20:53	2037-26-5	
4-Bromofluorobenzene (S)	105	%	69-134		1	04/22/21 11:42	04/22/21 20:53	460-00-4	
1,2-Dichloroethane-d4 (S)	104	%	70-130		1	04/22/21 11:42	04/22/21 20:53	17060-07-0	
Percent Moisture	Analytical	Method: SW-84	46						
	Pace Anal	ytical Services	- Charlotte						
Percent Moisture	14.5	%	0.10	0.10	1		04/22/21 15:03		N2



## Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

Sample: RI-SB-31_SO_5.5- 6.0_20210317	Lab ID:	9253109600	02 Collected	l: 03/17/2 <i>°</i>	1 10:30	0 Received: 04/	02/21 09:40 Ma	atrix: Solid	
Results reported on a "dry weigh	nt" basis and are	e adjusted fo	or percent mo	isture, sar	nple s	ize and any diluti	ons.		
_			Report						
Parameters	_ Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270E MSSV MW PAH by SIM	Analytical	Method: EP/	A 8270E Prepa	aration Met	hod: E	PA 3546			
	Pace Anal	vtical Service	es - Charlotte						
Banza(a)nurana	122	, ua/ka	12.7	1 /	1	04/26/21 12:44	04/26/21 17.27	50 22 8	<b>⊔</b> 2
Surrogates	152	uy/ky	13.7	1.4	1	04/20/21 13.44	04/20/21 17.37	50-52-0	115
2-Fluorobiphenyl (S)	82	%	31-130		1	04/26/21 13:44	04/26/21 17:37	321-60-8	
Nitrobenzene-d5 (S)	81	%	32-130		1	04/26/21 13:44	04/26/21 17:37	4165-60-0	
Terphenyl-d14 (S)	74	%	24-130		1	04/26/21 13:44	04/26/21 17:37	1718-51-0	
8270E MSSV Microwave	Analytical	Method: EP/	A 8270E Prepa	aration Met	hod: E	PA 3546			
	Pace Anal	ytical Service	es - Charlotte						
Acenaphthene	ND	ua/ka	445	156	1	04/23/21 11:32	04/26/21 11:55	83-32-9	H3
Acenaphthylene	ND	ug/kg	445	156	1	04/23/21 11:32	04/26/21 11:55	208-96-8	H3
Aniline	ND	ua/ka	445	174	1	04/23/21 11:32	04/26/21 11:55	62-53-3	H3
Anthracene	ND	ua/ka	445	145	1	04/23/21 11:32	04/26/21 11:55	120-12-7	H3
Benzo(a)anthracene	ND	ug/kg	445	148	1	04/23/21 11:32	04/26/21 11:55	56-55-3	H3
Benzo(b)fluoranthene	ND	ug/kg	445	148	1	04/23/21 11:32	04/26/21 11:55	205-99-2	H3
Benzo(g,h,i)pervlene	ND	ug/kg	445	172	1	04/23/21 11:32	04/26/21 11:55	191-24-2	H3
Benzo(k)fluoranthene	ND	ug/kg	445	156	1	04/23/21 11:32	04/26/21 11:55	207-08-9	H3
Benzoic Acid	ND	ug/kg	2220	955	1	04/23/21 11:32	04/26/21 11:55	65-85-0	H3
Benzyl alcohol	ND	ug/kg	889	337	1	04/23/21 11:32	04/26/21 11:55	100-51-6	H3
4-Bromophenylphenyl ether	ND	ug/kg	445	171	1	04/23/21 11:32	04/26/21 11:55	101-55-3	H3
Butylbenzylphthalate	ND	ug/kg	445	187	1	04/23/21 11:32	04/26/21 11:55	85-68-7	H3
4-Chloro-3-methylphenol	ND	ug/kg	889	313	1	04/23/21 11:32	04/26/21 11:55	59-50-7	H3
4-Chloroaniline	ND	ug/kg	889	349	1	04/23/21 11:32	04/26/21 11:55	106-47-8	H3
bis(2-Chloroethoxy)methane	ND	ug/kg	445	185	1	04/23/21 11:32	04/26/21 11:55	111-91-1	H3
bis(2-Chloroethyl) ether	ND	ug/kg	445	167	1	04/23/21 11:32	04/26/21 11:55	111-44-4	H3
2-Chloronaphthalene	ND	ug/kg	445	176	1	04/23/21 11:32	04/26/21 11:55	91-58-7	H3
2-Chlorophenol	ND	ug/kg	445	167	1	04/23/21 11:32	04/26/21 11:55	95-57-8	H3
4-Chlorophenylphenyl ether	ND	ug/kg	445	166	1	04/23/21 11:32	04/26/21 11:55	7005-72-3	H3
Chrysene	ND	ug/kg	445	162	1	04/23/21 11:32	04/26/21 11:55	218-01-9	H3
Dibenz(a,h)anthracene	ND	ug/kg	445	171	1	04/23/21 11:32	04/26/21 11:55	53-70-3	H3
Dibenzofuran	ND	ug/kg	445	160	1	04/23/21 11:32	04/26/21 11:55	132-64-9	H3
3,3'-Dichlorobenzidine	ND	ug/kg	889	300	1	04/23/21 11:32	04/26/21 11:55	91-94-1	H3,IL
2,4-Dichlorophenol	ND	ug/kg	445	174	1	04/23/21 11:32	04/26/21 11:55	120-83-2	H3
Diethylphthalate	ND	ug/kg	445	163	1	04/23/21 11:32	04/26/21 11:55	84-66-2	H3
2,4-Dimethylphenol	ND	ug/kg	445	185	1	04/23/21 11:32	04/26/21 11:55	105-67-9	H3
Dimethylphthalate	ND	ug/kg	445	162	1	04/23/21 11:32	04/26/21 11:55	131-11-3	H3
Di-n-butylphthalate	ND	ug/kg	445	150	1	04/23/21 11:32	04/26/21 11:55	84-74-2	H3
4,6-Dinitro-2-methylphenol	ND	ug/kg	889	415	1	04/23/21 11:32	04/26/21 11:55	534-52-1	H3
2,4-Dinitrophenol	ND	ug/kg	2220	1370	1	04/23/21 11:32	04/26/21 11:55	51-28-5	H3
2,4-Dinitrotoluene	ND	ug/kg	445	171	1	04/23/21 11:32	04/26/21 11:55	121-14-2	H3
2,6-Dinitrotoluene	ND	ug/kg	445	163	1	04/23/21 11:32	04/26/21 11:55	606-20-2	H3
Di-n-octylphthalate	ND	ug/kg	445	175	1	04/23/21 11:32	04/26/21 11:55	117-84-0	H3
bis(2-Ethylhexyl)phthalate	ND	ug/kg	445	172	1	04/23/21 11:32	04/26/21 11:55	117-81-7	H3
Fluoranthene	ND	ug/kg	445	152	1	04/23/21 11:32	04/26/21 11:55	206-44-0	H3



Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

Sample: RI-SB-31_SO_5.5- 6.0_20210317	Lab ID:	92531096002	Collecte	d: 03/17/21	10:30	Received: 04/	02/21 09:40 Ma	atrix: Solid	
Results reported on a "dry weight" b	asis and are	e adjusted for	percent mo	oisture, san	nple s	ize and any diluti	ons.		
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analvzed	CAS No.	Qual
8270E MSSV Microwave	Analytical	Method: EPA 8	270E Prep	aration Met	hod: E	PA 3546			
	Pace Anal	ytical Services	- Charlotte						
Fluorene	ND	ug/kg	445	156	1	04/23/21 11:32	04/26/21 11:55	86-73-7	H3
Hexachlorobenzene	ND	ug/kg	445	174	1	04/23/21 11:32	04/26/21 11:55	118-74-1	H3
Hexachlorocyclopentadiene	ND	ug/kg	445	255	1	04/23/21 11:32	04/26/21 11:55	77-47-4	H3
Hexachloroethane	ND	ug/kg	445	170	1	04/23/21 11:32	04/26/21 11:55	67-72-1	H3
Indeno(1,2,3-cd)pyrene	ND	ug/kg	445	175	1	04/23/21 11:32	04/26/21 11:55	193-39-5	H3
Isophorone	ND	ug/kg	445	198	1	04/23/21 11:32	04/26/21 11:55	78-59-1	H3
1-Methylnaphthalene	ND	ug/kg	445	156	1	04/23/21 11:32	04/26/21 11:55	90-12-0	H3
2-Methylnaphthalene	ND	ug/kg	445	178	1	04/23/21 11:32	04/26/21 11:55	91-57-6	H3
2-Methylphenol(o-Cresol)	ND	ug/kg	445	182	1	04/23/21 11:32	04/26/21 11:55	95-48-7	H3
3&4-Methylphenol(m&p Cresol)	ND	ug/kg	445	179	1	04/23/21 11:32	04/26/21 11:55	15831-10-4	H3
2-Nitroaniline	ND	ug/kg	2220	364	1	04/23/21 11:32	04/26/21 11:55	88-74-4	H3
3-Nitroaniline	ND	ug/kg	2220	349	1	04/23/21 11:32	04/26/21 11:55	99-09-2	H3
4-Nitroaniline	ND	ug/kg	889	338	1	04/23/21 11:32	04/26/21 11:55	100-01-6	H3
Nitrobenzene	ND	ug/kg	445	206	1	04/23/21 11:32	04/26/21 11:55	98-95-3	H3
2-Nitrophenol	ND	ug/kg	445	193	1	04/23/21 11:32	04/26/21 11:55	88-75-5	H3
4-Nitrophenol	ND	ug/kg	2220	859	1	04/23/21 11:32	04/26/21 11:55	100-02-7	H3
N-Nitrosodimethylamine	ND	ug/kg	445	150	1	04/23/21 11:32	04/26/21 11:55	62-75-9	H3
N-Nitroso-di-n-propylamine	ND	ug/kg	445	167	1	04/23/21 11:32	04/26/21 11:55	621-64-7	H3
N-Nitrosodiphenylamine	ND	ug/kg	445	158	1	04/23/21 11:32	04/26/21 11:55	86-30-6	H3
2,2'-Oxybis(1-chloropropane)	ND	ug/kg	445	211	1	04/23/21 11:32	04/26/21 11:55	108-60-1	H3
Pentachlorophenol	ND	ug/kg	889	435	1	04/23/21 11:32	04/26/21 11:55	87-86-5	H3
Phenanthrene	ND	ug/kg	445	145	1	04/23/21 11:32	04/26/21 11:55	85-01-8	H3
Phenol	ND	ug/kg	445	198	1	04/23/21 11:32	04/26/21 11:55	108-95-2	H3
Pyrene	ND	ug/kg	445	181	1	04/23/21 11:32	04/26/21 11:55	129-00-0	H3
Pyridine	ND	ug/kg	445	140	1	04/23/21 11:32	04/26/21 11:55	110-86-1	H3
2,4,5-Trichlorophenol	ND	ug/kg	445	203	1	04/23/21 11:32	04/26/21 11:55	95-95-4	H3
2,4,6-Trichlorophenol	ND	ug/kg	445	183	1	04/23/21 11:32	04/26/21 11:55	88-06-2	H3
Surrogates		04				0.4/00/04.44.00		4405 00 0	
Nitrobenzene-d5 (S)	/1	%	21-130		1	04/23/21 11:32	04/26/21 11:55	4165-60-0	
2-Fluorobiphenyl (S)	60	%	19-130		1	04/23/21 11:32	04/26/21 11:55	321-60-8	
Terpnenyl-d14 (S)	58	%	15-130		1	04/23/21 11:32	04/26/21 11:55	1718-51-0	
Phenol-db (S)	66	%	18-130		1	04/23/21 11:32	04/26/21 11:55	13127-88-3	
2-Fluorophenol (S)	66	%	18-130		1	04/23/21 11:32	04/26/21 11:55	367-12-4	
2,4,6-Tribromophenol (S)	78	%	18-130		1	04/23/21 11:32	04/26/21 11:55	118-79-6	
8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA 8	260D Prep	aration Met	hod: E	PA 5035A/5030B			
	Pace Anal	ytical Services	- Charlotte						
Acetone	185J	ug/kg	188	60.2	1	04/26/21 16:28	04/27/21 06:59	67-64-1	H3
Benzene	31.1	ug/kg	9.4	3.7	1	04/26/21 16:28	04/27/21 06:59	71-43-2	H3
Bromobenzene	ND	ug/kg	9.4	3.1	1	04/26/21 16:28	04/27/21 06:59	108-86-1	H3
Bromochloromethane	ND	ug/kg	9.4	2.8	1	04/26/21 16:28	04/27/21 06:59	74-97-5	H3
Bromodichloromethane	ND	ug/kg	9.4	3.6	1	04/26/21 16:28	04/27/21 06:59	75-27-4	H3
Bromoform	ND	ug/kg	9.4	3.3	1	04/26/21 16:28	04/27/21 06:59	75-25-2	H3



Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

Sample: RI-SB-31_SO_5.5- 6.0_20210317	Lab ID:	9253109600	02 Collecte	d: 03/17/21	1 10:30	) Received: 04/	02/21 09:40 Ma	atrix: Solid	
Results reported on a "dry weight	" basis and ar	e adjusted fo	or percent m	oisture, sar	nple s	ize and any diluti	ons.		
Doromotoro	Booulto	Linita	Report		DE	Bronarad	Applyzod		Qual
Farameters		UTIILS					Analyzeu	CAS NU.	
8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA	A 8260D Prep	paration Met	thod: E	PA 5035A/5030B			
	Pace Anal	lytical Service	es - Charlotte						
Bromomethane	ND	ua/ka	18.8	14.8	1	04/26/21 16:28	04/27/21 06:59	74-83-9	НЗ
2-Butanone (MEK)	64.0.1	ug/kg	188	45.0	1	04/26/21 16:28	04/27/21 06:59	78-93-3	H3
n-Butylbenzene	ND	ug/kg	94	4 4	1	04/26/21 16:28	04/27/21 06:59	104-51-8	H3
sec-Butylbenzene	ND	ug/kg	9.4	4 1	1	04/26/21 16:28	04/27/21 06:59	135-98-8	H3
tert-Butylbenzene	ND	ug/kg	9.4	33	1	04/26/21 16:28	04/27/21 06:59	98-06-6	НЗ
Carbon tetrachloride		ug/kg	9.4	3.5	1	04/26/21 16:28	04/27/21 00:59	56-23-5	НЗ
Chlorobenzene	30.0	ug/kg	9.4	1.8	1	04/26/21 16:28	04/27/21 00:59	108-90-7	НЗ
Chloroethane		ug/kg	18.8	7.2	1	04/26/21 16:28	04/27/21 00:59	75-00-3	НЗ
Chloroform		ug/kg	9.4	5.7	1	04/26/21 16:28	04/27/21 00:59	67-66-3	НЗ
Chloromethane		ug/kg	18.8	70	1	04/26/21 16:28	04/27/21 00:50	74-87-3	H3
		ug/kg	10.0	2.2	1	04/26/21 10:20	04/27/21 00:59	05 40 8	113 LI2
		ug/kg	9.4	17	1	04/26/21 10:20	04/27/21 00:59	30-49-0 106-43-4	H3
1 2-Dibromo-3-chloropropape		ug/kg	9.4	3.6	1	04/26/21 10:20	04/27/21 00:59	06-12-8	нз Н3
Dibromochloromothono		ug/kg	9.4 0.4	5.0	1	04/26/21 10:20	04/27/21 00:59	12/ /8 1	113 LI2
1.2 Dibromosthono (EDP)		ug/kg	9.4	J.J 4 4	1	04/20/21 10.20	04/27/21 00.59	124-40-1	113 LI2
Dibromomothono		ug/kg	9.4	4.1	1	04/20/21 10.20	04/27/21 06:50	74 05 2	പാ
		ug/kg	9.4	2.0	1	04/20/21 10.20	04/27/21 06:50	74-95-5	பி
1,2-Dichlorobenzene		ug/kg	9.4	3.4 2.0	1	04/20/21 10.20	04/27/21 06:50	90-00-1	പാ
		ug/kg	9.4	2.9	1	04/20/21 10:20	04/27/21 06:59	341-73-1	по 112
Disk land diffuserant at an a	0.05	ug/kg	9.4	2.4	1	04/20/21 10:20	04/27/21 06:59	100-40-7	п <u>э</u>
	ND	ug/kg	18.8	4.1	1	04/26/21 16:28	04/27/21 06:59	75-71-8	H3
1,1-Dichloroethane	ND	ug/kg	9.4	3.9	1	04/26/21 16:28	04/27/21 06:59	75-34-3	H3
1,2-Dichloroethane	ND	ug/kg	9.4	6.2	1	04/26/21 16:28	04/27/21 06:59	107-06-2	H3
	ND	ug/kg	9.4	3.9	1	04/26/21 16:28	04/27/21 06:59	75-35-4	H3
cis-1,2-Dichloroethene	ND	ug/kg	9.4	3.2	1	04/26/21 16:28	04/27/21 06:59	156-59-2	H3
trans-1,2-Dichloroethene	ND	ug/kg	9.4	3.3	1	04/26/21 16:28	04/27/21 06:59	156-60-5	H3
1,2-Dichloropropane	ND	ug/kg	9.4	2.8	1	04/26/21 16:28	04/27/21 06:59	/8-87-5	H3
1,3-Dichloropropane	ND	ug/kg	9.4	2.9	1	04/26/21 16:28	04/27/21 06:59	142-28-9	H3
2,2-Dichloropropane	ND	ug/kg	9.4	3.1	1	04/26/21 16:28	04/27/21 06:59	594-20-7	H3
1,1-Dichloropropene	ND	ug/kg	9.4	4.5	1	04/26/21 16:28	04/27/21 06:59	563-58-6	H3
cis-1,3-Dichloropropene	ND	ug/kg	9.4	2.6	1	04/26/21 16:28	04/27/21 06:59	10061-01-5	H3
trans-1,3-Dichloropropene	ND	ug/kg	9.4	3.2	1	04/26/21 16:28	04/27/21 06:59	10061-02-6	H3
Diisopropyl ether	ND	ug/kg	9.4	2.5	1	04/26/21 16:28	04/27/21 06:59	108-20-3	H3
Ethylbenzene	103	ug/kg	9.4	4.4	1	04/26/21 16:28	04/27/21 06:59	100-41-4	H3
Hexachloro-1,3-butadiene	ND	ug/kg	18.8	15.3	1	04/26/21 16:28	04/27/21 06:59	87-68-3	H3
2-Hexanone	ND	ug/kg	93.8	9.0	1	04/26/21 16:28	04/27/21 06:59	591-78-6	H3
Isopropylbenzene (Cumene)	193	ug/kg	9.4	3.2	1	04/26/21 16:28	04/27/21 06:59	98-82-8	H3
p-Isopropyltoluene	98.1	ug/kg	9.4	4.6	1	04/26/21 16:28	04/27/21 06:59	99-87-6	H3
Methylene Chloride	ND	ug/kg	37.5	25.7	1	04/26/21 16:28	04/27/21 06:59	75-09-2	H3
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	93.8	9.0	1	04/26/21 16:28	04/27/21 06:59	108-10-1	H3
Methyl-tert-butyl ether	ND	ug/kg	9.4	3.5	1	04/26/21 16:28	04/27/21 06:59	1634-04-4	H3
Naphthalene	959	ug/kg	9.4	4.9	1	04/26/21 16:28	04/27/21 06:59	91-20-3	H3
n-Propylbenzene	31.5	ug/kg	9.4	3.3	1	04/26/21 16:28	04/27/21 06:59	103-65-1	H3
Styrene	ND	ug/kg	9.4	2.5	1	04/26/21 16:28	04/27/21 06:59	100-42-5	H3



Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

Sample: RI-SB-31_SO_5.5- 6.0_20210317	Lab ID:	92531096002	Collected:	: 03/17/21	10:30	Received: 04/	02/21 09:40 Ma	atrix: Solid	
Results reported on a "dry weight	" basis and are	e adjusted for	percent moi	sture, san	nple si	ze and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA 8	260D Prepa	ration Meth	nod: EF	PA 5035A/5030B			
	Pace Anal	ytical Services	- Charlotte						
1,1,1,2-Tetrachloroethane	ND	ug/kg	9.4	3.6	1	04/26/21 16:28	04/27/21 06:59	630-20-6	H3
1,1,2,2-Tetrachloroethane	ND	ug/kg	9.4	2.5	1	04/26/21 16:28	04/27/21 06:59	79-34-5	H3
Tetrachloroethene	ND	ug/kg	9.4	3.0	1	04/26/21 16:28	04/27/21 06:59	127-18-4	H3
Toluene	214	ug/kg	9.4	2.7	1	04/26/21 16:28	04/27/21 06:59	108-88-3	H3
1,2,3-Trichlorobenzene	ND	ug/kg	9.4	7.6	1	04/26/21 16:28	04/27/21 06:59	87-61-6	H3
1,2,4-Trichlorobenzene	ND	ug/kg	9.4	7.9	1	04/26/21 16:28	04/27/21 06:59	120-82-1	H3
1,1,1-Trichloroethane	ND	ug/kg	9.4	4.9	1	04/26/21 16:28	04/27/21 06:59	71-55-6	H3
1,1,2-Trichloroethane	ND	ug/kg	9.4	3.1	1	04/26/21 16:28	04/27/21 06:59	79-00-5	H3
Trichloroethene	ND	ug/kg	9.4	2.4	1	04/26/21 16:28	04/27/21 06:59	79-01-6	H3
Trichlorofluoromethane	ND	ug/kg	9.4	5.2	1	04/26/21 16:28	04/27/21 06:59	75-69-4	H3
1,2,3-Trichloropropane	ND	ug/kg	9.4	4.7	1	04/26/21 16:28	04/27/21 06:59	96-18-4	H3
1,2,4-Trimethylbenzene	207	ug/kg	9.4	2.6	1	04/26/21 16:28	04/27/21 06:59	95-63-6	H3
1,3,5-Trimethylbenzene	82.7	ug/kg	9.4	3.2	1	04/26/21 16:28	04/27/21 06:59	108-67-8	H3
Vinyl acetate	ND	ug/kg	93.8	6.8	1	04/26/21 16:28	04/27/21 06:59	108-05-4	H3
Vinyl chloride	ND	ug/kg	18.8	4.8	1	04/26/21 16:28	04/27/21 06:59	75-01-4	H3
Xylene (Total)	632	ug/kg	18.8	5.3	1	04/26/21 16:28	04/27/21 06:59	1330-20-7	
m&p-Xylene	396	ug/kg	18.8	6.4	1	04/26/21 16:28	04/27/21 06:59	179601-23-1	H3
o-Xylene	237	ug/kg	9.4	4.1	1	04/26/21 16:28	04/27/21 06:59	95-47-6	H3
Surrogates									
Toluene-d8 (S)	100	%	70-130		1	04/26/21 16:28	04/27/21 06:59	2037-26-5	
4-Bromofluorobenzene (S)	106	%	69-134		1	04/26/21 16:28	04/27/21 06:59	460-00-4	
1,2-Dichloroethane-d4 (S)	105	%	70-130		1	04/26/21 16:28	04/27/21 06:59	17060-07-0	
Percent Moisture	Analytical	Method: SW-84	46						
	Pace Anal	ytical Services	- Charlotte						
Percent Moisture	25.8	%	0.10	0.10	1		04/22/21 15:04		N2



## Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

Sample: RI-SB-32_SO_0.5- 1.0_20210317	Lab ID:	925310960	03 Collected	d: 03/17/2 [,]	1 10:50	0 Received: 04/	02/21 09:40 Ma	atrix: Solid	
Results reported on a "dry weigh	ht" basis and are	e adjusted f	or percent mo	oisture, sai	mple s	ize and any diluti	ons.		
Deremetere	Populto	Linita	Report		DE	Broporod	Applyzod		Qual
Farameters		Units						CAS NU.	
8270E MSSV MW PAH by SIM	Analytical	Method: EP	A 8270E Prepa	aration Met	thod: E	PA 3546			
-	Pace Anal	ytical Servic	es - Charlotte						
Benzo(a)pvrene	13.9	ua/ka	11.8	1.2	1	04/24/21 15:57	04/25/21 13:48	50-32-8	НЗ
Surrogates									
2-Fluorobiphenyl (S)	65	%	31-130		1	04/24/21 15:57	04/25/21 13:48	321-60-8	
Nitrobenzene-d5 (S)	55	%	32-130		1	04/24/21 15:57	04/25/21 13:48	4165-60-0	
Terphenyl-d14 (S)	46	%	24-130		1	04/24/21 15:57	04/25/21 13:48	1718-51-0	
8270F MSSV Microwave	Analytical	Method: EP	A 8270E Prep	aration Met	thod: E	PA 3546			
	Pace Anal	vtical Servic	es - Charlotte						
Acenanothene		ua/ka	301	137	1	04/23/21 11.32	04/26/21 12:22	83-32-0	НЗ
Acenaphthylene		ug/kg	301	137	1	04/23/21 11:32	04/26/21 12:22	208-96-8	H3
Aniline		ug/kg	301	153	1	04/23/21 11:32	04/26/21 12:22	200-90-0 62-53-3	H3
Anthracene		ug/kg	301	100	1	04/23/21 11:32	04/26/21 12:22	120-12-7	H3
Antiliacene Bonzo(a)anthracano		ug/kg	201	120	1	04/23/21 11:32	04/26/21 12:22	56 55 2	113
Benzo(b)fluoranthono		ug/kg	391	130	1	04/23/21 11.32	04/20/21 12:22	205 00 2	113
		ug/kg	391	150	1	04/23/21 11.32	04/20/21 12.22	203-99-2	по 110
Benzo(k)fluorenthene		ug/kg	391	102	1	04/23/21 11.32	04/20/21 12.22	191-24-2	പാ
		ug/kg	391	137	1	04/23/21 11:32	04/26/21 12:22	207-06-9	по 110
Benzul alashal		ug/kg	1950	040 206	1	04/23/21 11:32	04/26/21 12:22	00-00-0	по 110
A Dremen here die here die them	ND	ug/kg	762	290	1	04/23/21 11:32	04/20/21 12:22	100-51-6	п <u>э</u>
4-Bromopnenyipnenyi etner	ND	ug/kg	391	150	1	04/23/21 11:32	04/26/21 12:22	101-55-3	H3
A Chlore 2 methylahenel	ND	ug/kg	391	165	1	04/23/21 11:32	04/26/21 12:22	85-68-7	H3
4-Chloro-3-methylphenol	ND	ug/kg	782	2/5	1	04/23/21 11:32	04/26/21 12:22	59-50-7	H3
4-Chioroaniline	ND	ug/kg	782	307	1	04/23/21 11:32	04/26/21 12:22	106-47-8	H3
bis(2-Chloroethoxy)methane	ND	ug/kg	391	162	1	04/23/21 11:32	04/26/21 12:22	111-91-1	H3
bis(2-Chloroethyl) ether	ND	ug/kg	391	147	1	04/23/21 11:32	04/26/21 12:22	111-44-4	H3
2-Chloronaphthalene	ND	ug/kg	391	155	1	04/23/21 11:32	04/26/21 12:22	91-58-7	H3
2-Chlorophenol	ND	ug/kg	391	147	1	04/23/21 11:32	04/26/21 12:22	95-57-8	H3
4-Chlorophenylphenyl ether	ND	ug/kg	391	146	1	04/23/21 11:32	04/26/21 12:22	7005-72-3	H3
Chrysene	ND	ug/kg	391	142	1	04/23/21 11:32	04/26/21 12:22	218-01-9	H3
Dibenz(a,h)anthracene	ND	ug/kg	391	150	1	04/23/21 11:32	04/26/21 12:22	53-70-3	H3
Dibenzofuran	ND	ug/kg	391	141	1	04/23/21 11:32	04/26/21 12:22	132-64-9	H3
3,3'-Dichlorobenzidine	ND	ug/kg	782	264	1	04/23/21 11:32	04/26/21 12:22	91-94-1	H3,IL
2,4-Dichlorophenol	ND	ug/kg	391	153	1	04/23/21 11:32	04/26/21 12:22	120-83-2	H3
Diethylphthalate	ND	ug/kg	391	143	1	04/23/21 11:32	04/26/21 12:22	84-66-2	H3
2,4-Dimethylphenol	ND	ug/kg	391	162	1	04/23/21 11:32	04/26/21 12:22	105-67-9	H3
Dimethylphthalate	ND	ug/kg	391	142	1	04/23/21 11:32	04/26/21 12:22	131-11-3	H3
Di-n-butylphthalate	ND	ug/kg	391	131	1	04/23/21 11:32	04/26/21 12:22	84-74-2	H3
4,6-Dinitro-2-methylphenol	ND	ug/kg	782	365	1	04/23/21 11:32	04/26/21 12:22	534-52-1	H3
2,4-Dinitrophenol	ND	ug/kg	1950	1210	1	04/23/21 11:32	04/26/21 12:22	51-28-5	H3
2,4-Dinitrotoluene	ND	ug/kg	391	150	1	04/23/21 11:32	04/26/21 12:22	121-14-2	H3
2,6-Dinitrotoluene	ND	ug/kg	391	143	1	04/23/21 11:32	04/26/21 12:22	606-20-2	H3
Di-n-octylphthalate	ND	ug/kg	391	154	1	04/23/21 11:32	04/26/21 12:22	117-84-0	H3
bis(2-Ethylhexyl)phthalate	ND	ug/kg	391	152	1	04/23/21 11:32	04/26/21 12:22	117-81-7	H3
Fluoranthene	ND	ug/kg	391	134	1	04/23/21 11:32	04/26/21 12:22	206-44-0	H3



## Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

Sample: RI-SB-32_SO_0.5- 1.0_20210317	Lab ID:	92531096003	3 Collected	d: 03/17/21	10:50	) Received: 04/	02/21 09:40 Ma	atrix: Solid	
Results reported on a "dry weight	" basis and are	e adjusted fo	r percent mo	oisture, sar	nple s	ize and any diluti	ions.		
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270E MSSV Microwave	Analytical	Method: EPA	8270E Prep	aration Met	hod: E	PA 3546		_	_
	Pace Anal	ytical Service	s - Charlotte						
Fluorene	ND	ug/kg	391	137	1	04/23/21 11:32	04/26/21 12:22	86-73-7	H3
Hexachlorobenzene	ND	ug/kg	391	153	1	04/23/21 11:32	04/26/21 12:22	118-74-1	H3
Hexachlorocyclopentadiene	ND	ug/kg	391	224	1	04/23/21 11:32	04/26/21 12:22	77-47-4	H3
Hexachloroethane	ND	ug/kg	391	149	1	04/23/21 11:32	04/26/21 12:22	67-72-1	H3
Indeno(1,2,3-cd)pyrene	ND	ug/kg	391	154	1	04/23/21 11:32	04/26/21 12:22	193-39-5	H3
Isophorone	ND	ug/kg	391	174	1	04/23/21 11:32	04/26/21 12:22	78-59-1	H3
1-Methylnaphthalene	ND	ug/kg	391	137	1	04/23/21 11:32	04/26/21 12:22	90-12-0	H3
2-Methylnaphthalene	ND	ug/kg	391	156	1	04/23/21 11:32	04/26/21 12:22	91-57-6	H3
2-Methylphenol(o-Cresol)	ND	ug/kg	391	160	1	04/23/21 11:32	04/26/21 12:22	95-48-7	H3
3&4-Methylphenol(m&p Cresol)	ND	ug/kg	391	158	1	04/23/21 11:32	04/26/21 12:22	15831-10-4	H3
2-Nitroaniline	ND	ua/ka	1950	320	1	04/23/21 11:32	04/26/21 12:22	88-74-4	H3
3-Nitroaniline	ND	ug/kg	1950	307	1	04/23/21 11:32	04/26/21 12:22	99-09-2	H3
4-Nitroaniline	ND	ug/kg	782	297	1	04/23/21 11:32	04/26/21 12:22	100-01-6	H3
Nitrobenzene	ND	ua/ka	391	181	1	04/23/21 11:32	04/26/21 12:22	98-95-3	H3
2-Nitrophenol	ND	ua/ka	391	169	1	04/23/21 11:32	04/26/21 12:22	88-75-5	H3
4-Nitrophenol	ND	ua/ka	1950	756	1	04/23/21 11:32	04/26/21 12:22	100-02-7	H3
N-Nitrosodimethylamine	ND	ua/ka	391	131	1	04/23/21 11:32	04/26/21 12:22	62-75-9	H3
N-Nitroso-di-n-propylamine	ND	ua/ka	391	147	1	04/23/21 11:32	04/26/21 12:22	621-64-7	H3
N-Nitrosodiphenvlamine	ND	ua/ka	391	139	1	04/23/21 11:32	04/26/21 12:22	86-30-6	H3
2 2'-Oxybis(1-chloropropane)	ND	ug/kg	391	186	1	04/23/21 11:32	04/26/21 12:22	108-60-1	H3
Pentachlorophenol	ND	ug/kg	782	383	1	04/23/21 11:32	04/26/21 12:22	87-86-5	H3
Phenanthrene	ND	ug/kg	391	128	1	04/23/21 11:32	04/26/21 12:22	85-01-8	H3
Phenol	ND	ug/kg	391	174	1	04/23/21 11:32	04/26/21 12:22	108-95-2	H3
Pyrene	ND	ug/kg	391	159	1	04/23/21 11:32	04/26/21 12:22	129-00-0	НЗ
Pyridine		ug/kg	391	123	1	04/23/21 11:32	04/26/21 12:22	120-00-0	НЗ
		ug/kg	391	170	1	04/23/21 11:32	04/26/21 12:22	95-95-4	НЗ
2,4,6-Trichlorophenol		ug/kg	301	161	1	04/23/21 11:32	04/26/21 12:22	88-06-2	НЗ
Surrogates	ND	ug/kg	551	101	'	04/20/21 11.02	04/20/21 12.22	00 00 2	110
Nitrobenzene-d5 (S)	76	%	21-130		1	04/23/21 11:32	04/26/21 12:22	4165-60-0	
2-Eluorobiphenyl (S)	74	%	19-130		1	04/23/21 11:32	04/26/21 12:22	321-60-8	
Terphenyl-d14 (S)	62	%	15-130		1	04/23/21 11:32	04/26/21 12:22	1718-51-0	
Phenol-d6 (S)	69	%	18-130		1	04/23/21 11:32	04/26/21 12:22	13127-88-3	
2-Eluorophenol (S)	67	%	18-130		1	04/23/21 11:32	04/26/21 12:22	367-12-4	
2 4 6-Tribromonbenol (S)	76	%	18-130		1	04/23/21 11:32	04/26/21 12:22	118-79-6	
2,4,0 1101011000101(0)	10	70	10 100			04/20/21 11:02	04/20/21 12:22	110 70 0	
8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA	8260D Prep	aration Met	hod: E	PA 5035A/5030B			
	Pace Anal	ytical Service	s - Charlotte						
Acetone	ND	ug/kg	116	37.1	1	04/22/21 11:42	04/22/21 21:11	67-64-1	H3
Benzene	ND	ug/kg	5.8	2.3	1	04/22/21 11:42	04/22/21 21:11	71-43-2	H3
Bromobenzene	ND	ug/kg	5.8	1.9	1	04/22/21 11:42	04/22/21 21:11	108-86-1	H3
Bromochloromethane	ND	ug/kg	5.8	1.7	1	04/22/21 11:42	04/22/21 21:11	74-97-5	H3
Bromodichloromethane	ND	ug/kg	5.8	2.2	1	04/22/21 11:42	04/22/21 21:11	75-27-4	H3
Bromoform	ND	ug/kg	5.8	2.0	1	04/22/21 11:42	04/22/21 21:11	75-25-2	H3



Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

Sample: RI-SB-32_SO_0.5- 1.0_20210317	Lab ID:	9253109600	3 Collecte	d: 03/17/2 ⁻	1 10:50	) Received: 04/	02/21 09:40 Ma	atrix: Solid	
Results reported on a "dry weight	" basis and ar	e adjusted fo	r percent m	oisture, sar	nple s	ize and any diluti	ons.		
Parameters	Poculto	Linite	Report		DE	Bronarad	Applyzod		Qual
Farameters		Units						CAS NU.	
8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA	8260D Prep	paration Met	thod: E	PA 5035A/5030B			
	Pace Anal	ytical Service	s - Charlotte						
Bromomethane	ND	ua/ka	11.6	91	1	04/22/21 11:42	04/22/21 21.11	74-83-9	H3
2-Butanone (MEK)	ND	ug/kg	116	27.8	1	04/22/21 11:42	04/22/21 21:11	78-93-3	H3
n-Butylbenzene	ND	ug/kg	5.8	27.0	1	04/22/21 11:42	04/22/21 21:11	104-51-8	НЗ
sec-Butylbenzene	ND	ug/kg	5.8	2.7	1	04/22/21 11:42	04/22/21 21:11	135-98-8	НЗ
tert-Butylbenzene	ND	ug/kg	5.8	2.0	1	04/22/21 11:42	04/22/21 21:11	98-06-6	НЗ
Carbon tetrachloride		ug/kg	5.8	2.1	1	04/22/21 11:42	04/22/21 21:11	56-23-5	НЗ
Chlorobenzene		ug/kg	5.8	2.2	1	04/22/21 11.42	04/22/21 21:11	108-90-7	НЗ
Chloroethane		ug/kg	11.6	4.5	1	04/22/21 11:42	04/22/21 21:11	75-00-3	НЗ
Chloroform		ug/kg	5.8		1	04/22/21 11:42	04/22/21 21:11	67-66-3	НЗ
Chloromethane		ug/kg	11.6	۵.5 ۸ ۵	1	04/22/21 11.42	04/22/21 21:11	74-87-3	H3
		ug/kg	5.9	4.3 2.0	1	04/22/21 11.42	04/22/21 21:11	05 40 8	113 LI2
		ug/kg	5.8	2.0	1	04/22/21 11.42	04/22/21 21.11	106-43-4	H3
1 2-Dibromo-3-chloropropape		ug/kg	5.8	2.2	1	04/22/21 11.42	04/22/21 21.11	06-12-8	нз Н3
Dibromochloromothono		ug/kg	5.0	2.2	1	04/22/21 11.42	04/22/21 21:11	12/ 12 1	113 LI2
1.2 Dibromoethono (EDP)		ug/kg	5.0	3.3 2.5	1	04/22/21 11.42	04/22/21 21.11	124-40-1	113 LI2
Dibromomothono		ug/kg	5.0 5.0	2.0	1	04/22/21 11.42	04/22/21 21.11	74 05 2	പാ
		ug/kg	5.0 5.0	1.2	1	04/22/21 11.42	04/22/21 21.11	74-90-3	பி
		ug/kg	5.0	2.1	1	04/22/21 11.42	04/22/21 21.11	50-00-1	113 LI2
		ug/kg	5.6 5.0	1.0	1	04/22/21 11:42	04/22/21 21:11	341-73-1	по 112
Disk land diffuserant ath and	ND	ug/kg	0.C	1.5	1	04/22/21 11:42	04/22/21 21:11	100-40-7	п <u>э</u>
	ND	ug/kg	11.6	2.5	1	04/22/21 11:42	04/22/21 21:11	75-71-8	H3
1,1-Dichloroethane	ND	ug/kg	5.8	2.4	1	04/22/21 11:42	04/22/21 21:11	75-34-3	H3
1,2-Dichloroethane	ND	ug/kg	5.8	3.8	1	04/22/21 11:42	04/22/21 21:11	107-06-2	H3
	ND	ug/kg	5.8	2.4	1	04/22/21 11:42	04/22/21 21:11	75-35-4	H3
cis-1,2-Dichloroethene	ND	ug/kg	5.8	2.0	1	04/22/21 11:42	04/22/21 21:11	156-59-2	H3
trans-1,2-Dichloroethene	ND	ug/kg	5.8	2.0	1	04/22/21 11:42	04/22/21 21:11	156-60-5	H3
1,2-Dichloropropane	ND	ug/kg	5.8	1.7	1	04/22/21 11:42	04/22/21 21:11	/8-8/-5	H3
1,3-Dichloropropane	ND	ug/kg	5.8	1.8	1	04/22/21 11:42	04/22/21 21:11	142-28-9	H3
2,2-Dichloropropane	ND	ug/kg	5.8	1.9	1	04/22/21 11:42	04/22/21 21:11	594-20-7	H3
1,1-Dichloropropene	ND	ug/kg	5.8	2.8	1	04/22/21 11:42	04/22/21 21:11	563-58-6	H3
cis-1,3-Dichloropropene	ND	ug/kg	5.8	1.6	1	04/22/21 11:42	04/22/21 21:11	10061-01-5	H3
trans-1,3-Dichloropropene	ND	ug/kg	5.8	2.0	1	04/22/21 11:42	04/22/21 21:11	10061-02-6	H3
Disopropyl ether	ND	ug/kg	5.8	1.6	1	04/22/21 11:42	04/22/21 21:11	108-20-3	H3
Ethylbenzene	ND	ug/kg	5.8	2.7	1	04/22/21 11:42	04/22/21 21:11	100-41-4	H3
Hexachloro-1,3-butadiene	ND	ug/kg	11.6	9.5	1	04/22/21 11:42	04/22/21 21:11	87-68-3	H3
2-Hexanone	ND	ug/kg	57.9	5.6	1	04/22/21 11:42	04/22/21 21:11	591-78-6	H3
Isopropylbenzene (Cumene)	ND	ug/kg	5.8	2.0	1	04/22/21 11:42	04/22/21 21:11	98-82-8	H3
p-lsopropyltoluene	25.2	ug/kg	5.8	2.8	1	04/22/21 11:42	04/22/21 21:11	99-87-6	H3
Methylene Chloride	ND	ug/kg	23.1	15.9	1	04/22/21 11:42	04/22/21 21:11	75-09-2	H3
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	57.9	5.6	1	04/22/21 11:42	04/22/21 21:11	108-10-1	H3
Methyl-tert-butyl ether	ND	ug/kg	5.8	2.2	1	04/22/21 11:42	04/22/21 21:11	1634-04-4	H3
Naphthalene	8.3	ug/kg	5.8	3.0	1	04/22/21 11:42	04/22/21 21:11	91-20-3	H3
n-Propylbenzene	ND	ug/kg	5.8	2.1	1	04/22/21 11:42	04/22/21 21:11	103-65-1	H3
Styrene	ND	ug/kg	5.8	1.5	1	04/22/21 11:42	04/22/21 21:11	100-42-5	H3



Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

Sample: RI-SB-32_SO_0.5- 1.0_20210317	Lab ID:	92531096003	Collected:	03/17/21	10:50	Received: 04/	02/21 09:40 M	atrix: Solid	
Results reported on a "dry weight	" basis and are	e adjusted for	percent moi	sture, san	nple si	ze and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA 8	260D Prepa	ration Metl	hod: Ef	PA 5035A/5030B			
	Pace Anal	lytical Services	- Charlotte						
1,1,1,2-Tetrachloroethane	ND	ug/kg	5.8	2.2	1	04/22/21 11:42	04/22/21 21:11	630-20-6	H3
1,1,2,2-Tetrachloroethane	ND	ug/kg	5.8	1.5	1	04/22/21 11:42	04/22/21 21:11	79-34-5	H3
Tetrachloroethene	ND	ug/kg	5.8	1.8	1	04/22/21 11:42	04/22/21 21:11	127-18-4	H3
Toluene	4.6J	ug/kg	5.8	1.6	1	04/22/21 11:42	04/22/21 21:11	108-88-3	H3
1,2,3-Trichlorobenzene	ND	ug/kg	5.8	4.7	1	04/22/21 11:42	04/22/21 21:11	87-61-6	H3
1,2,4-Trichlorobenzene	ND	ug/kg	5.8	4.9	1	04/22/21 11:42	04/22/21 21:11	120-82-1	H3
1,1,1-Trichloroethane	ND	ug/kg	5.8	3.0	1	04/22/21 11:42	04/22/21 21:11	71-55-6	H3
1,1,2-Trichloroethane	ND	ug/kg	5.8	1.9	1	04/22/21 11:42	04/22/21 21:11	79-00-5	H3
Trichloroethene	ND	ug/kg	5.8	1.5	1	04/22/21 11:42	04/22/21 21:11	79-01-6	H3
Trichlorofluoromethane	ND	ug/kg	5.8	3.2	1	04/22/21 11:42	04/22/21 21:11	75-69-4	H3
1,2,3-Trichloropropane	ND	ug/kg	5.8	2.9	1	04/22/21 11:42	04/22/21 21:11	96-18-4	H3
1,2,4-Trimethylbenzene	11.8	ug/kg	5.8	1.6	1	04/22/21 11:42	04/22/21 21:11	95-63-6	H3
1,3,5-Trimethylbenzene	ND	ug/kg	5.8	1.9	1	04/22/21 11:42	04/22/21 21:11	108-67-8	H3
Vinyl acetate	ND	ug/kg	57.9	4.2	1	04/22/21 11:42	04/22/21 21:11	108-05-4	H3
Vinyl chloride	ND	ug/kg	11.6	2.9	1	04/22/21 11:42	04/22/21 21:11	75-01-4	H3
Xylene (Total)	10.1J	ug/kg	11.6	3.3	1	04/22/21 11:42	04/22/21 21:11	1330-20-7	
m&p-Xylene	6.8J	ug/kg	11.6	4.0	1	04/22/21 11:42	04/22/21 21:11	179601-23-1	H3
o-Xylene	3.3J	ug/kg	5.8	2.6	1	04/22/21 11:42	04/22/21 21:11	95-47-6	H3
Surrogates									
Toluene-d8 (S)	101	%	70-130		1	04/22/21 11:42	04/22/21 21:11	2037-26-5	
4-Bromofluorobenzene (S)	107	%	69-134		1	04/22/21 11:42	04/22/21 21:11	460-00-4	
1,2-Dichloroethane-d4 (S)	106	%	70-130		1	04/22/21 11:42	04/22/21 21:11	17060-07-0	
Percent Moisture	Analytical	Method: SW-84	46						
	Pace Ana	lytical Services	- Charlotte						
Percent Moisture	15.0	%	0.10	0.10	1		04/22/21 15:04		N2



## Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

Sample: RI-SB-32_SO_5.5- 6.0_20210317	Lab ID:	925310960	04 Collected	1: 03/17/2 ⁻	1 10:58	5 Received: 04/	02/21 09:40 Ma	atrix: Solid	
Results reported on a "dry weigh	nt" basis and are	e adjusted f	or percent mo	oisture, sai	mple s	ize and any diluti	ons.		
_			Report			_			
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270F MSSV MW PAH by SIM	Analytical	Method: FP	A 8270F Prepa	aration Met	hod: F	PA 3546			
	Pace Anal	vtical Servic	es - Charlotte						
	1 400 / 114		es chanolie						
Benzo(a)pyrene	11.7J	ug/kg	12.1	1.2	1	04/24/21 15:57	04/25/21 14:10	50-32-8	H3
2 Elugraphiphopyl (S)	E2	0/	21 120		1	04/24/21 15:57	04/25/21 14.10	221 60 9	
2-Fluorobiprienyi (S)	53	70 0/	31-130		1	04/24/21 15.57	04/25/21 14:10	321-00-0	
Torphonyl d14 (S)	57	70 0/	32-130		1	04/24/21 15.57	04/25/21 14.10	4103-00-0	
Terphenyi-014 (3)	41	70	24-130		I	04/24/21 15.57	04/25/21 14.10	1716-51-0	
8270E MSSV Microwave	Analytical	Method: EP	A 8270E Prepa	aration Met	thod: E	PA 3546			
	Pace Anal	ytical Servic	es - Charlotte						
Acenanhthene	219	ua/ka	402	141	1	04/23/21 11.32	04/26/21 12:50	83-32-0	нз
Acenaphthylene	2133 ND	ug/kg ug/kg	402	141	1	04/23/21 11:32	04/26/21 12:50	208-96-8	НЗ
Aniline		ug/kg	402	157	1	04/23/21 11:32	04/26/21 12:50	62-53-3	H3
Anthracene	ND	ug/kg	402	132	1	04/23/21 11:32	04/26/21 12:50	120-12-7	H3
Benzo(a)anthracene	525	ug/kg	402	134	1	04/23/21 11:32	04/26/21 12:50	56-55-3	H3
Benzo(b)fluoranthene	999	ug/kg	402	134	1	04/23/21 11:32	04/26/21 12:50	205-99-2	H3
Benzo(a h i)pervlene	782	ug/kg	402	156	1	04/23/21 11:32	04/26/21 12:50	191-24-2	H3
Benzo(k)fluoranthene	400J	ua/ka	402	141	1	04/23/21 11:32	04/26/21 12:50	207-08-9	H3
Benzoic Acid	ND	ua/ka	2010	864	1	04/23/21 11:32	04/26/21 12:50	65-85-0	H3
Benzyl alcohol	ND	ua/ka	805	305	1	04/23/21 11:32	04/26/21 12:50	100-51-6	H3
4-Bromophenylphenyl ether	ND	ua/ka	402	155	1	04/23/21 11:32	04/26/21 12:50	101-55-3	H3
Butylbenzylphthalate	ND	ua/ka	402	169	1	04/23/21 11:32	04/26/21 12:50	85-68-7	H3
4-Chloro-3-methylphenol	ND	ua/ka	805	283	1	04/23/21 11:32	04/26/21 12:50	59-50-7	H3
4-Chloroaniline	ND	ua/ka	805	316	1	04/23/21 11:32	04/26/21 12:50	106-47-8	H3
bis(2-Chloroethoxy)methane	ND	ua/ka	402	167	1	04/23/21 11:32	04/26/21 12:50	111-91-1	H3
bis(2-Chloroethvl) ether	ND	ua/ka	402	151	1	04/23/21 11:32	04/26/21 12:50	111-44-4	H3
2-Chloronaphthalene	ND	ug/kg	402	160	1	04/23/21 11:32	04/26/21 12:50	91-58-7	H3
2-Chlorophenol	ND	ug/kg	402	151	1	04/23/21 11:32	04/26/21 12:50	95-57-8	H3
4-Chlorophenylphenyl ether	ND	ug/kg	402	150	1	04/23/21 11:32	04/26/21 12:50	7005-72-3	H3
Chrysene	413	ug/kg	402	146	1	04/23/21 11:32	04/26/21 12:50	218-01-9	H3
Dibenz(a,h)anthracene	ND	ug/kg	402	155	1	04/23/21 11:32	04/26/21 12:50	53-70-3	H3
Dibenzofuran	ND	ug/kg	402	145	1	04/23/21 11:32	04/26/21 12:50	132-64-9	H3
3,3'-Dichlorobenzidine	ND	ug/kg	805	272	1	04/23/21 11:32	04/26/21 12:50	91-94-1	H3,IL
2,4-Dichlorophenol	ND	ug/kg	402	157	1	04/23/21 11:32	04/26/21 12:50	120-83-2	H3
Diethylphthalate	ND	ug/kg	402	148	1	04/23/21 11:32	04/26/21 12:50	84-66-2	H3
2,4-Dimethylphenol	ND	ug/kg	402	167	1	04/23/21 11:32	04/26/21 12:50	105-67-9	H3
Dimethylphthalate	ND	ug/kg	402	146	1	04/23/21 11:32	04/26/21 12:50	131-11-3	H3
Di-n-butylphthalate	ND	ug/kg	402	135	1	04/23/21 11:32	04/26/21 12:50	84-74-2	H3
4,6-Dinitro-2-methylphenol	ND	ug/kg	805	376	1	04/23/21 11:32	04/26/21 12:50	534-52-1	H3
2,4-Dinitrophenol	ND	ug/kg	2010	1240	1	04/23/21 11:32	04/26/21 12:50	51-28-5	H3
2,4-Dinitrotoluene	ND	ug/kg	402	155	1	04/23/21 11:32	04/26/21 12:50	121-14-2	H3
2,6-Dinitrotoluene	ND	ug/kg	402	148	1	04/23/21 11:32	04/26/21 12:50	606-20-2	H3
Di-n-octylphthalate	ND	ug/kg	402	159	1	04/23/21 11:32	04/26/21 12:50	117-84-0	H3
bis(2-Ethylhexyl)phthalate	ND	ug/kg	402	156	1	04/23/21 11:32	04/26/21 12:50	117-81-7	H3
Fluoranthene	225J	ug/kg	402	138	1	04/23/21 11:32	04/26/21 12:50	206-44-0	H3



## Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

Sample: RI-SB-32_SO_5.5- 6.0_20210317	Lab ID:	92531096004	4 Collected	d: 03/17/21	1 10:55	5 Received: 04/	02/21 09:40 Ma	atrix: Solid	
Results reported on a "dry weight	" basis and ar	e adjusted fo	r percent mo	oisture, san	nple s	ize and any diluti	ions.		
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270E MSSV Microwave	Analytical	Method: EPA	8270E Prep	aration Met	hod: E	PA 3546			
	Pace Anal	ytical Service	s - Charlotte						
Fluorene	169J	ug/kg	402	141	1	04/23/21 11:32	04/26/21 12:50	86-73-7	H3
Hexachlorobenzene	ND	ug/kg	402	157	1	04/23/21 11:32	04/26/21 12:50	118-74-1	H3
Hexachlorocyclopentadiene	ND	ug/kg	402	230	1	04/23/21 11:32	04/26/21 12:50	77-47-4	H3
Hexachloroethane	ND	ug/kg	402	154	1	04/23/21 11:32	04/26/21 12:50	67-72-1	H3
Indeno(1,2,3-cd)pyrene	717	ug/kg	402	159	1	04/23/21 11:32	04/26/21 12:50	193-39-5	H3
Isophorone	ND	ug/kg	402	179	1	04/23/21 11:32	04/26/21 12:50	78-59-1	H3
1-Methylnaphthalene	304J	ug/kg	402	141	1	04/23/21 11:32	04/26/21 12:50	90-12-0	H3
2-Methylnaphthalene	319J	ug/kg	402	161	1	04/23/21 11:32	04/26/21 12:50	91-57-6	H3
2-Methylphenol(o-Cresol)	ND	ug/kg	402	165	1	04/23/21 11:32	04/26/21 12:50	95-48-7	H3
3&4-Methylphenol(m&p Cresol)	ND	ug/kg	402	162	1	04/23/21 11:32	04/26/21 12:50	15831-10-4	H3
2-Nitroaniline	ND	ug/kg	2010	329	1	04/23/21 11:32	04/26/21 12:50	88-74-4	H3
3-Nitroaniline	ND	ug/kg	2010	316	1	04/23/21 11:32	04/26/21 12:50	99-09-2	H3
4-Nitroaniline	ND	ug/kg	805	306	1	04/23/21 11:32	04/26/21 12:50	100-01-6	H3
Nitrobenzene	ND	ug/kg	402	187	1	04/23/21 11:32	04/26/21 12:50	98-95-3	H3
2-Nitrophenol	ND	ug/kg	402	174	1	04/23/21 11:32	04/26/21 12:50	88-75-5	H3
4-Nitrophenol	ND	ug/kg	2010	778	1	04/23/21 11:32	04/26/21 12:50	100-02-7	H3
N-Nitrosodimethylamine	ND	ug/kg	402	135	1	04/23/21 11:32	04/26/21 12:50	62-75-9	H3
N-Nitroso-di-n-propylamine	ND	ug/kg	402	151	1	04/23/21 11:32	04/26/21 12:50	621-64-7	H3
N-Nitrosodiphenylamine	ND	ug/kg	402	143	1	04/23/21 11:32	04/26/21 12:50	86-30-6	H3
2,2'-Oxybis(1-chloropropane)	ND	ug/kg	402	191	1	04/23/21 11:32	04/26/21 12:50	108-60-1	H3
Pentachlorophenol	ND	ug/kg	805	394	1	04/23/21 11:32	04/26/21 12:50	87-86-5	H3
Phenanthrene	398J	ug/kg	402	132	1	04/23/21 11:32	04/26/21 12:50	85-01-8	H3
Phenol	ND	ug/kg	402	179	1	04/23/21 11:32	04/26/21 12:50	108-95-2	H3
Pyrene	294J	ug/kg	402	163	1	04/23/21 11:32	04/26/21 12:50	129-00-0	H3
Pyridine	ND	ug/kg	402	127	1	04/23/21 11:32	04/26/21 12:50	110-86-1	H3
2,4,5-Trichlorophenol	ND	ug/kg	402	184	1	04/23/21 11:32	04/26/21 12:50	95-95-4	H3
2,4,6-Trichlorophenol	ND	ug/kg	402	166	1	04/23/21 11:32	04/26/21 12:50	88-06-2	H3
Surrogates									
Nitrobenzene-d5 (S)	75	%	21-130		1	04/23/21 11:32	04/26/21 12:50	4165-60-0	
2-Fluorobiphenyl (S)	59	%	19-130		1	04/23/21 11:32	04/26/21 12:50	321-60-8	
Terphenyl-d14 (S)	50	%	15-130		1	04/23/21 11:32	04/26/21 12:50	1718-51-0	
Phenol-d6 (S)	70	%	18-130		1	04/23/21 11:32	04/26/21 12:50	13127-88-3	
2-Fluorophenol (S)	68	%	18-130		1	04/23/21 11:32	04/26/21 12:50	367-12-4	
2,4,6-Tribromophenol (S)	80	%	18-130		1	04/23/21 11:32	04/26/21 12:50	118-79-6	
8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA	8260D Prep	aration Met	hod: E	PA 5035A/5030B			
	Pace Anal	ytical Service	s - Charlotte						
Acetone	62.5J	ug/kg	116	37.2	1	04/22/21 11:42	04/22/21 21:29	67-64-1	H3
Benzene	ND	ug/kg	5.8	2.3	1	04/22/21 11:42	04/22/21 21:29	71-43-2	H3
Bromobenzene	ND	ug/kg	5.8	1.9	1	04/22/21 11:42	04/22/21 21:29	108-86-1	H3
Bromochloromethane	ND	ug/kg	5.8	1.7	1	04/22/21 11:42	04/22/21 21:29	74-97-5	H3
Bromodichloromethane	ND	ug/kg	5.8	2.2	1	04/22/21 11:42	04/22/21 21:29	75-27-4	H3
Bromoform	ND	ug/kg	5.8	2.0	1	04/22/21 11:42	04/22/21 21:29	75-25-2	H3



Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

Sample: RI-SB-32_SO_5.5- 6.0_20210317	Lab ID:	9253109600	4 Collecte	d: 03/17/2 ⁻	1 10:55	5 Received: 04/	02/21 09:40 Ma	atrix: Solid		
Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.										
Paramotors	Poculto	Unite	Report		DE	Bronarad	Applyzod		Qual	
Farameters		Units	- <u> </u>				Analyzeu	CAS NU.		
8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA	8260D Prep	paration Met	thod: E	PA 5035A/5030B				
	Pace Anal	ytical Service	es - Charlotte							
Bromomethane	ND	ua/ka	11.6	92	1	04/22/21 11:42	04/22/21 21.29	74-83-9	H3	
2-Butanone (MEK)	ND	ug/kg	116	27.8	1	04/22/21 11:42	04/22/21 21:29	78-93-3	H3	
n-Butylbenzene	ND	ug/kg	5.8	27	1	04/22/21 11:42	04/22/21 21:20	104-51-8	H3	
sec-Butylbenzene	ND	ug/kg	5.8	2.1	1	04/22/21 11:42	04/22/21 21:20	135-98-8	НЗ	
tert-Butylbenzene	ND	ug/kg	5.8	2.0	1	04/22/21 11:42	04/22/21 21:20	98-06-6	НЗ	
Carbon tetrachloride		ug/kg	5.8	2.1	1	04/22/21 11:42	04/22/21 21:20	56-23-5	НЗ	
Chlorobenzene		ug/kg	5.8	2.2 1 1	1	04/22/21 11:42	04/22/21 21:20	108-90-7	НЗ	
Chloroethane		ug/kg	11.6	4.5	1	04/22/21 11:42	04/22/21 21:20	75-00-3	НЗ	
Chloroform		ug/kg	5.8		1	04/22/21 11:42	04/22/21 21:20	67-66-3	НЗ	
Chloromethane		ug/kg	11.6	۵.5 ۸ ۵	1	04/22/21 11.42	04/22/21 21:20	74-87-3	H3	
		ug/kg	5.9	4.3 2.1	1	04/22/21 11.42	04/22/21 21:29	05 40 8	113 LI2	
		ug/kg	5.8	2.1	1	04/22/21 11.42	04/22/21 21:29	30-49-0 106-43-4	H3	
1 2-Dibromo-3-chloropropape		ug/kg	5.8	23	1	04/22/21 11.42	04/22/21 21:29	06-12-8	нз Н3	
Dibromochloromothono		ug/kg	5.0	2.5	1	04/22/21 11.42	04/22/21 21:29	12/ /8 1	113 LI2	
1.2 Dibromosthono (EDP)		ug/kg	5.0	0.0 0.6	1	04/22/21 11.42	04/22/21 21.29	124-40-1	113 LI2	
Dibromomothono		ug/kg	5.0 5.0	2.0	1	04/22/21 11.42	04/22/21 21.29	74 05 2	പാ	
		ug/kg	5.0 5.0	1.2	1	04/22/21 11.42	04/22/21 21.29	74-95-5	பி	
1,2-Dichlorobenzene		ug/kg	5.0 5.0	2.1	1	04/22/21 11.42	04/22/21 21.29	90-00-1	പാ	
		ug/kg	5.6 5.0	1.0	1	04/22/21 11:42	04/22/21 21:29	341-73-1	по 112	
Disk land diffuserant ath and	ND	ug/kg	0.C	1.5	1	04/22/21 11:42	04/22/21 21:29	100-40-7	п <u>э</u>	
	ND	ug/kg	11.0	2.5	1	04/22/21 11:42	04/22/21 21:29	75-71-8	п <u>э</u>	
1,1-Dichloroethane	ND	ug/kg	5.8	2.4	1	04/22/21 11:42	04/22/21 21:29	75-34-3	H3	
1,2-Dichloroethane	ND	ug/kg	5.8	3.8	1	04/22/21 11:42	04/22/21 21:29	107-06-2	H3	
	ND	ug/kg	5.8	2.4	1	04/22/21 11:42	04/22/21 21:29	75-35-4	H3	
cis-1,2-Dichloroethene	ND	ug/kg	5.8	2.0	1	04/22/21 11:42	04/22/21 21:29	156-59-2	H3	
trans-1,2-Dichloroethene	ND	ug/kg	5.8	2.0	1	04/22/21 11:42	04/22/21 21:29	156-60-5	H3	
1,2-Dichloropropane	ND	ug/kg	5.8	1.7	1	04/22/21 11:42	04/22/21 21:29	/8-87-5	H3	
1,3-Dichloropropane	ND	ug/kg	5.8	1.8	1	04/22/21 11:42	04/22/21 21:29	142-28-9	H3	
2,2-Dichloropropane	ND	ug/kg	5.8	1.9	1	04/22/21 11:42	04/22/21 21:29	594-20-7	H3	
1,1-Dichloropropene	ND	ug/kg	5.8	2.8	1	04/22/21 11:42	04/22/21 21:29	563-58-6	H3	
cis-1,3-Dichloropropene	ND	ug/kg	5.8	1.6	1	04/22/21 11:42	04/22/21 21:29	10061-01-5	H3	
trans-1,3-Dichloropropene	ND	ug/kg	5.8	2.0	1	04/22/21 11:42	04/22/21 21:29	10061-02-6	H3	
Disopropyl ether	ND	ug/kg	5.8	1.6	1	04/22/21 11:42	04/22/21 21:29	108-20-3	H3	
Ethylbenzene	5.7J	ug/kg	5.8	2.7	1	04/22/21 11:42	04/22/21 21:29	100-41-4	H3	
Hexachloro-1,3-butadiene	ND	ug/kg	11.6	9.5	1	04/22/21 11:42	04/22/21 21:29	87-68-3	H3	
2-Hexanone	ND	ug/kg	58.0	5.6	1	04/22/21 11:42	04/22/21 21:29	591-78-6	H3	
Isopropylbenzene (Cumene)	ND	ug/kg	5.8	2.0	1	04/22/21 11:42	04/22/21 21:29	98-82-8	H3	
p-lsopropyltoluene	32.1	ug/kg	5.8	2.9	1	04/22/21 11:42	04/22/21 21:29	99-87-6	H3	
Methylene Chloride	ND	ug/kg	23.2	15.9	1	04/22/21 11:42	04/22/21 21:29	75-09-2	H3	
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	58.0	5.6	1	04/22/21 11:42	04/22/21 21:29	108-10-1	H3	
Methyl-tert-butyl ether	ND	ug/kg	5.8	2.2	1	04/22/21 11:42	04/22/21 21:29	1634-04-4	H3	
Naphthalene	18.3	ug/kg	5.8	3.1	1	04/22/21 11:42	04/22/21 21:29	91-20-3	H3	
n-Propylbenzene	178	ug/kg	5.8	2.1	1	04/22/21 11:42	04/22/21 21:29	103-65-1	H3	
Styrene	ND	ug/kg	5.8	1.5	1	04/22/21 11:42	04/22/21 21:29	100-42-5	H3	



Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

Sample: RI-SB-32_SO_5.5- 6.0_20210317	Lab ID:	92531096004	Collected:	03/17/21	10:55	Received: 04/	02/21 09:40 Ma	atrix: Solid	
Results reported on a "dry weight	" basis and are	e adjusted for	percent moi	sture, san	nple si	ze and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A/5030B SC Volatiles	Analytical	Method: EPA 8	260D Prepa	ration Metl	hod: EF	PA 5035A/5030B			
	Pace Anal	ytical Services	- Charlotte						
1,1,1,2-Tetrachloroethane	ND	ug/kg	5.8	2.2	1	04/22/21 11:42	04/22/21 21:29	630-20-6	H3
1,1,2,2-Tetrachloroethane	ND	ug/kg	5.8	1.5	1	04/22/21 11:42	04/22/21 21:29	79-34-5	H3
Tetrachloroethene	ND	ug/kg	5.8	1.8	1	04/22/21 11:42	04/22/21 21:29	127-18-4	H3
Toluene	5.1J	ug/kg	5.8	1.6	1	04/22/21 11:42	04/22/21 21:29	108-88-3	H3
1,2,3-Trichlorobenzene	ND	ug/kg	5.8	4.7	1	04/22/21 11:42	04/22/21 21:29	87-61-6	H3
1,2,4-Trichlorobenzene	ND	ug/kg	5.8	4.9	1	04/22/21 11:42	04/22/21 21:29	120-82-1	H3
1,1,1-Trichloroethane	ND	ug/kg	5.8	3.0	1	04/22/21 11:42	04/22/21 21:29	71-55-6	H3
1,1,2-Trichloroethane	ND	ug/kg	5.8	1.9	1	04/22/21 11:42	04/22/21 21:29	79-00-5	H3
Trichloroethene	ND	ug/kg	5.8	1.5	1	04/22/21 11:42	04/22/21 21:29	79-01-6	H3
Trichlorofluoromethane	ND	ug/kg	5.8	3.2	1	04/22/21 11:42	04/22/21 21:29	75-69-4	H3
1,2,3-Trichloropropane	ND	ug/kg	5.8	2.9	1	04/22/21 11:42	04/22/21 21:29	96-18-4	H3
1,2,4-Trimethylbenzene	22.4	ug/kg	5.8	1.6	1	04/22/21 11:42	04/22/21 21:29	95-63-6	H3
1,3,5-Trimethylbenzene	ND	ug/kg	5.8	1.9	1	04/22/21 11:42	04/22/21 21:29	108-67-8	H3
Vinyl acetate	ND	ug/kg	58.0	4.2	1	04/22/21 11:42	04/22/21 21:29	108-05-4	H3
Vinyl chloride	ND	ug/kg	11.6	2.9	1	04/22/21 11:42	04/22/21 21:29	75-01-4	H3
Xylene (Total)	22.4	ug/kg	11.6	3.3	1	04/22/21 11:42	04/22/21 21:29	1330-20-7	
m&p-Xylene	10.9J	ug/kg	11.6	4.0	1	04/22/21 11:42	04/22/21 21:29	179601-23-1	H3
o-Xylene	11.5	ug/kg	5.8	2.6	1	04/22/21 11:42	04/22/21 21:29	95-47-6	H3
Surrogates									
Toluene-d8 (S)	101	%	70-130		1	04/22/21 11:42	04/22/21 21:29	2037-26-5	
4-Bromofluorobenzene (S)	122	%	69-134		1	04/22/21 11:42	04/22/21 21:29	460-00-4	
1,2-Dichloroethane-d4 (S)	102	%	70-130		1	04/22/21 11:42	04/22/21 21:29	17060-07-0	
Percent Moisture	Analytical Method: SW-846								
	Pace Anal	ytical Services	- Charlotte						
Percent Moisture	18.0	%	0.10	0.10	1		04/22/21 15:04		N2



## Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

Sample: TRIP BLANK	Lab ID:	92531096005	Collecte	d: 04/02/2	1 00:00	Received: 04	/02/21 09:40 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Low Level SC	Analytical Method: EPA 8260D								
	Pace Ana	alytical Services	- Charlotte						
Acetone	ND	ug/L	25.0	5.1	1		04/23/21 00:05	67-64-1	H1
Benzene	ND	ug/L	1.0	0.34	1		04/23/21 00:05	71-43-2	H1
Bromobenzene	ND	ug/L	1.0	0.29	1		04/23/21 00:05	108-86-1	H1
Bromochloromethane	ND	ug/L	1.0	0.47	1		04/23/21 00:05	74-97-5	H1
Bromodichloromethane	ND	ug/L	1.0	0.31	1		04/23/21 00:05	75-27-4	H1
Bromoform	ND	ug/L	1.0	0.34	1		04/23/21 00:05	75-25-2	H1
Bromomethane	ND	ug/L	2.0	1.7	1		04/23/21 00:05	74-83-9	H1
2-Butanone (MEK)	ND	ug/L	5.0	4.0	1		04/23/21 00:05	78-93-3	H1
Carbon tetrachloride	ND	ug/L	1.0	0.33	1		04/23/21 00:05	56-23-5	H1
Chlorobenzene	ND	ug/L	1.0	0.28	1		04/23/21 00:05	108-90-7	H1
Chloroethane	ND	ug/L	1.0	0.65	1		04/23/21 00:05	75-00-3	H1,v1
Chloroform	ND	ug/L	5.0	1.6	1		04/23/21 00:05	67-66-3	H1
Chloromethane	ND	ug/L	1.0	0.54	1		04/23/21 00:05	74-87-3	H1
2-Chlorotoluene	ND	ug/L	1.0	0.32	1		04/23/21 00:05	95-49-8	H1
4-Chlorotoluene	ND	ug/L	1.0	0.32	1		04/23/21 00:05	106-43-4	H1
1,2-Dibromo-3-chloropropane	ND	ug/L	2.0	0.34	1		04/23/21 00:05	96-12-8	H1
Dibromochloromethane	ND	ug/L	1.0	0.36	1		04/23/21 00:05	124-48-1	H1
Dibromomethane	ND	ug/L	1.0	0.39	1		04/23/21 00:05	74-95-3	H1
1,2-Dichlorobenzene	ND	ug/L	1.0	0.34	1		04/23/21 00:05	95-50-1	H1
1,3-Dichlorobenzene	ND	ug/L	1.0	0.34	1		04/23/21 00:05	541-73-1	H1
1,4-Dichlorobenzene	ND	ug/L	1.0	0.33	1		04/23/21 00:05	106-46-7	H1
Dichlorodifluoromethane	ND	ug/L	1.0	0.35	1		04/23/21 00:05	75-71-8	H1
1,1-Dichloroethane	ND	ug/L	1.0	0.37	1		04/23/21 00:05	75-34-3	H1
1,2-Dichloroethane	ND	ug/L	1.0	0.32	1		04/23/21 00:05	107-06-2	H1
1,1-Dichloroethene	ND	ug/L	1.0	0.35	1		04/23/21 00:05	75-35-4	H1
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.38	1		04/23/21 00:05	156-59-2	H1
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.40	1		04/23/21 00:05	156-60-5	H1
1,2-Dichloropropane	ND	ug/L	1.0	0.36	1		04/23/21 00:05	78-87-5	H1
1,3-Dichloropropane	ND	ug/L	1.0	0.28	1		04/23/21 00:05	142-28-9	H1
2,2-Dichloropropane	ND	ug/L	1.0	0.39	1		04/23/21 00:05	594-20-7	H1
1,1-Dichloropropene	ND	ug/L	1.0	0.43	1		04/23/21 00:05	563-58-6	H1
cis-1,3-Dichloropropene	ND	ug/L	1.0	0.36	1		04/23/21 00:05	10061-01-5	H1
trans-1,3-Dichloropropene	ND	ug/L	1.0	0.36	1		04/23/21 00:05	10061-02-6	H1
Diisopropyl ether	ND	ug/L	1.0	0.31	1		04/23/21 00:05	108-20-3	H1
Ethylbenzene	ND	ug/L	1.0	0.30	1		04/23/21 00:05	100-41-4	H1
Hexachloro-1,3-butadiene	ND	ug/L	2.0	1.5	1		04/23/21 00:05	87-68-3	H1
2-Hexanone	ND	ug/L	5.0	0.48	1		04/23/21 00:05	591-78-6	H1
p-Isopropyltoluene	ND	ug/L	1.0	0.41	1		04/23/21 00:05	99-87-6	H1
Methylene Chloride	ND	ug/L	5.0	2.0	1		04/23/21 00:05	75-09-2	H1
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	2.7	1		04/23/21 00:05	108-10-1	H1
Methyl-tert-butyl ether	ND	ug/L	1.0	0.42	1		04/23/21 00:05	1634-04-4	H1
Naphthalene	ND	ug/L	1.0	0.64	1		04/23/21 00:05	91-20-3	H1
Styrene	ND	ug/L	1.0	0.29	1		04/23/21 00:05	100-42-5	H1
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	0.31	1		04/23/21 00:05	630-20-6	H1
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	0.22	1		04/23/21 00:05	79-34-5	H1


# ANALYTICAL RESULTS

#### Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

Sample: TRIP BLANK	Lab ID:	92531096005	Collected	d: 04/02/21	00:00	Received: 04	/02/21 09:40 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Low Level SC	Analytical	Method: EPA 8	260D						
	Pace Anal	ytical Services	- Charlotte						
Tetrachloroethene	ND	ug/L	1.0	0.29	1		04/23/21 00:05	127-18-4	H1
Toluene	ND	ug/L	1.0	0.48	1		04/23/21 00:05	108-88-3	H1
1,2,3-Trichlorobenzene	ND	ug/L	1.0	0.81	1		04/23/21 00:05	87-61-6	H1
1,2,4-Trichlorobenzene	ND	ug/L	1.0	0.64	1		04/23/21 00:05	120-82-1	H1
1,1,1-Trichloroethane	ND	ug/L	1.0	0.33	1		04/23/21 00:05	71-55-6	H1
1,1,2-Trichloroethane	ND	ug/L	1.0	0.32	1		04/23/21 00:05	79-00-5	H1
Trichloroethene	ND	ug/L	1.0	0.38	1		04/23/21 00:05	79-01-6	H1
Trichlorofluoromethane	ND	ug/L	1.0	0.30	1		04/23/21 00:05	75-69-4	H1
1,2,3-Trichloropropane	ND	ug/L	1.0	0.26	1		04/23/21 00:05	96-18-4	H1
Vinyl acetate	ND	ug/L	2.0	1.3	1		04/23/21 00:05	108-05-4	H1,L1
Vinyl chloride	ND	ug/L	1.0	0.39	1		04/23/21 00:05	75-01-4	H1
Xylene (Total)	ND	ug/L	1.0	0.34	1		04/23/21 00:05	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	0.71	1		04/23/21 00:05	179601-23-1	H1
o-Xylene	ND	ug/L	1.0	0.34	1		04/23/21 00:05	95-47-6	H1
Surrogates									
4-Bromofluorobenzene (S)	103	%	70-130		1		04/23/21 00:05	460-00-4	
1,2-Dichloroethane-d4 (S)	119	%	70-130		1		04/23/21 00:05	17060-07-0	
Toluene-d8 (S)	102	%	70-130		1		04/23/21 00:05	2037-26-5	



Pace Analytical Services, LLC 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

# **QUALITY CONTROL DATA**

Project: FORMER BRAMLETTE MGP

1 400 1 10/001 100. 5200 1000
-------------------------------

QC Batch:	615558	Analysis Method:	EPA 8260D
QC Batch Method:	EPA 8260D	Analysis Description:	8260 MSV Low Level SC
		Laboratory:	Pace Analytical Services - Charlotte
Associated Lab Sam	ples: 92531096005		
METHOD BLANK:	3239276	Matrix: Water	

Associated Lab Samples: 92531096005

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	1.0	0.31	04/22/21 23:29	
1,1,1-Trichloroethane	ug/L	ND	1.0	0.33	04/22/21 23:29	
1,1,2,2-Tetrachloroethane	ug/L	ND	1.0	0.22	04/22/21 23:29	
1,1,2-Trichloroethane	ug/L	ND	1.0	0.32	04/22/21 23:29	
1,1-Dichloroethane	ug/L	ND	1.0	0.37	04/22/21 23:29	
1,1-Dichloroethene	ug/L	ND	1.0	0.35	04/22/21 23:29	
1,1-Dichloropropene	ug/L	ND	1.0	0.43	04/22/21 23:29	
1,2,3-Trichlorobenzene	ug/L	ND	1.0	0.81	04/22/21 23:29	
1,2,3-Trichloropropane	ug/L	ND	1.0	0.26	04/22/21 23:29	
1,2,4-Trichlorobenzene	ug/L	ND	1.0	0.64	04/22/21 23:29	
1,2-Dibromo-3-chloropropane	ug/L	ND	2.0	0.34	04/22/21 23:29	
1,2-Dichlorobenzene	ug/L	ND	1.0	0.34	04/22/21 23:29	
1,2-Dichloroethane	ug/L	ND	1.0	0.32	04/22/21 23:29	
1,2-Dichloropropane	ug/L	ND	1.0	0.36	04/22/21 23:29	
1,3-Dichlorobenzene	ug/L	ND	1.0	0.34	04/22/21 23:29	
1,3-Dichloropropane	ug/L	ND	1.0	0.28	04/22/21 23:29	
1,4-Dichlorobenzene	ug/L	ND	1.0	0.33	04/22/21 23:29	
2,2-Dichloropropane	ug/L	ND	1.0	0.39	04/22/21 23:29	
2-Butanone (MEK)	ug/L	ND	5.0	4.0	04/22/21 23:29	
2-Chlorotoluene	ug/L	ND	1.0	0.32	04/22/21 23:29	
2-Hexanone	ug/L	ND	5.0	0.48	04/22/21 23:29	
4-Chlorotoluene	ug/L	ND	1.0	0.32	04/22/21 23:29	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	5.0	2.7	04/22/21 23:29	
Acetone	ug/L	ND	25.0	5.1	04/22/21 23:29	
Benzene	ug/L	ND	1.0	0.34	04/22/21 23:29	
Bromobenzene	ug/L	ND	1.0	0.29	04/22/21 23:29	
Bromochloromethane	ug/L	ND	1.0	0.47	04/22/21 23:29	
Bromodichloromethane	ug/L	ND	1.0	0.31	04/22/21 23:29	
Bromoform	ug/L	ND	1.0	0.34	04/22/21 23:29	
Bromomethane	ug/L	ND	2.0	1.7	04/22/21 23:29	
Carbon tetrachloride	ug/L	ND	1.0	0.33	04/22/21 23:29	
Chlorobenzene	ug/L	ND	1.0	0.28	04/22/21 23:29	
Chloroethane	ug/L	ND	1.0	0.65	04/22/21 23:29	v1
Chloroform	ug/L	ND	5.0	1.6	04/22/21 23:29	
Chloromethane	ug/L	ND	1.0	0.54	04/22/21 23:29	
cis-1,2-Dichloroethene	ug/L	ND	1.0	0.38	04/22/21 23:29	
cis-1,3-Dichloropropene	ug/L	ND	1.0	0.36	04/22/21 23:29	
Dibromochloromethane	ug/L	ND	1.0	0.36	04/22/21 23:29	
Dibromomethane	ug/L	ND	1.0	0.39	04/22/21 23:29	
Dichlorodifluoromethane	ug/L	ND	1.0	0.35	04/22/21 23:29	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



#### Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

METHOD BLANK: 323927	76	Matrix:	Water			
Associated Lab Samples:	92531096005					
		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Diisopropyl ether	ug/L	ND	1.0	0.31	04/22/21 23:29	-
Ethylbenzene	ug/L	ND	1.0	0.30	04/22/21 23:29	
Hexachloro-1,3-butadiene	ug/L	ND	2.0	1.5	04/22/21 23:29	
m&p-Xylene	ug/L	ND	2.0	0.71	04/22/21 23:29	
Methyl-tert-butyl ether	ug/L	ND	1.0	0.42	04/22/21 23:29	
Methylene Chloride	ug/L	ND	5.0	2.0	04/22/21 23:29	
Naphthalene	ug/L	ND	1.0	0.64	04/22/21 23:29	
o-Xylene	ug/L	ND	1.0	0.34	04/22/21 23:29	
p-Isopropyltoluene	ug/L	ND	1.0	0.41	04/22/21 23:29	
Styrene	ug/L	ND	1.0	0.29	04/22/21 23:29	
Tetrachloroethene	ug/L	ND	1.0	0.29	04/22/21 23:29	
Toluene	ug/L	ND	1.0	0.48	04/22/21 23:29	
trans-1,2-Dichloroethene	ug/L	ND	1.0	0.40	04/22/21 23:29	
trans-1,3-Dichloropropene	ug/L	ND	1.0	0.36	04/22/21 23:29	
Trichloroethene	ug/L	ND	1.0	0.38	04/22/21 23:29	
Trichlorofluoromethane	ug/L	ND	1.0	0.30	04/22/21 23:29	
Vinyl acetate	ug/L	ND	2.0	1.3	04/22/21 23:29	
Vinyl chloride	ug/L	ND	1.0	0.39	04/22/21 23:29	
Xylene (Total)	ug/L	ND	1.0	0.34	04/22/21 23:29	
1,2-Dichloroethane-d4 (S)	%	117	70-130		04/22/21 23:29	
4-Bromofluorobenzene (S)	%	104	70-130		04/22/21 23:29	
Toluene-d8 (S)	%	103	70-130		04/22/21 23:29	

#### LABORATORY CONTROL SAMPLE: 3239277

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	52.3	105	70-130	
1,1,1-Trichloroethane	ug/L	50	53.7	107	70-130	
1,1,2,2-Tetrachloroethane	ug/L	50	56.9	114	70-130	
1,1,2-Trichloroethane	ug/L	50	52.7	105	70-130	
1,1-Dichloroethane	ug/L	50	58.5	117	70-130	
1,1-Dichloroethene	ug/L	50	59.2	118	70-130	
1,1-Dichloropropene	ug/L	50	56.7	113	70-130	
1,2,3-Trichlorobenzene	ug/L	50	53.7	107	70-130	
1,2,3-Trichloropropane	ug/L	50	57.2	114	70-130	
1,2,4-Trichlorobenzene	ug/L	50	53.6	107	70-130	
1,2-Dibromo-3-chloropropane	ug/L	50	57.8	116	70-130	
1,2-Dichlorobenzene	ug/L	50	53.3	107	70-130	
1,2-Dichloroethane	ug/L	50	57.1	114	70-130	
1,2-Dichloropropane	ug/L	50	57.0	114	70-130	
1,3-Dichlorobenzene	ug/L	50	54.3	109	70-130	
1,3-Dichloropropane	ug/L	50	57.2	114	70-130	
1,4-Dichlorobenzene	ug/L	50	53.7	107	70-130	
2.2-Dichloropropane	ug/L	50	58.0	116	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



#### Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

#### LABORATORY CONTROL SAMPLE: 3239277

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
2-Butanone (MEK)	ua/L		126	126	70-130	
2-Chlorotoluene	ug/L	50	57.7	115	70-130	
2-Hexanone	ug/L	100	123	123	70-130	
4-Chlorotoluene	ug/L	50	56.5	113	70-130	
4-Methyl-2-pentanone (MIBK)	ua/L	100	119	119	70-130	
Acetone	ug/L	100	121	121	70-130	
Benzene	ug/L	50	53.4	107	70-130	
Bromobenzene	ug/L	50	52.9	106	70-130	
Bromochloromethane	ug/L	50	51.1	102	70-130	
Bromodichloromethane	ug/L	50	52.8	106	70-130	
Bromoform	ug/L	50	51.2	102	70-130	
Bromomethane	ug/L	50	59.4	119	70-130	
Carbon tetrachloride	ug/L	50	48.2	96	70-130	
Chlorobenzene	ug/L	50	52.0	104	70-130	
Chloroethane	ug/L	50	56.9	114	70-130 v	/1
Chloroform	ug/L	50	58.7	117	70-130	
Chloromethane	ug/L	50	58.3	117	70-130	
cis-1.2-Dichloroethene	ug/L	50	60.7	121	70-130	
cis-1.3-Dichloropropene	ug/L	50	54.3	109	70-130	
Dibromochloromethane	ug/L	50	52.9	106	70-130	
Dibromomethane	ug/L	50	46.8	94	70-130	
Dichlorodifluoromethane	ug/L	50	48.6	97	70-130	
Diisopropyl ether	ug/L	50	59.9	120	70-130	
Ethylbenzene	ug/L	50	54.4	109	70-130	
Hexachloro-1.3-butadiene	ua/L	50	49.2	98	70-130	
m&p-Xvlene	ug/L	100	108	108	70-130	
Methyl-tert-butyl ether	ug/L	50	58.9	118	70-130	
Methylene Chloride	ug/L	50	59.3	119	70-130	
Naphthalene	ug/L	50	57.0	114	70-130	
o-Xvlene	ua/L	50	51.6	103	70-130	
p-lsopropyltoluene	ug/L	50	54.7	109	70-130	
Styrene	ug/L	50	52.5	105	70-130	
Tetrachloroethene	ua/L	50	46.7	93	70-130	
Toluene	ua/L	50	51.5	103	70-130	
trans-1.2-Dichloroethene	ug/L	50	61.1	122	70-130	
trans-1,3-Dichloropropene	ua/L	50	55.1	110	70-130	
Trichloroethene	ua/L	50	48.7	97	70-130	
Trichlorofluoromethane	ug/L	50	46.4	93	70-130	
Vinvl acetate	ug/L	100	140	140	70-130 L	_1
Vinyl chloride	ua/L	50	63.9	128	70-130	
Xylene (Total)	ua/L	150	160	106	70-130	
1,2-Dichloroethane-d4 (S)	%			105	70-130	
4-Bromofluorobenzene (S)	%			103	70-130	
Toluene-d8 (S)	%			101	70-130	
/ - /						

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



#### Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

MATRIX SPIKE & MATRIX SF	PIKE DUP	LICATE: 3239	278		3239279							
			MS	MSD								
		92534013002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1,2-Tetrachloroethane	ug/L	ND	400	400	420	468	105	117	73-134	11	30	
1,1,1-Trichloroethane	ug/L	ND	400	400	446	474	111	118	82-143	6	30	
1,1,2,2-Tetrachloroethane	ug/L	ND	400	400	410	469	103	117	70-136	13	30	
1,1,2-Trichloroethane	ug/L	ND	400	400	429	459	107	115	70-135	7	30	
1,1-Dichloroethane	ug/L	ND	400	400	452	488	113	122	70-139	8	30	
1,1-Dichloroethene	ug/L	ND	400	400	468	498	117	124	70-154	6	30	
1,1-Dichloropropene	ug/L	ND	400	400	426	455	106	114	70-149	7	30	
1,2,3-Trichlorobenzene	ug/L	ND	400	400	366	436	92	109	70-135	17	30	
1,2,3-Trichloropropane	ug/L	ND	400	400	405	456	101	114	71-137	12	30	
1,2,4-Trichlorobenzene	ug/L	ND	400	400	366	421	91	105	73-140	14	30	
1,2-Dibromo-3- chloropropane	ug/L	ND	400	400	439	516	110	129	65-134	16	30	
1,2-Dichlorobenzene	ug/L	ND	400	400	413	460	103	115	70-133	11	30	
1,2-Dichloroethane	ug/L	ND	400	400	410	433	103	108	70-137	5	30	
1,2-Dichloropropane	ug/L	ND	400	400	439	461	110	115	70-140	5	30	
1.3-Dichlorobenzene	ug/L	ND	400	400	389	458	97	115	70-135	16	30	
1,3-Dichloropropane	ug/L	ND	400	400	432	479	108	120	70-143	10	30	
1.4-Dichlorobenzene	ua/L	ND	400	400	394	460	98	115	70-133	16	30	
2,2-Dichloropropane	ug/L	ND	400	400	306	315	76	79	61-148	3	30	
2-Butanone (MEK)	ua/L	ND	800	800	803	869	100	109	60-139	8	30	
2-Chlorotoluene	ua/L	ND	400	400	405	511	101	128	70-144	23	30	
2-Hexanone	ua/L	ND	800	800	818	904	102	113	65-138	10	30	
4-Chlorotoluene	ua/L	ND	400	400	399	484	100	121	70-137	19	30	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	800	800	822	970	103	121	65-135	17	30	
Acetone	ug/L	ND	800	800	920	984	115	123	60-148	7	30	
Benzene	ug/L	2050	400	400	2390	2620	84	142	70-151	9	30	
Bromobenzene	ug/L	ND	400	400	436	527	109	132	70-136	19	30	
Bromochloromethane	ug/L	ND	400	400	448	465	112	116	70-141	4	30	
Bromodichloromethane	ug/L	ND	400	400	428	451	107	113	70-138	5	30	
Bromoform	ug/L	ND	400	400	418	462	105	115	63-130	10	30	
Bromomethane	ug/L	ND	400	400	493	504	123	126	15-152	2	30	
Carbon tetrachloride	ug/L	ND	400	400	429	452	107	113	70-143	5	30	
Chlorobenzene	ug/L	ND	400	400	428	477	107	119	70-138	11	30	
Chloroethane	ug/L	ND	400	400	496	503	124	126	52-163	1	30	
Chloroform	ug/L	ND	400	400	438	457	110	114	70-139	4	30	
Chloromethane	ug/L	ND	400	400	367	393	92	98	41-139	7	30	
cis-1.2-Dichloroethene	ua/L	ND	400	400	446	473	112	118	70-141	6	30	
cis-1.3-Dichloropropene	ua/L	ND	400	400	388	424	97	106	70-137	9	30	
Dibromochloromethane	ua/L	ND	400	400	431	495	108	124	70-134	14	30	
Dibromomethane	ua/L	ND	400	400	424	447	106	112	70-138	5	30	
Dichlorodifluoromethane	ua/l	ND	400	400	287	305	72	76	47-155	6	30	v3
Diisopropyl ether	ua/l	ND	400	400	424	451	105	112	63-144	6	30	
Ethylbenzene	ua/l	532	400	400	930	1060	100	132	66-153	13	30	
Hexachloro-1.3-butadiene	ua/l	ND	400	400	360	407	.00	102	65-149	12	30	
m&p-Xylene	ua/L	443	800	800	1250	1410	101	121	69-152	12	30	
	–					-						

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

MATRIX SPIKE & MATRIX SP	PIKE DUPLI	CATE: 3239	278		3239279							
			MS	MSD								
	9	92534013002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Methyl-tert-butyl ether	ug/L	144	400	400	536	572	98	107	54-156	7	30	
Methylene Chloride	ug/L	ND	400	400	457	481	114	120	42-159	5	30	
Naphthalene	ug/L	413	400	400	695	840	71	107	61-148	19	30	
o-Xylene	ug/L	35.4	400	400	442	495	102	115	70-148	11	30	
p-Isopropyltoluene	ug/L	ND	400	400	397	466	99	117	70-146	16	30	
Styrene	ug/L	ND	400	400	409	466	102	117	70-135	13	30	
Tetrachloroethene	ug/L	ND	400	400	394	450	98	113	59-143	13	30	
Toluene	ug/L	52.1	400	400	474	535	105	121	59-148	12	30	
trans-1,2-Dichloroethene	ug/L	ND	400	400	431	463	108	116	70-146	7	30	
trans-1,3-Dichloropropene	ug/L	ND	400	400	387	434	97	109	70-135	12	30	
Trichloroethene	ug/L	ND	400	400	413	446	103	111	70-147	8	30	
Trichlorofluoromethane	ug/L	ND	400	400	423	448	106	112	70-148	6	30	
Vinyl acetate	ug/L	ND	800	800	931	983	116	123	49-151	5	30	
Vinyl chloride	ug/L	ND	400	400	376	396	94	99	70-156	5	30	
Xylene (Total)	ug/L	478	1200	1200	1690	1910	101	119	63-158	12	30	
1,2-Dichloroethane-d4 (S)	%						105	102	70-130			
4-Bromofluorobenzene (S)	%						95	93	70-130			
Toluene-d8 (S)	%						98	98	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

QC Batch:	615494	Analysis Method:	EPA 8260D
QC Batch Method:	EPA 5035A/5030B	Analysis Description:	8260D 5035A 5030B SC
		Laboratory:	Pace Analytical Services - Charlotte
Associated Lab Sam	ples: 92531096001, 92531096003, 9	92531096004	
METHOD BLANK:	3238936	Matrix: Solid	

Associated Lab Samples: 92531096001, 92531096003, 92531096004

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	ND	5.0	1.9	04/22/21 12:27	
1,1,1-Trichloroethane	ug/kg	ND	5.0	2.6	04/22/21 12:27	
1,1,2,2-Tetrachloroethane	ug/kg	ND	5.0	1.3	04/22/21 12:27	
1,1,2-Trichloroethane	ug/kg	ND	5.0	1.7	04/22/21 12:27	
1,1-Dichloroethane	ug/kg	ND	5.0	2.1	04/22/21 12:27	
1,1-Dichloroethene	ug/kg	ND	5.0	2.1	04/22/21 12:27	
1,1-Dichloropropene	ug/kg	ND	5.0	2.4	04/22/21 12:27	
1,2,3-Trichlorobenzene	ug/kg	ND	5.0	4.0	04/22/21 12:27	
1,2,3-Trichloropropane	ug/kg	ND	5.0	2.5	04/22/21 12:27	
1,2,4-Trichlorobenzene	ug/kg	ND	5.0	4.2	04/22/21 12:27	
1,2,4-Trimethylbenzene	ug/kg	ND	5.0	1.4	04/22/21 12:27	
1,2-Dibromo-3-chloropropane	ug/kg	ND	5.0	1.9	04/22/21 12:27	
1,2-Dibromoethane (EDB)	ug/kg	ND	5.0	2.2	04/22/21 12:27	
1,2-Dichlorobenzene	ug/kg	ND	5.0	1.8	04/22/21 12:27	
1,2-Dichloroethane	ug/kg	ND	5.0	3.3	04/22/21 12:27	
1,2-Dichloropropane	ug/kg	ND	5.0	1.5	04/22/21 12:27	
1,3,5-Trimethylbenzene	ug/kg	ND	5.0	1.7	04/22/21 12:27	
1,3-Dichlorobenzene	ug/kg	ND	5.0	1.6	04/22/21 12:27	
1,3-Dichloropropane	ug/kg	ND	5.0	1.6	04/22/21 12:27	
1,4-Dichlorobenzene	ug/kg	ND	5.0	1.3	04/22/21 12:27	
2,2-Dichloropropane	ug/kg	ND	5.0	1.6	04/22/21 12:27	
2-Butanone (MEK)	ug/kg	ND	100	24.0	04/22/21 12:27	
2-Chlorotoluene	ug/kg	ND	5.0	1.8	04/22/21 12:27	
2-Hexanone	ug/kg	ND	50.0	4.8	04/22/21 12:27	
4-Chlorotoluene	ug/kg	ND	5.0	0.88	04/22/21 12:27	
4-Methyl-2-pentanone (MIBK)	ug/kg	ND	50.0	4.8	04/22/21 12:27	
Acetone	ug/kg	ND	100	32.1	04/22/21 12:27	
Benzene	ug/kg	ND	5.0	2.0	04/22/21 12:27	
Bromobenzene	ug/kg	ND	5.0	1.6	04/22/21 12:27	
Bromochloromethane	ug/kg	ND	5.0	1.5	04/22/21 12:27	
Bromodichloromethane	ug/kg	ND	5.0	1.9	04/22/21 12:27	
Bromoform	ug/kg	ND	5.0	1.8	04/22/21 12:27	
Bromomethane	ug/kg	ND	10.0	7.9	04/22/21 12:27	
Carbon tetrachloride	ug/kg	ND	5.0	1.9	04/22/21 12:27	
Chlorobenzene	ug/kg	ND	5.0	0.96	04/22/21 12:27	
Chloroethane	ug/kg	ND	10.0	3.9	04/22/21 12:27	
Chloroform	ug/kg	ND	5.0	3.0	04/22/21 12:27	
Chloromethane	ug/kg	ND	10.0	4.2	04/22/21 12:27	
cis-1,2-Dichloroethene	ug/kg	ND	5.0	1.7	04/22/21 12:27	
cis-1,3-Dichloropropene	ug/kg	ND	5.0	1.4	04/22/21 12:27	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

# **REPORT OF LABORATORY ANALYSIS**



#### Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

METHOD BLANK: 3238936		Matrix:	Solid			
Associated Lab Samples: 925310	96001, 92531096003	, 92531096004				
		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Dibromochloromethane	ug/kg	ND	5.0	2.8	04/22/21 12:27	
Dibromomethane	ug/kg	ND	5.0	1.1	04/22/21 12:27	
Dichlorodifluoromethane	ug/kg	ND	10.0	2.2	04/22/21 12:27	
Diisopropyl ether	ug/kg	ND	5.0	1.4	04/22/21 12:27	
Ethylbenzene	ug/kg	ND	5.0	2.3	04/22/21 12:27	
Hexachloro-1,3-butadiene	ug/kg	ND	10.0	8.2	04/22/21 12:27	
Isopropylbenzene (Cumene)	ug/kg	ND	5.0	1.7	04/22/21 12:27	
m&p-Xylene	ug/kg	ND	10.0	3.4	04/22/21 12:27	
Methyl-tert-butyl ether	ug/kg	ND	5.0	1.9	04/22/21 12:27	
Methylene Chloride	ug/kg	ND	20.0	13.7	04/22/21 12:27	
n-Butylbenzene	ug/kg	ND	5.0	2.4	04/22/21 12:27	
n-Propylbenzene	ug/kg	ND	5.0	1.8	04/22/21 12:27	
Naphthalene	ug/kg	ND	5.0	2.6	04/22/21 12:27	
o-Xylene	ug/kg	ND	5.0	2.2	04/22/21 12:27	
p-Isopropyltoluene	ug/kg	ND	5.0	2.5	04/22/21 12:27	
sec-Butylbenzene	ug/kg	ND	5.0	2.2	04/22/21 12:27	
Styrene	ug/kg	ND	5.0	1.3	04/22/21 12:27	
tert-Butylbenzene	ug/kg	ND	5.0	1.8	04/22/21 12:27	
Tetrachloroethene	ug/kg	ND	5.0	1.6	04/22/21 12:27	
Toluene	ug/kg	ND	5.0	1.4	04/22/21 12:27	
trans-1,2-Dichloroethene	ug/kg	ND	5.0	1.8	04/22/21 12:27	
trans-1,3-Dichloropropene	ug/kg	ND	5.0	1.7	04/22/21 12:27	
Trichloroethene	ug/kg	ND	5.0	1.3	04/22/21 12:27	
Trichlorofluoromethane	ug/kg	ND	5.0	2.8	04/22/21 12:27	
Vinyl acetate	ug/kg	ND	50.0	3.6	04/22/21 12:27	
Vinyl chloride	ug/kg	ND	10.0	2.5	04/22/21 12:27	
Xylene (Total)	ug/kg	ND	10.0	2.8	04/22/21 12:27	
1,2-Dichloroethane-d4 (S)	%	103	70-130		04/22/21 12:27	
4-Bromofluorobenzene (S)	%	107	69-134		04/22/21 12:27	
Toluene-d8 (S)	%	99	70-130		04/22/21 12:27	

#### LABORATORY CONTROL SAMPLE: 3238937

Demonster	11-2-	Spike	LCS	LCS	% Rec	O se l'É se se
Parameter		Conc	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	1250	1210	97	70-130	
1,1,1-Trichloroethane	ug/kg	1250	1110	89	70-130	
1,1,2,2-Tetrachloroethane	ug/kg	1250	1200	96	70-130	
1,1,2-Trichloroethane	ug/kg	1250	1180	94	70-130	
1,1-Dichloroethane	ug/kg	1250	1160	93	70-130	
1,1-Dichloroethene	ug/kg	1250	1150	92	70-130	
1,1-Dichloropropene	ug/kg	1250	1140	91	70-130	
1,2,3-Trichlorobenzene	ug/kg	1250	1120	89	65-130	
1,2,3-Trichloropropane	ug/kg	1250	1190	95	70-130	
1,2,4-Trichlorobenzene	ug/kg	1250	1100	88	68-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

# **REPORT OF LABORATORY ANALYSIS**



#### Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

#### LABORATORY CONTROL SAMPLE: 3238937

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2,4-Trimethylbenzene	ug/kg	1250	1140	92	70-130	
1,2-Dibromo-3-chloropropane	ug/kg	1250	1160	93	70-130	
1,2-Dibromoethane (EDB)	ug/kg	1250	1240	99	70-130	
1,2-Dichlorobenzene	ug/kg	1250	1100	88	70-130	
1,2-Dichloroethane	ug/kg	1250	1180	94	63-130	
1,2-Dichloropropane	ug/kg	1250	1220	97	70-130	
1,3,5-Trimethylbenzene	ug/kg	1250	1160	93	70-130	
1,3-Dichlorobenzene	ug/kg	1250	1070	85	70-130	
1,3-Dichloropropane	ug/kg	1250	1250	100	70-130	
1,4-Dichlorobenzene	ug/kg	1250	1100	88	70-130	
2,2-Dichloropropane	ug/kg	1250	1110	89	66-130	
2-Butanone (MEK)	ug/kg	2500	2450	98	70-130	
2-Chlorotoluene	ug/kg	1250	1170	94	70-130	
2-Hexanone	ug/kg	2500	2610	104	70-130	
4-Chlorotoluene	ug/kg	1250	1140	91	70-130	
4-Methyl-2-pentanone (MIBK)	ug/kg	2500	2470	99	70-130	
Acetone	ug/kg	2500	2430	97	69-130	
Benzene	ug/kg	1250	1210	97	70-130	
Bromobenzene	ug/kg	1250	1150	92	70-130	
Bromochloromethane	ug/kg	1250	1190	96	70-130	
Bromodichloromethane	ug/kg	1250	1200	96	69-130	
Bromoform	ug/kg	1250	1240	99	70-130	
Bromomethane	ug/kg	1250	1120	90	52-130	
Carbon tetrachloride	ug/kg	1250	1170	94	70-130	
Chlorobenzene	ug/kg	1250	1170	94	70-130	
Chloroethane	ug/kg	1250	1210	97	65-130	
Chloroform	ug/kg	1250	1100	88	70-130	
Chloromethane	ug/kg	1250	1120	90	55-130	
cis-1,2-Dichloroethene	ug/kg	1250	1200	96	70-130	
cis-1,3-Dichloropropene	ug/kg	1250	1220	98	70-130	
Dibromochloromethane	ug/kg	1250	1260	101	70-130	
Dibromomethane	ug/kg	1250	1190	95	70-130	
Dichlorodifluoromethane	ug/kg	1250	1120	89	45-156	
Diisopropyl ether	ug/kg	1250	1110	89	70-130	
Ethylbenzene	ug/kg	1250	1120	89	70-130	
Hexachloro-1,3-butadiene	ug/kg	1250	1110	89	66-130	
Isopropylbenzene (Cumene)	ug/kg	1250	1160	93	70-130	
m&p-Xylene	ug/kg	2500	2400	96	70-130	
Methyl-tert-butyl ether	ug/kg	1250	1120	89	70-130	
Methylene Chloride	ug/kg	1250	1180	95	65-130	
n-Butylbenzene	ug/kg	1250	1100	88	67-130	
n-Propylbenzene	ug/kg	1250	1120	90	70-130	
Naphthalene	ug/kg	1250	1120	90	70-130	
o-Xylene	ug/kg	1250	1190	95	70-130	
p-Isopropyltoluene	ug/kg	1250	1120	90	67-130	
sec-Butylbenzene	ug/kg	1250	1080	86	69-130	
Styrene	ug/kg	1250	1250	100	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



#### Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

#### LABORATORY CONTROL SAMPLE: 3238937

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
tert-Butylbenzene	ug/kg	1250	1090	87	67-130	
Tetrachloroethene	ug/kg	1250	1120	90	70-130	
Toluene	ug/kg	1250	1170	93	70-130	
trans-1,2-Dichloroethene	ug/kg	1250	1200	96	70-130	
trans-1,3-Dichloropropene	ug/kg	1250	1210	97	68-130	
Trichloroethene	ug/kg	1250	1140	91	70-130	
Trichlorofluoromethane	ug/kg	1250	1050	84	70-130	
Vinyl acetate	ug/kg	2500	2650	106	70-130	
Vinyl chloride	ug/kg	1250	1090	87	61-130	
Xylene (Total)	ug/kg	3750	3590	96	70-130	
1,2-Dichloroethane-d4 (S)	%			94	70-130	
4-Bromofluorobenzene (S)	%			107	69-134	
Toluene-d8 (S)	%			100	70-130	

MATRIX SPIKE & MATRIX SI	3243822											
Deremeter	Linita	92534491002	MS Spike	MSD Spike	MS	MSD Booult	MS % Roo	MSD	% Rec	חחם	Max	Qual
Falameter				CONC.	Result	Result	70 Rec	70 Rec				Quai
1,1,1,2-Tetrachloroethane	ug/kg	ND	544	544	565	660	104	121	70-131	15	30	
1,1,1-Trichloroethane	ug/kg	ND	544	544	549	615	101	113	65-133	11	30	
1,1,2,2-Tetrachloroethane	ug/kg	ND	544	544	524	601	96	110	66-130	14	30	
1,1,2-Trichloroethane	ug/kg	ND	544	544	569	620	105	114	66-133	9	30	
1,1-Dichloroethane	ug/kg	ND	544	544	517	571	95	105	65-130	10	30	
1,1-Dichloroethene	ug/kg	ND	544	544	538	615	99	113	10-158	13	30	
1,1-Dichloropropene	ug/kg	ND	544	544	551	634	101	117	68-133	14	30	
1,2,3-Trichlorobenzene	ug/kg	ND	544	544	511	629	94	116	27-138	21	30	
1,2,3-Trichloropropane	ug/kg	ND	544	544	515	606	95	111	67-130	16	30	
1,2,4-Trichlorobenzene	ug/kg	ND	544	544	482	606	89	111	51-134	23	30	
1,2,4-Trimethylbenzene	ug/kg	ND	544	544	537	648	99	119	63-136	19	30	
1,2-Dibromo-3- chloropropane	ug/kg	ND	544	544	460	533	85	98	32-130	15	30	
1.2-Dibromoethane (EDB)	ua/ka	ND	544	544	557	649	102	119	70-130	15	30	
1.2-Dichlorobenzene	ua/ka	ND	544	544	517	630	95	116	69-130	20	30	
1,2-Dichloroethane	ug/kg	ND	544	544	548	612	101	112	59-130	11	30	
1,2-Dichloropropane	ug/kg	ND	544	544	592	632	109	116	70-130	6	30	
1,3,5-Trimethylbenzene	ug/kg	ND	544	544	550	643	101	118	65-137	16	30	
1,3-Dichlorobenzene	ug/kg	ND	544	544	497	616	91	113	70-130	21	30	
1,3-Dichloropropane	ug/kg	ND	544	544	587	680	108	125	70-130	15	30	
1,4-Dichlorobenzene	ug/kg	ND	544	544	517	628	95	115	68-130	19	30	
2,2-Dichloropropane	ug/kg	ND	544	544	412	586	76	108	32-130	35	30	R1
2-Butanone (MEK)	ug/kg	ND	1090	1090	995	1070	92	99	10-136	8	30	
2-Chlorotoluene	ug/kg	ND	544	544	555	654	102	120	69-141	16	30	
2-Hexanone	ug/kg	ND	1090	1090	1050	1190	96	109	10-144	12	30	
4-Chlorotoluene	ug/kg	ND	544	544	528	649	97	119	70-132	21	30	
4-Methyl-2-pentanone (MIBK)	ug/kg	ND	1090	1090	1070	1150	98	106	25-143	8	30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



#### Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

AATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3238939 3243822												
			MS	MSD								
		92534491002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Acetone	ug/kg	211	1090	1090	1080	1050	80	78	10-130	2	30	
Benzene	ug/kg	ND	544	544	587	652	108	120	67-130	10	30	
Bromobenzene	ug/kg	ND	544	544	535	638	98	117	70-130	18	30	
Bromochloromethane	ug/kg	ND	544	544	526	576	97	106	69-134	9	30	
Bromodichloromethane	ug/kg	ND	544	544	556	577	102	106	64-130	4	30	
Bromoform	ug/kg	ND	544	544	521	606	96	112	62-130	15	30	
Bromomethane	ug/kg	ND	544	544	442	461	81	85	20-176	4	30	
Carbon tetrachloride	ug/kg	ND	544	544	561	616	103	113	65-140	9	30	
Chlorobenzene	ug/kg	ND	544	544	557	647	102	119	70-130	15	30	
Chloroethane	ug/kg	ND	544	544	265	270	49	50	10-130	2	30	
Chloroform	ug/kg	ND	544	544	497	543	91	100	63-130	9	30	
Chloromethane	ug/kg	ND	544	544	600	664	110	122	58-130	10	30	
cis-1,2-Dichloroethene	ug/kg	ND	544	544	545	585	100	108	66-130	7	30	
cis-1,3-Dichloropropene	ug/kg	ND	544	544	548	632	101	116	67-130	14	30	
Dibromochloromethane	ug/kg	ND	544	544	550	657	101	121	67-130	18	30	
Dibromomethane	ug/kg	ND	544	544	538	610	99	112	63-131	13	30	
Dichlorodifluoromethane	ug/kg	ND	544	544	580	742	107	136	44-180	24	30	
Diisopropyl ether	ug/kg	ND	544	544	508	550	93	101	63-130	8	30	
Ethylbenzene	ug/kg	ND	544	544	547	630	101	116	66-130	14	30	
Hexachloro-1,3-butadiene	ug/kg	ND	544	544	515	693	95	128	64-150	30	30	
Isopropylbenzene (Cumene)	ug/kg	ND	544	544	581	667	107	123	69-135	14	30	
m&p-Xylene	ug/kg	ND	1090	1090	1160	1340	107	123	60-133	14	30	
Methyl-tert-butyl ether	ug/kg	ND	544	544	502	565	92	104	65-130	12	30	
Methylene Chloride	ug/kg	ND	544	544	551	615	101	113	61-130	11	30	
n-Butylbenzene	ug/kg	ND	544	544	510	654	94	120	65-140	25	30	
n-Propylbenzene	ug/kg	ND	544	544	537	648	99	119	67-140	19	30	
Naphthalene	ug/kg	ND	544	544	505	594	93	109	15-145	16	30	
o-Xylene	ug/kg	ND	544	544	577	656	106	121	66-133	13	30	
p-Isopropyltoluene	ug/kg	ND	544	544	532	667	98	123	56-147	23	30	
sec-Butylbenzene	ug/kg	ND	544	544	534	659	98	121	65-139	21	30	
Styrene	ug/kg	ND	544	544	579	667	106	123	70-132	14	30	
tert-Butylbenzene	ug/kg	ND	544	544	531	634	98	117	62-135	18	30	
Tetrachloroethene	ug/kg	ND	544	544	542	641	100	118	70-135	17	30	
Toluene	ug/kg	3.5J	544	544	587	641	107	117	67-130	9	30	
trans-1,2-Dichloroethene	ug/kg	ND	544	544	548	610	101	112	69-130	11	30	
trans-1,3-Dichloropropene	ug/kg	ND	544	544	543	620	100	114	62-130	13	30	
Trichloroethene	ug/kg	ND	544	544	563	637	104	117	70-135	12	30	
Trichlorofluoromethane	ug/kg	ND	544	544	230	271	42	50	10-130	17	30	
Vinyl acetate	ug/kg	ND	1090	1090	1120	1310	103	120	53-130	15	30	
Vinyl chloride	ug/kg	ND	544	544	562	605	103	111	61-148	7	30	
Xylene (Total)	ug/kg	ND	1630	1630	1740	1990	106	122	63-132	14	30	
1,2-Dichloroethane-d4 (S)	%						116	118	70-130			
4-Bromofluorobenzene (S)	%						105	105	69-134			
Toluene-d8 (S)	%						100	99	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



Pace Analytical Services, LLC 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

# **QUALITY CONTROL DATA**

Project: FORMER BRAMLETTE MGP

Pace Project N	lo.: 92531
----------------	------------

Pace Project No.: 92531096									
QC Batch: 616269		Analysis Met	hod: EP/	EPA 8260D					
QC Batch Method: EPA 5035A/5	030B	Analysis Des	cription: 826	0D 5035A 5030	B SC				
		Laboratory:	Pao	e Analytical Ser	vices - Charlotte				
Associated Lab Samples: 925310	096002	,		,					
· · · · · · · · · · · · · · · · · · ·									
METHOD BLANK: 3243352		Matrix:	Solid						
Associated Lab Samples: 925310	096002								
Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers			
1.1.1.2-Tetrachloroethane	ua/ka	ND	5.0	1.9	04/27/21 01:16				
1,1,1-Trichloroethane	ug/kg	ND	5.0	2.6	04/27/21 01:16				
1,1,2,2-Tetrachloroethane	ug/kg	ND	5.0	1.3	04/27/21 01:16				
1,1,2-Trichloroethane	ug/kg	ND	5.0	1.7	04/27/21 01:16				
1,1-Dichloroethane	ug/kg	ND	5.0	2.1	04/27/21 01:16				
1,1-Dichloroethene	ug/kg	ND	5.0	2.1	04/27/21 01:16				
1,1-Dichloropropene	ug/kg	ND	5.0	2.4	04/27/21 01:16				
1,2,3-Trichlorobenzene	ug/kg	ND	5.0	4.0	04/27/21 01:16				
1,2,3-Trichloropropane	ug/kg	ND	5.0	2.5	04/27/21 01:16				
1,2,4-Trichlorobenzene	ug/kg	ND	5.0	4.2	04/27/21 01:16				
1,2,4-Trimethylbenzene	ug/kg	ND	5.0	1.4	04/27/21 01:16				
1,2-Dibromo-3-chloropropane	ug/kg	ND	5.0	1.9	04/27/21 01:16				
1,2-Dibromoethane (EDB)	ug/kg	ND	5.0	2.2	04/27/21 01:16				
1,2-Dichlorobenzene	ug/kg	ND	5.0	1.8	04/27/21 01:16				
1,2-Dichloroethane	ug/kg	ND	5.0	3.3	04/27/21 01:16				
1,2-Dichloropropane	ug/kg	ND	5.0	1.5	04/27/21 01:16				
1,3,5-Trimethylbenzene	ug/kg	ND	5.0	1.7	04/27/21 01:16				
1,3-Dichlorobenzene	ug/kg	ND	5.0	1.6	04/27/21 01:16				
1,3-Dichloropropane	ug/kg	ND	5.0	1.6	04/27/21 01:16				
1,4-Dichlorobenzene	ug/kg	ND	5.0	1.3	04/27/21 01:16				
2,2-Dichloropropane	ug/kg	ND	5.0	1.6	04/27/21 01:16				
2-Butanone (MEK)	ug/kg	ND	100	24.0	04/27/21 01:16				
2-Chlorotoluene	ug/kg	ND	5.0	1.8	04/27/21 01:16				
2-Hexanone	ug/kg	ND	50.0	4.8	04/27/21 01:16				
4-Chlorotoluene	ug/kg	ND	5.0	0.88	04/27/21 01:16				
4-Methyl-2-pentanone (MIBK)	ug/kg	ND	50.0	4.8	04/27/21 01:16				
Acetone	ug/kg	ND	100	32.1	04/27/21 01:16				
Benzene	ug/kg	ND	5.0	2.0	04/27/21 01:16				
Bromobenzene	ug/kg	ND	5.0	1.6	04/27/21 01:16				
Bromochloromethane	ug/kg	ND	5.0	1.5	04/27/21 01:16				
Bromodichloromethane	ug/kg	ND	5.0	1.9	04/27/21 01:16				
Bromotorm	ug/kg	ND	5.0	1.8	04/27/21 01:16				
Bromometnane	ug/kg	ND	10.0	7.9	04/27/21 01:16				
Carbon tetrachioride	ug/kg	ND	5.0	1.9	04/27/21 01:16				
Chloroothana	ug/kg	ND	5.0	0.96	04/27/21 01:16				
Chloroform	ug/kg	ND	10.0	3.9	04/27/21 01:16				
Chloromothana	ug/kg	ND	5.0	3.0	04/27/21 01:16				
	ug/kg		10.0	4.2	04/27/21 01:10				
	ug/kg		5.0	1./	04/27/21 01:10				
cis-r,s-Dichloropropene	ug/kg	ND	5.0	1.4	04/21/21 01:10				

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



Matrix: Solid

#### Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

# METHOD BLANK: 3243352

Associated Lab Samples: 92531096002

Blank Reporting Parameter Units Result Limit MDL Analyzed Qualifiers Dibromochloromethane ug/kg ND 5.0 2.8 04/27/21 01:16 Dibromomethane ND 5.0 04/27/21 01:16 ug/kg 1.1 Dichlorodifluoromethane ND 10.0 2.2 04/27/21 01:16 ug/kg Diisopropyl ether ND 1.4 5.0 04/27/21 01:16 ug/kg Ethylbenzene ND 5.0 ug/kg 2.3 04/27/21 01:16 Hexachloro-1,3-butadiene ug/kg ND 10.0 8.2 04/27/21 01:16 Isopropylbenzene (Cumene) ug/kg ND 5.0 1.7 04/27/21 01:16 m&p-Xylene ug/kg ND 10.0 3.4 04/27/21 01:16 Methyl-tert-butyl ether ug/kg ND 5.0 1.9 04/27/21 01:16 Methylene Chloride ND 20.0 04/27/21 01:16 ug/kg 13.7 n-Butylbenzene ug/kg ND 5.0 2.4 04/27/21 01:16 ug/kg n-Propylbenzene ND 5.0 1.8 04/27/21 01:16 Naphthalene ND 5.0 2.6 04/27/21 01:16 ug/kg ND 5.0 2.2 04/27/21 01:16 o-Xylene ug/kg ug/kg ND 5.0 2.5 p-Isopropyltoluene 04/27/21 01:16 ND 5.0 2.2 sec-Butylbenzene ug/kg 04/27/21 01:16 Styrene ug/kg ND 5.0 1.3 04/27/21 01:16 tert-Butylbenzene ug/kg ND 5.0 1.8 04/27/21 01:16 Tetrachloroethene ug/kg ND 5.0 1.6 04/27/21 01:16 Toluene ug/kg ND 5.0 04/27/21 01:16 1.4 5.0 trans-1,2-Dichloroethene ug/kg ND 1.8 04/27/21 01:16 5.0 trans-1,3-Dichloropropene ug/kg ND 1.7 04/27/21 01:16 Trichloroethene ug/kg ND 5.0 1.3 04/27/21 01:16 Trichlorofluoromethane ug/kg ND 5.0 28 04/27/21 01:16 Vinyl acetate ug/kg ND 50.0 3.6 04/27/21 01:16 Vinyl chloride ug/kg ND 10.0 2.5 04/27/21 01:16 2.8 04/27/21 01:16 Xylene (Total) ug/kg ND 10.0 1,2-Dichloroethane-d4 (S) % 106 70-130 04/27/21 01:16 4-Bromofluorobenzene (S) % 105 69-134 04/27/21 01:16 Toluene-d8 (S) % 98 70-130 04/27/21 01:16

#### LABORATORY CONTROL SAMPLE: 3243353

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	1250	1190	95	70-130	
1,1,1-Trichloroethane	ug/kg	1250	1130	90	70-130	
1,1,2,2-Tetrachloroethane	ug/kg	1250	1180	94	70-130	
1,1,2-Trichloroethane	ug/kg	1250	1160	93	70-130	
1,1-Dichloroethane	ug/kg	1250	1150	92	70-130	
1,1-Dichloroethene	ug/kg	1250	1160	93	70-130	
1,1-Dichloropropene	ug/kg	1250	1120	89	70-130	
1,2,3-Trichlorobenzene	ug/kg	1250	1150	92	65-130	
1,2,3-Trichloropropane	ug/kg	1250	1200	96	70-130	
1,2,4-Trichlorobenzene	ug/kg	1250	1090	87	68-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

# **REPORT OF LABORATORY ANALYSIS**



#### Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

#### LABORATORY CONTROL SAMPLE: 3243353

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1.2.4-Trimethylbenzene	ua/ka	1250	1130	90	70-130	
1,2-Dibromo-3-chloropropane	ug/kg	1250	1200	96	70-130	
1,2-Dibromoethane (EDB)	ug/kg	1250	1240	100	70-130	
1,2-Dichlorobenzene	ug/kg	1250	1130	91	70-130	
1,2-Dichloroethane	ug/kg	1250	1180	94	63-130	
1,2-Dichloropropane	ug/kg	1250	1160	93	70-130	
1,3,5-Trimethylbenzene	ug/kg	1250	1130	90	70-130	
1,3-Dichlorobenzene	ug/kg	1250	1110	89	70-130	
1,3-Dichloropropane	ug/kg	1250	1260	101	70-130	
1,4-Dichlorobenzene	ug/kg	1250	1080	86	70-130	
2,2-Dichloropropane	ug/kg	1250	1040	83	66-130	
2-Butanone (MEK)	ua/ka	2500	2490	100	70-130	
2-Chlorotoluene	ua/ka	1250	1180	94	70-130	
2-Hexanone	ua/ka	2500	2650	106	70-130	
4-Chlorotoluene	ug/kg	1250	1150	92	70-130	
4-Methyl-2-pentanone (MIBK)	ua/ka	2500	2460	99	70-130	
Acetone	ua/ka	2500	2470	99	69-130	
Benzene	ua/ka	1250	1160	93	70-130	
Bromobenzene	ua/ka	1250	1160	93	70-130	
Bromochloromethane	ua/ka	1250	1180	95	70-130	
Bromodichloromethane	ua/ka	1250	1070	86	69-130	
Bromoform	ua/ka	1250	1230	99	70-130	
Bromomethane	ua/ka	1250	1000	80	52-130	
Carbon tetrachloride	ua/ka	1250	1120	90	70-130	
Chlorobenzene	ua/ka	1250	1150	92	70-130	
Chloroethane	ua/ka	1250	1030	83	65-130	
Chloroform	ua/ka	1250	1050	84	70-130	
Chloromethane	ua/ka	1250	1080	86	55-130	
cis-1.2-Dichloroethene	ua/ka	1250	1150	92	70-130	
cis-1.3-Dichloropropene	ua/ka	1250	1170	93	70-130	
Dibromochloromethane	ua/ka	1250	1280	102	70-130	
Dibromomethane	ua/ka	1250	1200	.02	70-130	
Dichlorodifluoromethane	ua/ka	1250	1220	98	45-156	
Diisopropyl ether	ua/ka	1250	1100	88	70-130	
Ethvlbenzene	ua/ka	1250	1070	85	70-130	
Hexachloro-1.3-butadiene	ua/ka	1250	1080	87	66-130	
Isopropylbenzene (Cumene)	ua/ka	1250	1110	89	70-130	
m&p-Xylene	ua/ka	2500	2300	92	70-130	
Methyl-tert-butyl ether	ua/ka	1250	1130	90	70-130	
Methylene Chloride	ua/ka	1250	1200	96	65-130	
n-Butvlbenzene	ua/ka	1250	1060	85	67-130	
n-Propylbenzene	ua/ka	1250	1090	87	70-130	
Naphthalene	ua/ka	1250	1180	95	70-130	
o-Xvlene	ua/ka	1250	1140	91	70-130	
p-Isopropyltoluene	ua/ka	1250	1120	89	67-130	
sec-Butylbenzene	ua/ka	1250	1070	86	69-130	
Styrene	ua/ka	1250	1200	96	70-130	
	39/19	1200	1200	00	10 100	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



#### Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

#### LABORATORY CONTROL SAMPLE: 3243353

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
tert-Butylbenzene	ug/kg	1250	1100	88	67-130	
Tetrachloroethene	ug/kg	1250	1110	89	70-130	
Toluene	ug/kg	1250	1130	90	70-130	
trans-1,2-Dichloroethene	ug/kg	1250	1150	92	70-130	
trans-1,3-Dichloropropene	ug/kg	1250	1160	93	68-130	
Trichloroethene	ug/kg	1250	1120	89	70-130	
Trichlorofluoromethane	ug/kg	1250	1050	84	70-130	
Vinyl acetate	ug/kg	2500	2670	107	70-130	
Vinyl chloride	ug/kg	1250	1030	82	61-130	
Xylene (Total)	ug/kg	3750	3440	92	70-130	
1,2-Dichloroethane-d4 (S)	%			96	70-130	
4-Bromofluorobenzene (S)	%			104	69-134	
Toluene-d8 (S)	%			99	70-130	

MATRIX SPIKE SAMPLE:	3243355						
		92535044005	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	ND	825	785	95	70-131	
1,1,1-Trichloroethane	ug/kg	ND	825	735	89	65-133	
1,1,2,2-Tetrachloroethane	ug/kg	ND	825	716	87	66-130	
1,1,2-Trichloroethane	ug/kg	ND	825	751	91	66-133	
1,1-Dichloroethane	ug/kg	ND	825	717	87	65-130	
1,1-Dichloroethene	ug/kg	ND	825	737	89	10-158	
1,1-Dichloropropene	ug/kg	ND	825	726	88	68-133	
1,2,3-Trichlorobenzene	ug/kg	ND	825	732	89	27-138	
1,2,3-Trichloropropane	ug/kg	ND	825	706	86	67-130	
1,2,4-Trichlorobenzene	ug/kg	ND	825	688	83	51-134	
1,2,4-Trimethylbenzene	ug/kg	ND	825	720	87	63-136	
1,2-Dibromo-3-chloropropane	ug/kg	ND	825	662	80	32-130	
1,2-Dibromoethane (EDB)	ug/kg	ND	825	777	94	70-130	
1,2-Dichlorobenzene	ug/kg	ND	825	731	89	69-130	
1,2-Dichloroethane	ug/kg	ND	825	749	91	59-130	
1,2-Dichloropropane	ug/kg	ND	825	780	95	70-130	
1,3,5-Trimethylbenzene	ug/kg	ND	825	734	89	65-137	
1,3-Dichlorobenzene	ug/kg	ND	825	706	86	70-130	
1,3-Dichloropropane	ug/kg	ND	825	819	99	70-130	
1,4-Dichlorobenzene	ug/kg	ND	825	702	85	68-130	
2,2-Dichloropropane	ug/kg	ND	825	570	69	32-130	
2-Butanone (MEK)	ug/kg	ND	1650	1340	81	10-136	
2-Chlorotoluene	ug/kg	ND	825	761	92	69-141	
2-Hexanone	ug/kg	ND	1650	1410	86	10-144	
4-Chlorotoluene	ug/kg	ND	825	726	88	70-132	
4-Methyl-2-pentanone (MIBK)	ug/kg	ND	1650	1380	84	25-143	
Acetone	ug/kg	ND	1650	1230	75	10-130	
Benzene	ug/kg	ND	825	783	95	67-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



#### Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

MATRIX SPIKE SAMPLE:	3243355								
		92535044005	Spike	MS	MS	% Rec			
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers		
Bromobenzene	ug/kg	ND	825	732	89	70-130			
Bromochloromethane	ug/kg	ND	825	701	85	69-134			
Bromodichloromethane	ug/kg	ND	825	679	82	64-130			
Bromoform	ug/kg	ND	825	704	85	62-130			
Bromomethane	ug/kg	ND	825	517	63	20-176			
Carbon tetrachloride	ug/kg	ND	825	722	88	65-140			
Chlorobenzene	ug/kg	ND	825	762	92	70-130			
Chloroethane	ug/kg	ND	825	336	41	10-130			
Chloroform	ug/kg	ND	825	677	82	63-130			
Chloromethane	ug/kg	ND	825	801	97	58-130			
cis-1,2-Dichloroethene	ug/kg	ND	825	724	88	66-130			
cis-1,3-Dichloropropene	ug/kg	ND	825	727	88	67-130			
Dibromochloromethane	ug/kg	ND	825	791	96	67-130			
Dibromomethane	ug/kg	ND	825	750	91	63-131			
Dichlorodifluoromethane	ug/kg	ND	825	819	99	44-180			
Diisopropyl ether	ug/kg	ND	825	664	81	63-130			
Ethylbenzene	ug/kg	ND	825	726	88	66-130			
Hexachloro-1,3-butadiene	ug/kg	ND	825	693	84	64-150			
Isopropylbenzene (Cumene)	ug/kg	ND	825	747	91	69-135			
m&p-Xylene	ug/kg	ND	1650	1530	93	60-133			
Methyl-tert-butyl ether	ug/kg	ND	825	671	81	65-130			
Methylene Chloride	ug/kg	ND	825	737	89	61-130			
n-Butylbenzene	ug/kg	ND	825	658	80	65-140			
n-Propylbenzene	ug/kg	ND	825	719	87	67-140			
Naphthalene	ug/kg	ND	825	707	86	15-145			
o-Xylene	ug/kg	ND	825	766	93	66-133			
p-Isopropyltoluene	ug/kg	ND	825	718	87	56-147			
sec-Butylbenzene	ug/kg	ND	825	713	87	65-139			
Styrene	ug/kg	ND	825	767	93	70-132			
tert-Butylbenzene	ug/kg	ND	825	731	89	62-135			
Tetrachloroethene	ug/kg	ND	825	698	85	70-135			
Toluene	ug/kg	10.6	825	759	91	67-130			
trans-1,2-Dichloroethene	ug/kg	ND	825	717	87	69-130			
trans-1,3-Dichloropropene	ug/kg	ND	825	713	86	62-130			
Trichloroethene	ug/kg	ND	825	752	91	70-135			
Trichlorofluoromethane	ug/kg	ND	825	321	39	10-130			
Vinyl acetate	ug/kg	ND	1650	1540	93	53-130			
Vinyl chloride	ug/kg	ND	825	732	89	61-148			
Xylene (Total)	ug/kg	ND	2470	2290	93	63-132			
1,2-Dichloroethane-d4 (S)	%				115	70-130			
4-Bromofluorobenzene (S)	%				105	69-134			
Toluene-d8 (S)	%				99	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



#### Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

SAMPLE DUPLICATE: 3243354						
		92535044004	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1.1.1.2-Tetrachloroethane	ua/ka					
1.1.1-Trichloroethane	ug/kg	ND	ND		30	
1 1 2 2-Tetrachloroethane	ug/kg	ND	ND		30	
1 1 2-Trichloroethane	ug/kg	ND	ND		30	
1 1-Dichloroethane	ug/kg	ND			30	
1,1-Dichloroothono	ug/kg	ND			30	
1,1-Dichloropropopo	ug/kg	ND			30	
1,1-Dicilioropropene	ug/kg				30	
	ug/kg				30	
1,2,3-Inchloropropane	ug/kg				30	
	ug/kg		ND		30	
1,2,4- I rimetnyibenzene	ug/kg	ND	ND		30	
1,2-Dibromo-3-chloropropane	ug/kg	ND	ND		30	
1,2-Dibromoethane (EDB)	ug/kg	ND	ND		30	
1,2-Dichlorobenzene	ug/kg	ND	ND		30	
1,2-Dichloroethane	ug/kg	ND	ND		30	
1,2-Dichloropropane	ug/kg	ND	ND		30	
1,3,5-Trimethylbenzene	ug/kg	ND	ND		30	
1,3-Dichlorobenzene	ug/kg	ND	ND		30	
1,3-Dichloropropane	ug/kg	ND	ND		30	
1,4-Dichlorobenzene	ug/kg	ND	ND		30	
2,2-Dichloropropane	ug/kg	ND	ND		30	
2-Butanone (MEK)	ug/kg	ND	ND		30	
2-Chlorotoluene	ug/kg	ND	ND		30	
2-Hexanone	ug/kg	ND	ND		30	
4-Chlorotoluene	ug/kg	ND	ND		30	
4-Methyl-2-pentanone (MIBK)	ug/kg	ND	ND		30	
Acetone	ug/kg	ND	ND		30	
Benzene	ug/kg	ND	ND		30	
Bromobenzene	ua/ka	ND	ND		30	
Bromochloromethane	ua/ka	ND	ND		30	
Bromodichloromethane	ua/ka	ND	ND		30	
Bromoform	ua/ka	ND	ND		30	
Bromomethane	ua/ka	ND	ND		30	
Carbon tetrachloride	ua/ka	ND	ND		30	
Chlorobenzene	ua/ka	ND	ND		30	
Chloroethane	ua/ka	ND	ND		30	
Chloroform	ug/kg	ND	ND		30	
Chloromethane	ug/kg				30	
cis-1 2-Dichloroethene	ug/kg				30	
cis-1 3-Dichloropropene	ug/kg				30	
Dibromochloromethana	uy/ky				30	
Dibromomothono	ug/kg	םא חוא			30	
	ug/kg	<b>ט</b> או סוא			30	
	ug/kg		ND		30	
Disopropyl etner	ug/kg				30	
	ug/kg		ND		30	
Hexachloro-1,3-butadiene	ug/kg	ND	ND		30	
Isopropylbenzene (Cumene)	ug/kg	ND	ND		30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



#### Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

### SAMPLE DUPLICATE: 3243354

	92535044004	Dup		Max	
Parameter Units	Result	Result	RPD	RPD	Qualifiers
m&p-Xylene ug/kg	ND	ND		30	
Methyl-tert-butyl ether ug/kg	ND	ND		30	
Methylene Chloride ug/kg	ND	ND		30	
n-Butylbenzene ug/kg	ND	ND		30	
n-Propylbenzene ug/kg	ND	ND		30	
Naphthalene ug/kg	ND	ND		30	
o-Xylene ug/kg	ND	ND		30	
p-Isopropyltoluene ug/kg	ND	ND		30	
sec-Butylbenzene ug/kg	ND	ND		30	
Styrene ug/kg	ND	ND		30	
tert-Butylbenzene ug/kg	ND	ND		30	
Tetrachloroethene ug/kg	ND	ND		30	
Toluene ug/kg	19.8	19.5	2	30	
trans-1,2-Dichloroethene ug/kg	ND	ND		30	
trans-1,3-Dichloropropene ug/kg	ND	ND		30	
Trichloroethene ug/kg	ND	ND		30	
Trichlorofluoromethane ug/kg	ND	ND		30	
Vinyl acetate ug/kg	ND	ND		30	
Vinyl chloride ug/kg	ND	ND		30	
Xylene (Total) ug/kg	ND	ND		30	
1,2-Dichloroethane-d4 (S) %	104	101			
4-Bromofluorobenzene (S) %	105	105			
Toluene-d8 (S) %	100	99			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



Project: F	ORMER BRAMI	ETTE MGP								
Pace Project No.: 92	2531096									
QC Batch:	616001		d: E	EPA 8270E						
QC Batch Method:	EPA 3546		Analysis [	Descri	otion: 8	3270E MSSV P	AH by SIM			
			Laborator	y:	F	Pace Analytical	Services - Cha	arlotte		
Associated Lab Sampl	es: 92531096	6001, 9253109600	3, 92531096004	1						
METHOD BLANK: 32	241818		Mat	rix: So	olid					
Associated Lab Sampl	es: 92531096	6001, 9253109600	3, 92531096004	1						
			Blank	1	Reporting					
Paramet	er	Units	Result		Limit	MDL	Analyz	ed	Qualifie	ers
Benzo(a)pyrene		ug/kg	N	ID	10.0	0 1	.0 04/25/21	10:53		
2-Fluorobiphenyl (S)		%	Ę	55	31-13	D	04/25/21	10:53		
Nitrobenzene-d5 (S)		%	ţ	56	32-13	D	04/25/21	10:53		
Terphenyl-d14 (S)		%	ł	53	24-13	0	04/25/21	10:53		
		32/1810								
LABORATORT CONT		5241015	Spike	IC	S	LCS	% Rec			
Paramet	er	Units	Conc.	Res	sult	% Rec	Limits	Qualif	iers	
Benzo(a)pyrene		ug/kg	33.2		26.5	80	44-130			
2-Fluorobiphenyl (S)		%				75	31-130			
Nitrobenzene-d5 (S)		%				76	32-130			
Terphenyl-d14 (S)		%				72	24-130			
MATRIX SPIKE SAMP	LE:	3241820								
			925310960	001	Spike	MS	MS	%	6 Rec	
Paramet	er	Units	Result		Conc.	Result	% Rec	L	imits	Qualifiers
Benzo(a)pyrene		ug/kg		10.4J	39.1	30.9	5	52	10-130	H3
2-Fluorobiphenyl (S)		%					6	69	31-130	
Nitrobenzene-d5 (S)		%					6	63	32-130	
Terphenyl-d14 (S)		%					5	51	24-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project:	FORMER BRAMLETT	E MGP									
Pace Project No.:	92531096										
QC Batch:	616170		Analys	is Metho	d: E	PA 8270	Ξ				
QC Batch Method: EPA 3546		Analys	is Descri	ption: 8	270E MS	SV PAH	by SIM				
		Laboratory:		Р	Pace Analytical Services - Charlotte						
Associated Lab Sar	nples: 92531096002			,			, ,				
METHOD BLANK:	3242661		N	Aatrix: So	olid						
Associated Lab Sar	nples: 92531096002										
			Blank	(	Reporting						
Parar	neter	Units	Resul	t	Limit	M	DL	Analyze	ed	Qualifiers	
Benzo(a)pyrene		ug/kg		ND	9.8		1.0	04/26/21 1	16:32		_
2-Fluorobiphenyl (S	)	%		59	31-130			04/26/21 1	16:32		
Nitrobenzene-d5 (S	)	%		57	32-130			04/26/21 1	16:32		
Terphenyl-d14 (S)		%		55	24-130			04/26/21 1	16:32		
LABORATORY CO	NTROL SAMPLE & LCS	D: 3242662			3242663						
			Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parar	neter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Benzo(a)pyrene		ug/kg	32.8	25	.0 23.3	3 76	71	44-130		7 30	
2-Fluorobiphenyl (S	)	%				88	82	31-130			
Nitrobenzene-d5 (S	)	%				87	80	32-130			
Terphenyl-d14 (S)		%				78	74	24-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project:	FORMER BRAMLETTE MGP

Pace Project No.:	92531096
-------------------	----------

QC Batch: 615749	)	Analysis Meth	od: E	PA 8270E		
QC Batch Method: EPA 35	46	Analysis Desc	ription: 8	270E Solid MSSV	Microwave	
	-	Laboratory:		ace Analytical Ser	vices - Charlotte	
Associated Lab Samples:	2531006001 02531006002	02531006003 02	531006004		vices chanolic	
Associated Lab Samples.	92551090001, 92551090002,	92031090003, 92	.551090004			
METHOD BLANK: 3240199		Matrix:	Solid			
Associated Lab Samples:	92531096001, 92531096002,	92531096003, 92	531096004			
		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1-Methylnaphthalene	ug/kg		327	7 115	04/26/21 07:19	
2,2'-Oxybis(1-chloropropane)	ug/kg	ND	327	<b>'</b> 155	04/26/21 07:19	
2,4,5-Trichlorophenol	ug/kg	ND	327	<b>′</b> 150	04/26/21 07:19	
2,4,6-Trichlorophenol	ug/kg	ND	327	' 135	04/26/21 07:19	
2,4-Dichlorophenol	ug/kg	ND	327	<b>′</b> 128	04/26/21 07:19	
2,4-Dimethylphenol	ug/kg	ND	327	<b>'</b> 136	04/26/21 07:19	
2,4-Dinitrophenol	ug/kg	ND	1630	) 1010	04/26/21 07:19	
2,4-Dinitrotoluene	ug/kg	ND	327	126	04/26/21 07:19	
2,6-Dinitrotoluene	ug/kg	ND	327	<b>'</b> 120	04/26/21 07:19	
2-Chloronaphthalene	ug/kg	ND	327	<b>′</b> 130	04/26/21 07:19	
2-Chlorophenol	ug/kg	ND	327	<b>'</b> 123	04/26/21 07:19	
2-Methylnaphthalene	ug/kg	ND	327	<b>'</b> 131	04/26/21 07:19	
2-Methylphenol(o-Cresol)	ua/ka	ND	327	′ 134	04/26/21 07:19	
2-Nitroaniline	ug/kg	ND	1630	267	04/26/21 07:19	
2-Nitrophenol	ua/ka	ND	327	· 142	04/26/21 07:19	
3&4-Methylphenol(m&p Creso	ol) ua/ka	ND	327	<b>'</b> 132	04/26/21 07:19	
3.3'-Dichlorobenzidine	ua/ka	ND	653	221	04/26/21 07:19	IL
3-Nitroaniline	ua/ka	ND	1630	256	04/26/21 07:19	
4.6-Dinitro-2-methylphenol	ug/kg	ND	653	305	04/26/21 07:19	
4-Bromophenvlphenvl ether	ua/ka	ND	327	<b>126</b>	04/26/21 07:19	
4-Chloro-3-methylphenol	ug/kg	ND	653	230	04/26/21 07:19	
4-Chloroaniline	ug/kg	ND	653	256	04/26/21 07:19	
4-Chlorophenylphenyl ether	ug/kg	ND	327	· 122	04/26/21 07:19	
4-Nitroaniline	ug/kg	ND	653	3 249	04/26/21 07:19	
4-Nitrophenol	ug/kg	ND	1630	632	04/26/21 07:19	
Acenaphthene	ug/kg	ND	327	· 115	04/26/21 07:19	
Acenaphthylene	ug/kg	ND	327	115	04/26/21 07:19	
Aniline	ug/kg	ND	327	· 128	04/26/21 07:19	
Anthracene	ug/kg	ND	327	·	04/26/21 07 19	
Benzo(a)anthracene	ug/kg	ND	327	7 109	04/26/21 07:19	
Benzo(b)fluoranthene	ug/kg	ND	327	· 109	04/26/21 07:19	
Benzo(a h i)pervlene	ug/kg	ND	327	· 127	04/26/21 07:19	
Benzo(k)fluoranthene	ug/kg	ND	327	· · 115	04/26/21 07:19	
Benzoic Acid	ug/kg ua/ka		1630	) 702	04/26/21 07:19	
Benzvl alcohol	ua/ka		653	3 248	04/26/21 07:19	
bis(2-Chloroethoxy)methane	ua/ka		327	240 7 136	04/26/21 07:19	
bis(2-Chloroethyl) ether	ug/kg ua/ka		327	· 123	04/26/21 07:10	
his(2-Ethylbexyl)phthelate	ug/kg		327	· 125	04/26/21 07:19	
Butylbenzylphthalate	ug/kg		327	' 138	04/26/21 07:19	
Chrysene	ua/ka		327	· 119	04/26/21 07:19	
	~ 3′ 3		021			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

# **REPORT OF LABORATORY ANALYSIS**



#### Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

METHOD BLANK: 3240199		Matrix:	Solid			
Associated Lab Samples: 9253	1096001, 92531096002,	92531096003, 92	2531096004			
Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Di-n-butylphthalate	ug/kg	ND	327	110	04/26/21 07:19	
Di-n-octylphthalate	ug/kg	ND	327	129	04/26/21 07:19	
Dibenz(a,h)anthracene	ug/kg	ND	327	126	04/26/21 07:19	
Dibenzofuran	ug/kg	ND	327	118	04/26/21 07:19	
Diethylphthalate	ug/kg	ND	327	120	04/26/21 07:19	
Dimethylphthalate	ug/kg	ND	327	119	04/26/21 07:19	
Fluoranthene	ug/kg	ND	327	112	04/26/21 07:19	
Fluorene	ug/kg	ND	327	115	04/26/21 07:19	
Hexachlorobenzene	ug/kg	ND	327	128	04/26/21 07:19	
Hexachlorocyclopentadiene	ug/kg	ND	327	187	04/26/21 07:19	
Hexachloroethane	ug/kg	ND	327	125	04/26/21 07:19	
Indeno(1,2,3-cd)pyrene	ug/kg	ND	327	129	04/26/21 07:19	
Isophorone	ug/kg	ND	327	146	04/26/21 07:19	
N-Nitroso-di-n-propylamine	ug/kg	ND	327	123	04/26/21 07:19	
N-Nitrosodimethylamine	ug/kg	ND	327	110	04/26/21 07:19	
N-Nitrosodiphenylamine	ug/kg	ND	327	116	04/26/21 07:19	
Nitrobenzene	ug/kg	ND	327	151	04/26/21 07:19	
Pentachlorophenol	ug/kg	ND	653	320	04/26/21 07:19	
Phenanthrene	ug/kg	ND	327	107	04/26/21 07:19	
Phenol	ug/kg	ND	327	146	04/26/21 07:19	
Pyrene	ug/kg	ND	327	133	04/26/21 07:19	
Pyridine	ug/kg	ND	327	103	04/26/21 07:19	
2,4,6-Tribromophenol (S)	%	74	18-130		04/26/21 07:19	
2-Fluorobiphenyl (S)	%	69	19-130		04/26/21 07:19	
2-Fluorophenol (S)	%	67	18-130		04/26/21 07:19	
Nitrobenzene-d5 (S)	%	70	21-130		04/26/21 07:19	
Phenol-d6 (S)	%	68	18-130		04/26/21 07:19	
Terphenyl-d14 (S)	%	69	15-130		04/26/21 07:19	

#### LABORATORY CONTROL SAMPLE: 3240200

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/kg	1640	1350	82	54-130	
2,2'-Oxybis(1-chloropropane)	ug/kg	1640	1340	81	38-130	
2,4,5-Trichlorophenol	ug/kg	1640	1410	86	49-130	
2,4,6-Trichlorophenol	ug/kg	1640	1370	83	50-130	
2,4-Dichlorophenol	ug/kg	1640	1380	84	51-130	
2,4-Dimethylphenol	ug/kg	1640	1390	85	53-130	
2,4-Dinitrophenol	ug/kg	8220	7110	86	39-130	
2,4-Dinitrotoluene	ug/kg	1640	1310	79	53-130	
2,6-Dinitrotoluene	ug/kg	1640	1310	79	55-130	
2-Chloronaphthalene	ug/kg	1640	1290	79	48-130	
2-Chlorophenol	ug/kg	1640	1310	79	54-130	
2-Methylnaphthalene	ug/kg	1640	1350	82	57-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



#### Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

#### LABORATORY CONTROL SAMPLE: 3240200

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
2-Methylphenol(o-Cresol)	ug/kg	1640	1340	81	50-130	
2-Nitroaniline	ug/kg	3290	2890	88	49-130	
2-Nitrophenol	ug/kg	1640	1400	85	50-130	
3&4-Methylphenol(m&p Cresol)	ug/kg	1640	1340	81	50-130	
3,3'-Dichlorobenzidine	ug/kg	3290	2540	77	47-130	IL
3-Nitroaniline	ug/kg	3290	2770	84	45-130	
4,6-Dinitro-2-methylphenol	ug/kg	3290	3170	96	50-142	
4-Bromophenylphenyl ether	ug/kg	1640	1450	88	55-130	
4-Chloro-3-methylphenol	ug/kg	3290	2750	84	52-130	
4-Chloroaniline	ug/kg	3290	2540	77	49-130	
4-Chlorophenylphenyl ether	ug/kg	1640	1360	83	53-130	
4-Nitroaniline	ug/kg	3290	2550	78	51-130	
4-Nitrophenol	ug/kg	8220	7020	85	40-130	
Acenaphthene	ug/kg	1640	1390	84	56-130	
Acenaphthylene	ug/kg	1640	1400	85	58-130	
Aniline	ug/kg	1640	1190	72	44-130	
Anthracene	ug/kg	1640	1400	85	60-130	
Benzo(a)anthracene	ug/kg	1640	1450	88	59-130	
Benzo(b)fluoranthene	ug/kg	1640	1460	89	54-130	
Benzo(g,h,i)perylene	ug/kg	1640	1470	89	59-130	
Benzo(k)fluoranthene	ug/kg	1640	1460	89	54-130	
Benzoic Acid	ug/kg	8220	5600	68	19-130	
Benzyl alcohol	ug/kg	3290	2620	80	50-130	
bis(2-Chloroethoxy)methane	ug/kg	1640	1340	82	55-130	
bis(2-Chloroethyl) ether	ug/kg	1640	1360	83	53-130	
bis(2-Ethylhexyl)phthalate	ug/kg	1640	1440	88	58-130	
Butylbenzylphthalate	ug/kg	1640	1490	90	46-138	
Chrysene	ug/kg	1640	1450	88	57-130	
Di-n-butylphthalate	ug/kg	1640	1400	85	57-130	
Di-n-octylphthalate	ug/kg	1640	1420	86	57-130	
Dibenz(a,h)anthracene	ug/kg	1640	1440	87	60-130	
Dibenzofuran	ug/kg	1640	1320	80	54-130	
Diethylphthalate	ug/kg	1640	1350	82	55-130	
Dimethylphthalate	ug/kg	1640	1360	83	57-130	
Fluoranthene	ug/kg	1640	1380	84	57-130	
Fluorene	ug/kg	1640	1370	83	56-130	
Hexachlorobenzene	ug/kg	1640	1380	84	53-130	
Hexachlorocyclopentadiene	ug/kg	1640	1260	77	23-130	
Hexachloroethane	ug/kg	1640	1280	78	48-130	
Indeno(1,2,3-cd)pyrene	ug/kg	1640	1490	91	61-130	
Isophorone	ug/kg	1640	1360	82	49-130	
N-Nitroso-di-n-propylamine	ug/kg	1640	1300	79	52-130	
N-Nitrosodimethylamine	ug/kg	1640	1350	82	45-130	
N-Nitrosodiphenylamine	ug/kg	1640	1440	87	56-130	
	ug/kg	1640	1330	81	50-130	
Pentachiorophenol	ug/kg	3290	2980	91	33-130	
Phenanthrene	ug/kg	1640	1430	87	60-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



#### Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

#### LABORATORY CONTROL SAMPLE: 3240200

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Phenol	ug/kg	1640	1310	79	54-130	
Pyrene	ug/kg	1640	1520	92	61-130	
Pyridine	ug/kg	1640	1030	63	35-130	
2,4,6-Tribromophenol (S)	%			92	18-130	
2-Fluorobiphenyl (S)	%			81	19-130	
2-Fluorophenol (S)	%			78	18-130	
Nitrobenzene-d5 (S)	%			81	21-130	
Phenol-d6 (S)	%			78	18-130	
Terphenyl-d14 (S)	%			78	15-130	

MATRIX SPIKE SAMPLE:

3240201

Parameter	Units	92534135002 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
1-Methylnaphthalene	ug/kg	ND	2160	1690	78	30-130	
2,2'-Oxybis(1-chloropropane)	ug/kg	ND	2160	1680	77	30-130	
2,4,5-Trichlorophenol	ug/kg	ND	2160	1790	83	26-130	
2,4,6-Trichlorophenol	ug/kg	ND	2160	1730	80	23-130	
2,4-Dichlorophenol	ug/kg	ND	2160	1700	79	29-130	
2,4-Dimethylphenol	ug/kg	ND	2160	1740	80	13-130	
2,4-Dinitrophenol	ug/kg	ND	10800	4430	41	10-131	
2,4-Dinitrotoluene	ug/kg	ND	2160	1670	77	28-130	
2,6-Dinitrotoluene	ug/kg	ND	2160	1670	77	36-130	
2-Chloronaphthalene	ug/kg	ND	2160	1710	79	27-130	
2-Chlorophenol	ug/kg	ND	2160	1650	76	29-130	
2-Methylnaphthalene	ug/kg	ND	2160	1700	78	29-130	
2-Methylphenol(o-Cresol)	ug/kg	ND	2160	1640	76	20-130	
2-Nitroaniline	ug/kg	ND	4340	3660	84	29-130	
2-Nitrophenol	ug/kg	ND	2160	1760	81	26-130	
3&4-Methylphenol(m&p Cresol)	ug/kg	ND	2160	1600	74	10-176	
3,3'-Dichlorobenzidine	ug/kg	ND	4340	3370	78	15-130 II	L
3-Nitroaniline	ug/kg	ND	4340	3530	81	28-130	
4,6-Dinitro-2-methylphenol	ug/kg	ND	4340	3790	87	15-132	
4-Bromophenylphenyl ether	ug/kg	ND	2160	1820	84	35-130	
4-Chloro-3-methylphenol	ug/kg	ND	4340	3310	76	30-130	
4-Chloroaniline	ug/kg	ND	4340	3220	74	28-130	
4-Chlorophenylphenyl ether	ug/kg	ND	2160	1700	79	32-130	
4-Nitroaniline	ug/kg	ND	4340	3330	77	30-130	
4-Nitrophenol	ug/kg	ND	10800	8520	79	17-130	
Acenaphthene	ug/kg	ND	2160	1790	82	29-130	
Acenaphthylene	ug/kg	ND	2160	1790	83	31-130	
Aniline	ug/kg	ND	2160	1540	71	10-130	
Anthracene	ug/kg	ND	2160	1780	82	33-130	
Benzo(a)anthracene	ug/kg	ND	2160	1790	83	32-130	
Benzo(b)fluoranthene	ug/kg	ND	2160	1690	78	33-130	
Benzo(g,h,i)perylene	ug/kg	ND	2160	1920	89	28-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

# **REPORT OF LABORATORY ANALYSIS**



#### Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

MATRIX SPIKE SAMPLE:	3240201							
		92534135002	Spike	MS	MS	% Rec		
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers	
Benzo(k)fluoranthene	ug/kg	ND	2160	1690	78	31-130		
Benzoic Acid	ug/kg	ND	10800	ND	1	10-130	M1	
Benzyl alcohol	ug/kg	ND	4340	3170	73	31-130		
bis(2-Chloroethoxy)methane	ug/kg	ND	2160	1680	78	30-130		
bis(2-Chloroethyl) ether	ug/kg	ND	2160	1760	81	68-130		
bis(2-Ethylhexyl)phthalate	ug/kg	ND	2160	1770	82	40-130		
Butylbenzylphthalate	ug/kg	ND	2160	1780	82	40-130		
Chrysene	ug/kg	ND	2160	1810	83	30-130		
Di-n-butylphthalate	ug/kg	ND	2160	1800	83	41-130		
Di-n-octylphthalate	ug/kg	ND	2160	1810	84	42-130		
Dibenz(a,h)anthracene	ug/kg	ND	2160	1850	85	27-130		
Dibenzofuran	ug/kg	ND	2160	1700	78	32-130		
Diethylphthalate	ug/kg	ND	2160	1710	79	40-130		
Dimethylphthalate	ug/kg	ND	2160	1740	80	37-130		
Fluoranthene	ug/kg	ND	2160	1810	83	26-130		
Fluorene	ug/kg	ND	2160	1740	80	31-130		
Hexachlorobenzene	ug/kg	ND	2160	1730	80	29-130		
Hexachlorocyclopentadiene	ug/kg	ND	2160	1590	73	10-130		
Hexachloroethane	ug/kg	ND	2160	1660	77	21-130		
Indeno(1,2,3-cd)pyrene	ug/kg	ND	2160	1930	89	28-130		
Isophorone	ug/kg	ND	2160	1700	79	32-130		
N-Nitroso-di-n-propylamine	ug/kg	ND	2160	1580	73	31-130		
N-Nitrosodimethylamine	ug/kg	ND	2160	1720	79	20-130		
N-Nitrosodiphenylamine	ug/kg	ND	2160	1860	86	32-130		
Nitrobenzene	ug/kg	ND	2160	1730	80	25-130		
Pentachlorophenol	ug/kg	ND	4340	3720	86	10-130		
Phenanthrene	ug/kg	ND	2160	1850	85	34-130		
Phenol	ug/kg	ND	2160	1590	73	14-130		
Pyrene	ug/kg	ND	2160	1790	82	31-130		
Pyridine	ug/kg	ND	2160	1440	67	10-130		
2,4,6-Tribromophenol (S)	%				83	18-130		
2-Fluorobiphenyl (S)	%				76	19-130		
2-Fluorophenol (S)	%				73	18-130		
Nitrobenzene-d5 (S)	%				76	21-130		
Phenol-d6 (S)	%				69	18-130		
Terphenyl-d14 (S)	%				64	15-130		

#### SAMPLE DUPLICATE: 3240202

		92534135002	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1-Methylnaphthalene	ug/kg		ND		30	)
2,2'-Oxybis(1-chloropropane)	ug/kg	ND	ND		30	)
2,4,5-Trichlorophenol	ug/kg	ND	ND		30	)
2,4,6-Trichlorophenol	ug/kg	ND	ND		30	)
2,4-Dichlorophenol	ug/kg	ND	ND		30	)

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

# **REPORT OF LABORATORY ANALYSIS**



#### Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

# SAMPLE DUPLICATE: 3240202

		92534135002	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
2,4-Dimethylphenol	ug/kg				30	)
2,4-Dinitrophenol	ug/kg	ND	ND		30	)
2.4-Dinitrotoluene	ua/ka	ND	ND		30	)
2.6-Dinitrotoluene	ua/ka	ND	ND		30	)
2-Chloronaphthalene	ua/ka	ND	ND		30	)
2-Chlorophenol	ua/ka	ND	ND		30	)
2-Methylnaphthalene	ua/ka	ND	ND		30	)
2-Methylphenol(o-Cresol)	ug/kg	ND	ND		30	)
2-Nitroaniline	ug/kg	ND	ND		30	)
2-Nitrophenol	ug/kg	ND	ND		30	)
3&4-Methylphenol(m&p Cresol)	ug/kg	ND	ND		30	)
3 3'-Dichlorobenzidine	ug/kg	ND	ND		30	, )
3-Nitroaniline	ug/kg	ND	ND		30	)
4 6-Dinitro-2-methylphenol	ug/kg	ND	ND		3(	)
4-Bromophenylphenyl ether	ug/kg	ND	ND		30	)
4-Chloro-3-methylphenol	ug/kg	ND	ND		3(	)
4-Chloroaniline	ug/kg	ND	ND		3(	)
4-Chlorophenylphenyl ether	ug/kg	ND	ND		3(	)
4-Nitroaniline	ug/kg	ND	ND		30	)
4-Nitrophenol	ug/kg	ND			30	)
Acenantthene	ug/kg	ND	ND		30	)
Acenaphthylene	ug/kg				30	)
Acenaphilipene	ug/kg				30	
Anthracono	ug/kg				30	)
Ronzo(a)anthracana	ug/kg		ND		30	
Benzo(b)fluoranthono	ug/kg				30	)
	ug/kg				30	)
Benzo(k)fluorenthene	ug/kg				30	
Benzoic Asid	ug/kg		ND		30	)
Benzul alashal	ug/kg		ND		30	)
benzyi alconol	ug/kg		ND		30	)
bis(2-Chloroethoxy)methane	ug/kg		ND		30	)
bis(2-Chioroethyr) ether	ug/kg		ND		30	)
Dis(2-Ethylnexyl)phthalate	ug/kg		ND		30	)
Butylbenzylphthalate	ug/kg		ND		30	)
Chrysene Dia butulahthalata	ug/kg		ND		30	)
Di-n-butyiphthalate	ug/kg		ND		30	)
Di-n-octylphthalate	ug/kg		ND		30	)
Dibenz(a,n)anthracene	ug/kg	ND	ND		30	)
Dibenzoturan Distlada latha lata	ug/kg		ND		30	)
Dietnyiphthalate	ug/kg		ND		30	)
Dimethylphthalate	ug/kg	ND	ND		30	)
	ug/kg	ND	ND		30	J
Fluorene	ug/kg	ND	ND		30	)
Hexachlorobenzene	ug/kg	ND	ND		30	)
Hexachlorocyclopentadiene	ug/kg	ND	ND		30	)
Hexachloroethane	ug/kg	ND	ND		30	)
Indeno(1,2,3-cd)pyrene	ug/kg	ND	ND		30	)

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

# **REPORT OF LABORATORY ANALYSIS**



#### Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

### SAMPLE DUPLICATE: 3240202

		92534135002	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Isophorone	ug/kg	ND	ND		30	
N-Nitroso-di-n-propylamine	ug/kg	ND	ND		30	
N-Nitrosodimethylamine	ug/kg	ND	ND		30	
N-Nitrosodiphenylamine	ug/kg	ND	ND		30	
Nitrobenzene	ug/kg	ND	ND		30	
Pentachlorophenol	ug/kg	ND	ND		30	
Phenanthrene	ug/kg	ND	ND		30	
Phenol	ug/kg	ND	ND		30	
Pyrene	ug/kg	ND	ND		30	
Pyridine	ug/kg	ND	ND		30	
2,4,6-Tribromophenol (S)	%	69	69			
2-Fluorobiphenyl (S)	%	65	67			
2-Fluorophenol (S)	%	63	63			
Nitrobenzene-d5 (S)	%	66	68			
Phenol-d6 (S)	%	63	65			
Terphenyl-d14 (S)	%	60	61			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



Project:	FORMER BRAML	ETTE MGP						
Pace Project No.:	92531096							
QC Batch:	615599		Analysis Meth	od:	SW-846			
QC Batch Method:	SW-846		Analysis Desc	ription:	Dry Weight/Per	cent Moisture		
			Laboratory:		Pace Analytical	Services - Ch	arlotte	
Associated Lab Sar	mples: 92531096	001, 9253109600	2, 92531096003, 92	531096004				
SAMPLE DUPLICA	TE: 3239497							
			92531096001	Dup		Max		
Parar	neter	Units	Result	Result	RPD	RPD	Qualifiers	
Percent Moisture		%	14.5	12.	9	12	25 N2	
SAMPLE DUPLICA	TE: 3239498							
			92534511002	Dup		Max		
Parar	meter	Units	Result	Result	RPD	RPD	Qualifiers	
Percent Moisture		%	90.8	90.	8	0	25 N2	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



## QUALIFIERS

#### Project: FORMER BRAMLETTE MGP

Pace Project No.: 92531096

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### ANALYTE QUALIFIERS

- H1 Analysis conducted outside the EPA method holding time.
- H3 Sample was received or analysis requested beyond the recognized method holding time.
- IL This analyte exceeded secondary source verification criteria low for the initial calibration. The reported results should be considered an estimated value.
- L1 Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- N2 The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.
- DA DDD us has used a start is the second of the initial of the ini
- R1 RPD value was outside control limits.
- v1 The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.
- v3 The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have low bias.



# QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: FORMER BRAMLETTE MGP Pace Project No.: 92531096

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92531096001	RI-SB-31_SO_0.5-1.0_20210317	EPA 3546	616001	EPA 8270E	616024
92531096002	RI-SB-31_SO_5.5-6.0_20210317	EPA 3546	616170	EPA 8270E	616306
92531096003	RI-SB-32_SO_0.5-1.0_20210317	EPA 3546	616001	EPA 8270E	616024
92531096004	RI-SB-32_SO_5.5-6.0_20210317	EPA 3546	616001	EPA 8270E	616024
92531096001	RI-SB-31_SO_0.5-1.0_20210317	EPA 3546	615749	EPA 8270E	616064
92531096002	RI-SB-31_SO_5.5-6.0_20210317	EPA 3546	615749	EPA 8270E	616064
92531096003	RI-SB-32_SO_0.5-1.0_20210317	EPA 3546	615749	EPA 8270E	616064
92531096004	RI-SB-32_SO_5.5-6.0_20210317	EPA 3546	615749	EPA 8270E	616064
92531096005	TRIP BLANK	EPA 8260D	615558		
92531096001	RI-SB-31_SO_0.5-1.0_20210317	EPA 5035A/5030B	615494	EPA 8260D	615540
92531096002	RI-SB-31_SO_5.5-6.0_20210317	EPA 5035A/5030B	616269	EPA 8260D	616422
92531096003	RI-SB-32_SO_0.5-1.0_20210317	EPA 5035A/5030B	615494	EPA 8260D	615540
92531096004	RI-SB-32_SO_5.5-6.0_20210317	EPA 5035A/5030B	615494	EPA 8260D	615540
92531096001	RI-SB-31_SO_0.5-1.0_20210317	SW-846	615599		
92531096002	RI-SB-31_SO_5.5-6.0_20210317	SW-846	615599		
92531096003	RI-SB-32_SO_0.5-1.0_20210317	SW-846	615599		
92531096004	RI-SB-32_SO_5.5-6.0_20210317	SW-846	615599		

/ _Pace Analytical	Sample Condition Upon Receip	t(SCUR)	Page 1 of 2
	F-CAR-CS-033-Rev.07	L	Pace Carolinas Quality Office
Laboratory receiving samples: Asheville Eden Greenwood	I 🗌 Huntersville 🔩 Rale	igh M	echanicsville Atlanta Kernersville
Sample Condition Upon Receipt	erra	Project #:	WO#:92531096
Courier: DFed Ex DU Commercial Pace	JPS USPS 0 Other:	lient	92531096
ustody Seal Present? 🗌 Yes 🖒 No	Seals Intact? 🗌 Yes 💭 N	0	Date/Initials Person Examining Contents: 4-5-21 16
acking Material: Bubble Wrap hermometer: NR Gun ID:	Subble Bags None Type of Ice:	Other ]Blue 🗌 🏻	Biological Tissue Frozen?
cooler Temp:	act (°C) 0.0°C	Tem [	p should be above freezing to 6°C Samples out of temp criteria. Samples on ice, cooling process
ooler Temp Corrected (*C): ISDA Regulated Soil ( 을 N/A, water sample) Did samples originate in a quarantine zone within th Yes 실험이 있다.	e United States: CA, NY, or SC (check n	haps)? Did s inclu	as begun amples originate from a foreign source (internationally, ding Hawaii and Puerto Rico)? [Yes]No
	<b>20. 0. 0.</b>		Comments/Discrepancy:
Chain of Custody Present?		1.	
Samples Arrived within Hold Time?	Yes No N/A	2.	
Short Hold Time Analysis (<72 hr.)?		3.	
Rush Turn Around Time Requested?	LIYes HNO LIN/A	4.	
Sufficient Volume?	Yes No N/A	5.	
Correct Containers Used? -Pace Containers Used?		6.	
Containers Intact?		7.	
Discolved analysis: Samples Field Filtered?		8	
Sample Labels Match COC?	VYes INO IN/A	9.	
-Includes Date/Time/ID/Analysis Matrix:	JWI	-	
Headspace in VOA Vials (>5-6mm)? Trip Blank Present?	□Yes □No □N/A □Yes □No □N/A	10. 11.	
Trip Blank Custody Seals Present?	Yes No N/A		
COMMENTS/SAMPLE DISCREPANCY			
		Lot ID c	of split containers:
CLIENT NOTIFICATION/RESOLUTION			
Person contacted:	Date,	'Time:	
Project Manager SCURF Review:			Date:
			Date:

57	Document Name: Sample Condition Upon Receipt(SCUR)	Document Revised: October 28, 2020 Page 2 of 2
Pace Analytical	Document No.: F-CAR-CS-033-Rev.07	Issuing Authority: Pace Carolinas Quality Office
k top half of box if pH a	nd/or dechlorination is Project #	WO#:92531096

PM: KLH1

CLIENT: 92-Duke Ener

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottles

ttem#	BP4U-125 mL Plastic Unpreserved (N/A) (Cl-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP45-125 mL Plastic H2SO4 (pH < 2) (Cl-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP42-125 mL Plastic ZN Acetate & NaOH (>9)	BP4C-125 mL Plastic NaOH (pH > 12) (Cl-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (Cl-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG1S-1 liter Amber H2SO4 (pH < 2)	AG3S-250 mL Amber H2SO4 (pH < 2)	AG3A(DG3A)-250 mL Amber NH4Cl (N/A)(Cl-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na252O3 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SP5T-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A – Iab)		BP3A-250 mL Plastic (NH2)2504 (9.3-9.7)	AGOU-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1	/				1	/		1					/								3							
2	1					1		1					/		1						3							
3	1						/						/								3					1		
4	1												/								3		2.				1	
5	1												/			2												
6	1												/															
7	1												1						1						1		Î	
8	/												1														1	
9	/				$\backslash$			$\backslash$																				
10		12			$\backslash$																			/				
11					$\backslash$	$\backslash$								1					19		T							
12					$\backslash$									$\square$	$\backslash$									1				
1									pH	I Adj	ustr	nen	t Lo	g fo	r Pre	ser	ved	Sam	ples	5								
S	ample	ID	Тур	e of P	reserv	ative	p	H upo	n rece	ipt	Date	prese	ervatio	on adj	usted	1	lime p	reser	vation		Ame	ount d	f Pres	ervati	ve		Lot #	

Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #
						Y

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

Due Date: 04/09/21

	ſ			"Ca, M		12	11	10	9	8	7	6	UN	4	ω	2	1	ITEM #		1	Reques	Phone	Email T	Adures	Compa	Requir
				a, Fe, Mn + Hardness	ADDITIONAL COMMENTS								TRIP BLANK	RI-SB-32_SO_5.5-6.0_20210317	RI-SB-32_SO_0.5-1.0_20210317	RI-SB-31_SO_5.5-6.0_20210317	RI-SB-31_SO_0.5-1.0_20210317	SAMPLE ID One Character per box. (A-Z, 0.9 / , .) Sample Ids must be unique			sted Due Date: 3-DAY TAT	Fax	o: tkina@svnterracorb.com	S 148 KIVER Street	ny: Synterra	ed Client Information:
	-		Aller	R	RE													Valter WT Water WF Product P Sul/Solid SL Oli OL Wipe VD Air AR Other AR Tissue TS	MATRIX CODE		Project Numbe	Project Name:	Purchase Ord	Copy in	Report To:	Required Pro
			SA	41	LINQU	_		-	-				WT -	SL C	SL C	SL C	SL C	MATRIX CODE (see valid con SAMPLE TYPE (G-CRAP C	des to left)			п	er#	Heau	Tom	ject In
		1	-1000	10	ISHED BY I								1	3/17/2021	3/17/2021	3/17/2021	3/17/2021	DATE ST	,=COMP)			ormer Bra	ľ	uer Stilltri	King	formation:
PRIN	SAMPLER	1111	Par	1	AFFILIATIO								1	1055	1050	1030	1025	TIME	COLLEC		00.2731	mlette Mo				
T Name of	NAME /				ON								1	+	ŧ.	1	1	DATE	OTED		.00.08	GP				
of SAMP	AND SIG		4-2-2	4-2.0	DAT	*							1	ł	1	1	1	TIME								
ER:	VATU		E E	PA!	m													SAMPLE TEMP AT COLLECT	ION			_				
	R		18:00	94	1	-	-	-			-		×	4	4	4	4	# OF CONTAINERS	1		Pace	Pace	Pace	Add to	Attenti	nvoic
			202	0	ME		-				-	-				-	-	H2SO4			rofile	rojec	Quote	any in	On:	e Info
			9.7	5														ниоз	Pre		#	Man		dille		rmati
		0	No	b														нсі	sen		775	ager				9.
		0	the		AC	_			_						_			NaOH	ativ		4	-				
			D	0	CEPT	-	-	-	-	-	-	-	-	×	×	×	×	Na2S2O3	es			evir				
		-	00	5 /	red B	-	-				1							Other				금				2
		1	NCE	X	YIA		-	-										Analyses Test	Y/N			ring				
			GH	5U	FFILL				đ					×	×	×	×	8260		1						
ATE			T	R	ATION									×	×	×	×	8270 & 8270 LV		R						
Sign			U		-	-	-	-		-	-	-	×	^	<u>^</u>	Ê	^	8082	-	ques						1
8	0		Č				-	-	-		-	-				-	-	пр ыапк	-	ted A	H		$^{+}$	t	1	1
	t		22	F													1			nalys				L		
			52	2.2	DATE															is Filt				I.		
		_		-			-			-			_				_		-	ered (						
			6:0	200	VIT					-		-		-	-	-	-		-	YIN)						
			gru	36	m																	Stat	ngun			P
EMP in C				i								-						Residual Chlorine (Y/N)			sc	e / Loca	alory m	A		: age
eceived c e (/N)	n			X	SAMPLE	Γ																tion	Juney			-
ustody					CON																					
				R	DITIO																					ę
amples	-				SN																					
Y/N)				X																						-

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.



Pace Analytical Services, LLC 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

July 09, 2021

Todd Plating SynTerra 148 River St Taylors, SC 29687

RE: Project: Bram MGP Pace Project No.: 92547702

Dear Todd Plating:

Enclosed are the analytical results for sample(s) received by the laboratory on July 02, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Charlotte

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Bonnie Namy

Bonnie Vang bonnie.vang@pacelabs.com (704)875-9092 Project Manager

Enclosures





Pace Analytical Services, LLC 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

## CERTIFICATIONS

Project: Bram MGP Pace Project No.: 92547702

#### Pace Analytical Services Charlotte

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12 South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221



# SAMPLE ANALYTE COUNT

Project: Bram MGP Pace Project No.: 92547702

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92547702001	R1-SB-13 (0.5-1)	EPA 8270E	SEM	5	PASI-C
		SW-846	KDF	1	PASI-C
92547702002	R1-SB-14 (0.5-1)	EPA 8270E	SEM	5	PASI-C
		SW-846	KDF	1	PASI-C
92547702003	R1-SB-15 (0.5-1)	EPA 8270E	SEM	5	PASI-C
		SW-846	KDF	1	PASI-C
92547702004	R1-SB-16 (0.5-1)	EPA 8270E	SEM	5	PASI-C
		SW-846	KDF	1	PASI-C
92547702005	R1-SB-17 (0.5-1)	EPA 8270E	SEM	5	PASI-C
		SW-846	KDF	1	PASI-C
92547702006	R1-SB-18 (0.5-1)	EPA 8270E	SEM	5	PASI-C
		SW-846	KDF	1	PASI-C
92547702007	R1-SB-19 (0.5-1)	EPA 8270E	SEM	5	PASI-C
		SW-846	KDF	1	PASI-C
92547702008	R1-SB-20 (0.5-1)	EPA 8270E	SEM	5	PASI-C
		SW-846	KDF	1	PASI-C
92547702009	R1-SB-21 (0.5-1)	EPA 8270E	SEM	5	PASI-C
		SW-846	KDF	1	PASI-C
92547702010	R1-SB-22 (0.5-1)	EPA 8270E	SEM	5	PASI-C
		SW-846	KDF	1	PASI-C
92547702011	R1-SB-23 (0.5-1)	EPA 8270E	SEM	5	PASI-C
		SW-846	KDF	1	PASI-C
92547702012	R1-SB-24 (0.5-1)	EPA 8270E	SEM	5	PASI-C
		SW-846	KDF	1	PASI-C
92547702013	R1-SB-25 (0.5-1)	EPA 8270E	SEM	5	PASI-C
		SW-846	KDF	1	PASI-C
92547702014	R1-SB-26 (0.5-1)	EPA 8270E	SEM	5	PASI-C
		SW-846	KDF	1	PASI-C
92547702015	R1-SB-27 (0.5-1)	EPA 8270E	SEM	5	PASI-C
		SW-846	KDF	1	PASI-C
92547702016	R1-SB-28 (0.5-1)	EPA 8270E	SEM	5	PASI-C
		SW-846	KDF	1	PASI-C
92547702017	R1-SB-29 (0.5-1)	EPA 8270E	SEM	5	PASI-C
		SW-846	KDF	1	PASI-C
92547702018	R1-SB-30 (0.5-1)	EPA 8270E	SEM	5	PASI-C
		SW-846	KDF	1	PASI-C
92547702019	R1-SB-31 (0.5-1)	EPA 8270E	SEM	5	PASI-C


### SAMPLE ANALYTE COUNT

Project: Bram MGP Pace Project No.: 92547702

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		SW-846	KDF	1	PASI-C
92547702020	R1-SB-32 (0.5-1)	EPA 8270E	SEM	5	PASI-C
		SW-846	KDF	1	PASI-C
92547702021	R1-SB-33 (0.5-1)	EPA 8270E	SEM	5	PASI-C
		SW-846	KDF	1	PASI-C
92547702022	R1-SB-34 (0.5-1)	EPA 8270E	SEM	5	PASI-C
		SW-846	KDF	1	PASI-C
92547702023	R1-SB-35 (0.5-1)	EPA 8270E	SEM	5	PASI-C
		SW-846	KDF	1	PASI-C
92547702024	R1-SB-36 (0.5-1)	EPA 8270E	SEM	5	PASI-C
		SW-846	KDF	1	PASI-C

PASI-C = Pace Analytical Services - Charlotte



Project: Bram MGP Pace Project No.: 92547702

Sample: R1-SB-13 (0.5-1) Lab ID: 92547702001 Collected: 06/30/21 14:05 Received: 07/02/21 11:15 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual Analytical Method: EPA 8270E Preparation Method: EPA 3546 8270E MSSV MW PAH by SIM Pace Analytical Services - Charlotte ND 0.012 07/07/21 21:12 07/08/21 10:50 50-32-8 Benzo(a)pyrene mg/kg 1 Dibenz(a,h)anthracene ND mg/kg 0.012 1 07/07/21 21:12 07/08/21 10:50 53-70-3 Surrogates 2-Fluorobiphenyl (S) 56 % 31-130 1 07/07/21 21:12 07/08/21 10:50 321-60-8 Nitrobenzene-d5 (S) 54 % 32-130 07/07/21 21:12 07/08/21 10:50 4165-60-0 1 Terphenyl-d14 (S) 63 % 24-130 07/07/21 21:12 07/08/21 10:50 1718-51-0 1 Analytical Method: SW-846 **Percent Moisture** Pace Analytical Services - Charlotte Percent Moisture 14.9 % 0.10 1 07/07/21 16:06 N2



Project: Bram MGP Pace Project No.: 92547702

Sample: R1-SB-14 (0.5-1) Lab ID: 92547702002 Collected: 06/30/21 14:17 Received: 07/02/21 11:15 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual Analytical Method: EPA 8270E Preparation Method: EPA 3546 8270E MSSV MW PAH by SIM Pace Analytical Services - Charlotte 0.11 0.012 07/07/21 21:12 07/08/21 11:34 50-32-8 Benzo(a)pyrene mg/kg 1 Dibenz(a,h)anthracene 0.027 mg/kg 0.012 1 07/07/21 21:12 07/08/21 11:34 53-70-3 Surrogates 2-Fluorobiphenyl (S) 74 % 31-130 1 07/07/21 21:12 07/08/21 11:34 321-60-8 Nitrobenzene-d5 (S) 65 % 32-130 07/07/21 21:12 07/08/21 11:34 4165-60-0 1 Terphenyl-d14 (S) 75 % 24-130 07/07/21 21:12 07/08/21 11:34 1718-51-0 1 Analytical Method: SW-846 **Percent Moisture** Pace Analytical Services - Charlotte Percent Moisture 15.8 % 0.10 1 07/07/21 16:07 N2



Project: Bram MGP Pace Project No.: 92547702

Sample: R1-SB-15 (0.5-1) Lab ID: 92547702003 Collected: 06/30/21 14:25 Received: 07/02/21 11:15 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual Analytical Method: EPA 8270E Preparation Method: EPA 3546 8270E MSSV MW PAH by SIM Pace Analytical Services - Charlotte 4.5 0.12 07/07/21 21:12 07/08/21 12:19 50-32-8 Benzo(a)pyrene mg/kg 10 Dibenz(a,h)anthracene 0.64 mg/kg 0.12 10 07/07/21 21:12 07/08/21 12:19 53-70-3 Surrogates 2-Fluorobiphenyl (S) 0 % 31-130 10 07/07/21 21:12 07/08/21 12:19 321-60-8 D3,S4 Nitrobenzene-d5 (S) 0 % 32-130 07/07/21 21:12 07/08/21 12:19 4165-60-0 S4 10 Terphenyl-d14 (S) 0 % 24-130 10 07/07/21 21:12 07/08/21 12:19 1718-51-0 S4 Analytical Method: SW-846 **Percent Moisture** Pace Analytical Services - Charlotte Percent Moisture 13.2 % 0.10 1 07/07/21 16:07 N2



Project: Bram MGP Pace Project No.: 92547702

Sample: R1-SB-16 (0.5-1) Lab ID: 92547702004 Collected: 06/30/21 14:41 Received: 07/02/21 11:15 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual Analytical Method: EPA 8270E Preparation Method: EPA 3546 8270E MSSV MW PAH by SIM Pace Analytical Services - Charlotte ND 0.011 07/07/21 21:12 07/08/21 12:41 50-32-8 Benzo(a)pyrene mg/kg 1 Dibenz(a,h)anthracene ND mg/kg 0.011 1 07/07/21 21:12 07/08/21 12:41 53-70-3 Surrogates 2-Fluorobiphenyl (S) 46 % 31-130 07/07/21 21:12 07/08/21 12:41 321-60-8 1 Nitrobenzene-d5 (S) 59 % 32-130 07/07/21 21:12 07/08/21 12:41 4165-60-0 1 Terphenyl-d14 (S) 31 % 24-130 07/07/21 21:12 07/08/21 12:41 1718-51-0 1 Analytical Method: SW-846 **Percent Moisture** Pace Analytical Services - Charlotte Percent Moisture 12.8 % 0.10 1 07/07/21 16:07 N2



Project: Bram MGP Pace Project No.: 92547702

Sample: R1-SB-17 (0.5-1) Lab ID: 92547702005 Collected: 06/30/21 14:57 Received: 07/02/21 11:15 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual Analytical Method: EPA 8270E Preparation Method: EPA 3546 8270E MSSV MW PAH by SIM Pace Analytical Services - Charlotte ND 0.012 07/07/21 21:12 07/08/21 13:03 50-32-8 Benzo(a)pyrene mg/kg 1 Dibenz(a,h)anthracene ND mg/kg 0.012 1 07/07/21 21:12 07/08/21 13:03 53-70-3 Surrogates 07/07/21 21:12 07/08/21 13:03 321-60-8 2-Fluorobiphenyl (S) 39 % 31-130 1 Nitrobenzene-d5 (S) 57 % 32-130 07/07/21 21:12 07/08/21 13:03 4165-60-0 1 Terphenyl-d14 (S) 36 % 24-130 07/07/21 21:12 07/08/21 13:03 1718-51-0 1 Analytical Method: SW-846 **Percent Moisture** Pace Analytical Services - Charlotte Percent Moisture 18.2 % 0.10 1 07/07/21 16:07 N2



Project: Bram MGP Pace Project No.: 92547702

Sample: R1-SB-18 (0.5-1) Lab ID: 92547702006 Collected: 06/30/21 15:09 Received: 07/02/21 11:15 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual Analytical Method: EPA 8270E Preparation Method: EPA 3546 8270E MSSV MW PAH by SIM Pace Analytical Services - Charlotte ND 0.012 07/07/21 21:12 07/08/21 13:25 50-32-8 Benzo(a)pyrene mg/kg 1 Dibenz(a,h)anthracene ND mg/kg 0.012 1 07/07/21 21:12 07/08/21 13:25 53-70-3 Surrogates 2-Fluorobiphenyl (S) 110 % 31-130 1 07/07/21 21:12 07/08/21 13:25 321-60-8 Nitrobenzene-d5 (S) 126 % 32-130 07/07/21 21:12 07/08/21 13:25 4165-60-0 1 Terphenyl-d14 (S) 60 % 24-130 07/07/21 21:12 07/08/21 13:25 1718-51-0 1 Analytical Method: SW-846 **Percent Moisture** Pace Analytical Services - Charlotte Percent Moisture 18.3 % 0.10 1 07/07/21 16:07 N2



Project: Bram MGP Pace Project No.: 92547702

Sample: R1-SB-19 (0.5-1) Lab ID: 92547702007 Collected: 06/30/21 15:21 Received: 07/02/21 11:15 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual Analytical Method: EPA 8270E Preparation Method: EPA 3546 8270E MSSV MW PAH by SIM Pace Analytical Services - Charlotte 0.21 0.014 07/07/21 21:12 07/08/21 13:47 50-32-8 Benzo(a)pyrene mg/kg 1 Dibenz(a,h)anthracene 0.032 mg/kg 0.014 1 07/07/21 21:12 07/08/21 13:47 53-70-3 Surrogates 2-Fluorobiphenyl (S) 56 % 31-130 1 07/07/21 21:12 07/08/21 13:47 321-60-8 Nitrobenzene-d5 (S) 53 % 32-130 07/07/21 21:12 07/08/21 13:47 4165-60-0 1 Terphenyl-d14 (S) 60 % 24-130 07/07/21 21:12 07/08/21 13:47 1718-51-0 1 Analytical Method: SW-846 **Percent Moisture** Pace Analytical Services - Charlotte Percent Moisture 27.6 % 0.10 1 07/07/21 16:07 N2



Project: Bram MGP Pace Project No.: 92547702

Sample: R1-SB-20 (0.5-1) Lab ID: 92547702008 Collected: 06/30/21 15:35 Received: 07/02/21 11:15 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual Analytical Method: EPA 8270E Preparation Method: EPA 3546 8270E MSSV MW PAH by SIM Pace Analytical Services - Charlotte ND 0.011 07/07/21 21:12 07/08/21 14:10 50-32-8 Benzo(a)pyrene mg/kg 1 Dibenz(a,h)anthracene ND mg/kg 0.011 1 07/07/21 21:12 07/08/21 14:10 53-70-3 Surrogates 07/07/21 21:12 07/08/21 14:10 321-60-8 2-Fluorobiphenyl (S) 59 % 31-130 1 Nitrobenzene-d5 (S) 78 % 32-130 07/07/21 21:12 07/08/21 14:10 4165-60-0 1 Terphenyl-d14 (S) 51 % 24-130 07/07/21 21:12 07/08/21 14:10 1718-51-0 1 Analytical Method: SW-846 **Percent Moisture** Pace Analytical Services - Charlotte Percent Moisture 7.2 % 0.10 1 07/07/21 16:07 N2



Project: Bram MGP Pace Project No.: 92547702

Sample: R1-SB-21 (0.5-1) Lab ID: 92547702009 Collected: 06/30/21 15:43 Received: 07/02/21 11:15 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual Analytical Method: EPA 8270E Preparation Method: EPA 3546 8270E MSSV MW PAH by SIM Pace Analytical Services - Charlotte ND 0.012 07/07/21 21:12 07/08/21 14:32 50-32-8 Benzo(a)pyrene mg/kg 1 Dibenz(a,h)anthracene ND mg/kg 0.012 1 07/07/21 21:12 07/08/21 14:32 53-70-3 Surrogates 2-Fluorobiphenyl (S) 36 % 31-130 1 07/07/21 21:12 07/08/21 14:32 321-60-8 Nitrobenzene-d5 (S) 49 % 32-130 07/07/21 21:12 07/08/21 14:32 4165-60-0 1 Terphenyl-d14 (S) 55 % 24-130 07/07/21 21:12 07/08/21 14:32 1718-51-0 1 Analytical Method: SW-846 **Percent Moisture** Pace Analytical Services - Charlotte Percent Moisture 17.2 % 0.10 1 07/07/21 16:07 N2



Project: Bram MGP Pace Project No.: 92547702

Sample: R1-SB-22 (0.5-1) Lab ID: 92547702010 Collected: 06/30/21 15:53 Received: 07/02/21 11:15 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual Analytical Method: EPA 8270E Preparation Method: EPA 3546 8270E MSSV MW PAH by SIM Pace Analytical Services - Charlotte 0.086 0.012 07/07/21 21:12 07/08/21 14:54 50-32-8 Benzo(a)pyrene mg/kg 1 Dibenz(a,h)anthracene 0.015 mg/kg 0.012 1 07/07/21 21:12 07/08/21 14:54 53-70-3 Surrogates 2-Fluorobiphenyl (S) 65 % 31-130 1 07/07/21 21:12 07/08/21 14:54 321-60-8 Nitrobenzene-d5 (S) 62 % 32-130 07/07/21 21:12 07/08/21 14:54 4165-60-0 1 Terphenyl-d14 (S) 70 % 24-130 07/07/21 21:12 07/08/21 14:54 1718-51-0 1 Analytical Method: SW-846 **Percent Moisture** Pace Analytical Services - Charlotte Percent Moisture 15.1 % 0.10 1 07/07/21 16:08 N2



Project: Bram MGP Pace Project No.: 92547702

Sample: R1-SB-23 (0.5-1) Lab ID: 92547702011 Collected: 06/30/21 16:01 Received: 07/02/21 11:15 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual Analytical Method: EPA 8270E Preparation Method: EPA 3546 8270E MSSV MW PAH by SIM Pace Analytical Services - Charlotte 0.59 0.030 2 07/07/21 21:12 07/08/21 15:17 50-32-8 Benzo(a)pyrene mg/kg Dibenz(a,h)anthracene 0.080 mg/kg 0.030 2 07/07/21 21:12 07/08/21 15:17 53-70-3 Surrogates 2-Fluorobiphenyl (S) 57 % 31-130 2 07/07/21 21:12 07/08/21 15:17 321-60-8 D3 Nitrobenzene-d5 (S) 53 % 32-130 2 07/07/21 21:12 07/08/21 15:17 4165-60-0 Terphenyl-d14 (S) 59 % 24-130 2 07/07/21 21:12 07/08/21 15:17 1718-51-0 Analytical Method: SW-846 **Percent Moisture** Pace Analytical Services - Charlotte Percent Moisture 31.9 % 0.10 1 07/07/21 16:08 N2



Project: Bram MGP Pace Project No.: 92547702

Sample: R1-SB-24 (0.5-1) Lab ID: 92547702012 Collected: 06/30/21 16:10 Received: 07/02/21 11:15 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual Analytical Method: EPA 8270E Preparation Method: EPA 3546 8270E MSSV MW PAH by SIM Pace Analytical Services - Charlotte ND 0.011 07/07/21 21:12 07/08/21 15:39 50-32-8 Benzo(a)pyrene mg/kg 1 Dibenz(a,h)anthracene ND mg/kg 0.011 1 07/07/21 21:12 07/08/21 15:39 53-70-3 Surrogates 2-Fluorobiphenyl (S) 44 % 31-130 07/07/21 21:12 07/08/21 15:39 321-60-8 1 Nitrobenzene-d5 (S) 57 % 32-130 07/07/21 21:12 07/08/21 15:39 4165-60-0 1 Terphenyl-d14 (S) 38 % 24-130 07/07/21 21:12 07/08/21 15:39 1718-51-0 1 Analytical Method: SW-846 **Percent Moisture** Pace Analytical Services - Charlotte Percent Moisture 13.6 % 0.10 1 07/07/21 16:08 N2



Project: Bram MGP Pace Project No.: 92547702

Sample: R1-SB-25 (0.5-1) Lab ID: 92547702013 Collected: 06/30/21 16:04 Received: 07/02/21 11:15 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual Analytical Method: EPA 8270E Preparation Method: EPA 3546 8270E MSSV MW PAH by SIM Pace Analytical Services - Charlotte 0.044 0.015 07/07/21 21:12 07/08/21 16:01 50-32-8 Benzo(a)pyrene mg/kg 1 Dibenz(a,h)anthracene ND mg/kg 0.015 1 07/07/21 21:12 07/08/21 16:01 53-70-3 Surrogates 07/07/21 21:12 07/08/21 16:01 321-60-8 2-Fluorobiphenyl (S) 47 % 31-130 1 Nitrobenzene-d5 (S) 56 % 32-130 07/07/21 21:12 07/08/21 16:01 4165-60-0 1 Terphenyl-d14 (S) 53 % 24-130 07/07/21 21:12 07/08/21 16:01 1718-51-0 1 Analytical Method: SW-846 **Percent Moisture** Pace Analytical Services - Charlotte Percent Moisture 33.5 % 0.10 1 07/07/21 16:08 N2



Project: Bram MGP Pace Project No.: 92547702

Sample: R1-SB-26 (0.5-1) Lab ID: 92547702014 Collected: 06/30/21 15:52 Received: 07/02/21 11:15 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual Analytical Method: EPA 8270E Preparation Method: EPA 3546 8270E MSSV MW PAH by SIM Pace Analytical Services - Charlotte ND 0.014 07/07/21 21:12 07/08/21 16:23 50-32-8 Benzo(a)pyrene mg/kg 1 Dibenz(a,h)anthracene ND mg/kg 0.014 1 07/07/21 21:12 07/08/21 16:23 53-70-3 Surrogates 2-Fluorobiphenyl (S) 38 % 31-130 1 07/07/21 21:12 07/08/21 16:23 321-60-8 Nitrobenzene-d5 (S) 48 % 32-130 07/07/21 21:12 07/08/21 16:23 4165-60-0 1 Terphenyl-d14 (S) 82 % 24-130 07/07/21 21:12 07/08/21 16:23 1718-51-0 1 Analytical Method: SW-846 **Percent Moisture** Pace Analytical Services - Charlotte Percent Moisture 27.4 % 0.10 1 07/07/21 16:08 N2



Project: Bram MGP Pace Project No.: 92547702

Sample: R1-SB-27 (0.5-1) Lab ID: 92547702015 Collected: 06/30/21 15:44 Received: 07/02/21 11:15 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual Analytical Method: EPA 8270E Preparation Method: EPA 3546 8270E MSSV MW PAH by SIM Pace Analytical Services - Charlotte 0.050 0.012 07/07/21 21:12 07/08/21 16:46 50-32-8 Benzo(a)pyrene mg/kg 1 Dibenz(a,h)anthracene ND mg/kg 0.012 1 07/07/21 21:12 07/08/21 16:46 53-70-3 Surrogates 2-Fluorobiphenyl (S) 51 % 31-130 1 07/07/21 21:12 07/08/21 16:46 321-60-8 Nitrobenzene-d5 (S) 54 % 32-130 07/07/21 21:12 07/08/21 16:46 4165-60-0 1 Terphenyl-d14 (S) 61 % 24-130 07/07/21 21:12 07/08/21 16:46 1718-51-0 1 Analytical Method: SW-846 **Percent Moisture** Pace Analytical Services - Charlotte Percent Moisture 16.0 % 0.10 1 07/07/21 16:08 N2



Project: Bram MGP Pace Project No.: 92547702

Sample: R1-SB-28 (0.5-1) Lab ID: 92547702016 Collected: 06/30/21 15:30 Received: 07/02/21 11:15 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual Analytical Method: EPA 8270E Preparation Method: EPA 3546 8270E MSSV MW PAH by SIM Pace Analytical Services - Charlotte 0.13 0.013 07/07/21 21:12 07/08/21 17:08 50-32-8 Benzo(a)pyrene mg/kg 1 Dibenz(a,h)anthracene 0.026 mg/kg 0.013 1 07/07/21 21:12 07/08/21 17:08 53-70-3 Surrogates 2-Fluorobiphenyl (S) 46 % 31-130 1 07/07/21 21:12 07/08/21 17:08 321-60-8 Nitrobenzene-d5 (S) 40 % 32-130 07/07/21 21:12 07/08/21 17:08 4165-60-0 1 Terphenyl-d14 (S) 51 % 24-130 07/07/21 21:12 07/08/21 17:08 1718-51-0 1 Analytical Method: SW-846 **Percent Moisture** Pace Analytical Services - Charlotte Percent Moisture 22.5 % 0.10 1 07/07/21 16:08 N2



Project: Bram MGP Pace Project No.: 92547702

Sample: R1-SB-29 (0.5-1) Lab ID: 92547702017 Collected: 06/30/21 15:14 Received: 07/02/21 11:15 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual Analytical Method: EPA 8270E Preparation Method: EPA 3546 8270E MSSV MW PAH by SIM Pace Analytical Services - Charlotte 0.042 mg/kg 0.012 07/07/21 21:12 07/08/21 17:31 50-32-8 Benzo(a)pyrene 1 Dibenz(a,h)anthracene ND mg/kg 0.012 1 07/07/21 21:12 07/08/21 17:31 53-70-3 Surrogates 2-Fluorobiphenyl (S) 56 % 31-130 1 07/07/21 21:12 07/08/21 17:31 321-60-8 Nitrobenzene-d5 (S) 57 % 32-130 07/07/21 21:12 07/08/21 17:31 4165-60-0 1 Terphenyl-d14 (S) 74 % 24-130 07/07/21 21:12 07/08/21 17:31 1718-51-0 1 Analytical Method: SW-846 **Percent Moisture** Pace Analytical Services - Charlotte Percent Moisture 19.9 % 0.10 1 07/07/21 16:08 N2



Project: Bram MGP Pace Project No.: 92547702

Sample: R1-SB-30 (0.5-1) Lab ID: 92547702018 Collected: 06/30/21 15:04 Received: 07/02/21 11:15 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual Analytical Method: EPA 8270E Preparation Method: EPA 3546 8270E MSSV MW PAH by SIM Pace Analytical Services - Charlotte ND 0.013 07/07/21 21:12 07/08/21 17:53 50-32-8 Benzo(a)pyrene mg/kg 1 Dibenz(a,h)anthracene ND mg/kg 0.013 1 07/07/21 21:12 07/08/21 17:53 53-70-3 Surrogates 2-Fluorobiphenyl (S) 36 % 31-130 1 07/07/21 21:12 07/08/21 17:53 321-60-8 Nitrobenzene-d5 (S) 54 % 32-130 07/07/21 21:12 07/08/21 17:53 4165-60-0 1 Terphenyl-d14 (S) 45 % 24-130 07/07/21 21:12 07/08/21 17:53 1718-51-0 1 Analytical Method: SW-846 **Percent Moisture** Pace Analytical Services - Charlotte Percent Moisture 21.7 % 0.10 1 07/07/21 17:01 N2



Project: Bram MGP Pace Project No.: 92547702

Sample: R1-SB-31 (0.5-1) Lab ID: 92547702019 Collected: 06/30/21 14:54 Received: 07/02/21 11:15 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual Analytical Method: EPA 8270E Preparation Method: EPA 3546 8270E MSSV MW PAH by SIM Pace Analytical Services - Charlotte 0.21 0.025 2 07/07/21 21:12 07/08/21 18:15 50-32-8 Benzo(a)pyrene mg/kg Dibenz(a,h)anthracene 0.034 mg/kg 0.025 2 07/07/21 21:12 07/08/21 18:15 53-70-3 Surrogates 07/07/21 21:12 07/08/21 18:15 321-60-8 2-Fluorobiphenyl (S) 58 % 31-130 2 D3 Nitrobenzene-d5 (S) 50 % 32-130 2 07/07/21 21:12 07/08/21 18:15 4165-60-0 Terphenyl-d14 (S) 66 % 24-130 2 07/07/21 21:12 07/08/21 18:15 1718-51-0 Analytical Method: SW-846 **Percent Moisture** Pace Analytical Services - Charlotte Percent Moisture 18.7 % 0.10 1 07/07/21 17:01 N2



Project: Bram MGP Pace Project No.: 92547702

Sample: R1-SB-32 (0.5-1) Lab ID: 92547702020 Collected: 06/30/21 14:42 Received: 07/02/21 11:15 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual Analytical Method: EPA 8270E Preparation Method: EPA 3546 8270E MSSV MW PAH by SIM Pace Analytical Services - Charlotte 0.025 mg/kg 0.012 07/07/21 21:12 07/08/21 18:38 50-32-8 Benzo(a)pyrene 1 Dibenz(a,h)anthracene ND mg/kg 0.012 1 07/07/21 21:12 07/08/21 18:38 53-70-3 Surrogates 2-Fluorobiphenyl (S) 40 % 31-130 1 07/07/21 21:12 07/08/21 18:38 321-60-8 Nitrobenzene-d5 (S) 56 % 32-130 07/07/21 21:12 07/08/21 18:38 4165-60-0 1 Terphenyl-d14 (S) 42 % 24-130 07/07/21 21:12 07/08/21 18:38 1718-51-0 1 Analytical Method: SW-846 **Percent Moisture** Pace Analytical Services - Charlotte Percent Moisture 17.7 % 0.10 1 07/07/21 17:01 N2



Project: Bram MGP Pace Project No.: 92547702

Sample: R1-SB-33 (0.5-1) Lab ID: 92547702021 Collected: 06/30/21 14:30 Received: 07/02/21 11:15 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual Analytical Method: EPA 8270E Preparation Method: EPA 3546 8270E MSSV MW PAH by SIM Pace Analytical Services - Charlotte 0.050 0.012 07/07/21 21:15 07/08/21 10:27 50-32-8 M1 Benzo(a)pyrene mg/kg 1 Dibenz(a,h)anthracene ND mg/kg 0.012 1 07/07/21 21:15 07/08/21 10:27 53-70-3 Surrogates 07/07/21 21:15 07/08/21 10:27 321-60-8 2-Fluorobiphenyl (S) 62 % 31-130 1 Nitrobenzene-d5 (S) 61 % 32-130 07/07/21 21:15 07/08/21 10:27 4165-60-0 1 Terphenyl-d14 (S) 78 % 24-130 07/07/21 21:15 07/08/21 10:27 1718-51-0 1 Analytical Method: SW-846 **Percent Moisture** Pace Analytical Services - Charlotte Percent Moisture 20.0 % 0.10 1 07/07/21 17:01 N2



Project: Bram MGP Pace Project No.: 92547702

Sample: R1-SB-34 (0.5-1) Lab ID: 92547702022 Collected: 06/30/21 14:20 Received: 07/02/21 11:15 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual Analytical Method: EPA 8270E Preparation Method: EPA 3546 8270E MSSV MW PAH by SIM Pace Analytical Services - Charlotte ND 0.015 07/07/21 21:15 07/08/21 19:22 50-32-8 Benzo(a)pyrene mg/kg 1 Dibenz(a,h)anthracene ND mg/kg 0.015 1 07/07/21 21:15 07/08/21 19:22 53-70-3 Surrogates 2-Fluorobiphenyl (S) 45 % 31-130 1 07/07/21 21:15 07/08/21 19:22 321-60-8 Nitrobenzene-d5 (S) 47 % 32-130 07/07/21 21:15 07/08/21 19:22 4165-60-0 1 Terphenyl-d14 (S) 42 % 24-130 07/07/21 21:15 07/08/21 19:22 1718-51-0 1 Analytical Method: SW-846 **Percent Moisture** Pace Analytical Services - Charlotte Percent Moisture 33.6 % 0.10 1 07/07/21 17:01 N2



Project: Bram MGP Pace Project No.: 92547702

Sample: R1-SB-35 (0.5-1) Lab ID: 92547702023 Collected: 06/30/21 14:14 Received: 07/02/21 11:15 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual Analytical Method: EPA 8270E Preparation Method: EPA 3546 8270E MSSV MW PAH by SIM Pace Analytical Services - Charlotte ND 0.013 07/07/21 21:15 07/08/21 20:07 50-32-8 Benzo(a)pyrene mg/kg 1 Dibenz(a,h)anthracene ND mg/kg 0.013 1 07/07/21 21:15 07/08/21 20:07 53-70-3 Surrogates 07/07/21 21:15 07/08/21 20:07 321-60-8 2-Fluorobiphenyl (S) 39 % 31-130 1 Nitrobenzene-d5 (S) 56 % 32-130 07/07/21 21:15 07/08/21 20:07 4165-60-0 1 Terphenyl-d14 (S) 42 % 24-130 07/07/21 21:15 07/08/21 20:07 1718-51-0 1 Analytical Method: SW-846 **Percent Moisture** Pace Analytical Services - Charlotte Percent Moisture 26.7 % 0.10 1 07/07/21 17:02 N2



Project: Bram MGP Pace Project No.: 92547702

Sample: R1-SB-36 (0.5-1) Lab ID: 92547702024 Collected: 06/30/21 14:08 Received: 07/02/21 11:15 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual Analytical Method: EPA 8270E Preparation Method: EPA 3546 8270E MSSV MW PAH by SIM Pace Analytical Services - Charlotte 0.018 0.011 07/07/21 21:15 07/08/21 20:29 50-32-8 Benzo(a)pyrene mg/kg 1 Dibenz(a,h)anthracene ND mg/kg 0.011 1 07/07/21 21:15 07/08/21 20:29 53-70-3 Surrogates 2-Fluorobiphenyl (S) 44 % 31-130 07/07/21 21:15 07/08/21 20:29 321-60-8 1 Nitrobenzene-d5 (S) 51 % 32-130 07/07/21 21:15 07/08/21 20:29 4165-60-0 1 Terphenyl-d14 (S) 44 % 24-130 07/07/21 21:15 07/08/21 20:29 1718-51-0 1 Analytical Method: SW-846 **Percent Moisture** Pace Analytical Services - Charlotte Percent Moisture 12.3 % 0.10 1 07/07/21 17:02 N2



Project:	Bram	MGP										
Pace Project No .:	92547	702										
QC Batch:	6319	67		Analysis	Metho	d: E	EPA 8270E	Ξ				
QC Batch Method:	EPA	3546		Analysis	Descri	otion: 8	3270E MS	SV PAH	by SIM			
				Laborato	ory:	F	Pace Analy	tical Sei	rvices - Cha	arlotte		
Associated Lab Sar	nples:	92547702 92547702 92547702	001, 92547702002 008, 92547702009 015, 92547702016	, 9254770200 , 9254770201 , 9254770201	03, 9254 0, 9254 7, 9254	47702004, 9 47702011, 9 47702018, 9	925477020 925477020 925477020	005, 925 012, 925 019, 925	47702006, 47702013, 47702020	92547 92547	702007, 702014,	
METHOD BLANK:	331994	49		Ма	trix: So	olid						
Associated Lab Sar	nples:	92547702 92547702 92547702	001, 92547702002 008, 92547702009 015, 92547702016	, 9254770200 , 9254770201 , 9254770201 Blank	03, 9254 0, 9254 7, 9254	47702004, 9 47702011, 9 47702018, 9 Reporting	925477020 925477020 925477020	005, 925 012, 925 019, 925	47702006, 47702013, 47702020	92547 92547	702007, 702014,	
Paran	neter		Units	Result		Limit	Ana	lyzed	Quali	fiers		
Benzo(a)pyrene			mg/kg		ND	0.0099	9 07/08/2	21 08:59			_	
Dibenz(a,h)anthrace	ene		mg/kg	l	ND	0.0099	9 07/08/2	21 08:59				
2-Fluorobiphenyl (S	5) )		%		48 47	31-130	) 07/08/2 ) 07/08/	21 08:59 21 08:59				
Terphenyl-d14 (S)	)		%		58	24-130	07/08/2	21 08:59				
LABORATORY CO	NTROL	SAMPLE:	3319950	Snike	10	<u> </u>	105	0,	6 Rec			
Paran	neter		Units	Conc.	Res	ult	% Rec	L	Limits	Qua	alifiers	
Benzo(a)pyrene			mg/kg	0.034		0.024	-	73	44-130			
Dibenz(a,h)anthrace	ene		mg/kg	0.034		0.027	8	82	58-130			
2-Fluorobiphenyi (S Nitrobenzene-d5 (S	9) )		%				( -	o7 75	31-130			
Terphenyl-d14 (S)	,		%				8	85	24-130			
MATRIX SPIKE SAI	MPLE:		3319951	92547702	001	Sniko	MS		MS		% Rec	
Paran	neter		Units	Result		Conc.	Resul	t	% Rec		Limits	Qualifiers
Benzo(a)pyrene			mg/kg		ND	0.039	(	0.027	(	63	10-130	
Dibenz(a,h)anthrace	ene		mg/kg		ND	0.039	(	0.024	(	60	10-130	
2-Fluorobiphenyl (S	5) \		%							70 29	31-130	
Terphenyl-d14 (S)	)		%						-	50 74	24-130 24-130	
SAMPLE DUPLICA	TE: 33	19952										
Paran	neter		Units	925477020 Result	02	Dup Result	RP	D	Qualifier	S		
Benzo(a)pyrene			mg/kg	0	.11	0.092	2	19				
Dibenz(a,h)anthrace	ene		mg/kg	0.0	)27	0.022	2	19				
2-Fluorobiphenyl (S	5)		%		74 65	7:	3					
Nitrobenzene-d5 (S	)		%		00 75	69	J L					
101phenyi-014 (3)			/0		.0	00						

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



•							
Pace Project No.: 92547702							
QC Batch: 631968		Analysis Metho	d: E	PA 8270E			
QC Batch Method: EPA 3546		Analysis Descri	ption: 8	270E MSSV PA	H by SIM		
		Laboratory:	F	ace Analytical S	Services - Charl	lotte	
Associated Lab Samples: 9254770	2021, 9254770202	2, 92547702023, 925	47702024	,			
METHOD BLANK: 3319953		Matrix: S	olid				
Associated Lab Samples: 9254770	2021, 9254770202	2, 92547702023, 925	47702024				
		Blank	Reporting				
Parameter	Units	Result	Limit	Analyzed	Qualifie	ers	
Benzo(a)pyrene	mg/kg		0.0098	3 07/08/21 09:	43		
Dibenz(a,h)anthracene	mg/kg	ND	0.0098	8 07/08/21 09:	43		
2-Fluorobiphenyl (S)	%	58	31-130	07/08/21 09:	43		
Nitrobenzene-d5 (S)	%	66	32-130	07/08/21 09:	43		
Terphenyl-d14 (S)	%	81	24-130	07/08/21 09:	43		
LABORATORY CONTROL SAMPLE:	3319954						
_		Spike LC	S	LCS	% Rec	0 11/1	
Parameter	Units	Conc. Res	sult	% Rec	Limits	Qualifiers	
Benzo(a)pyrene	mg/kg	0.033	0.023	71	44-130		
Dibenz(a,h)anthracene	mg/kg	0.033	0.026	79	58-130		
2-Fluorobiphenyl (S)	%			65	31-130		
Nitrobenzene-d5 (S)	%			72	32-130		
Terphenyl-d14 (S)	%			87	24-130		
MATRIX SPIKE SAMPLE:	3319955						
		92547702021	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Benzo(a)pyrene	 ma/ka	0.050	0.041	0.039	-28	10-130	M1
Dibenz(a,h)anthracene	mg/kg	ND	0.041	0.018	18	10-130	
2-Fluorobiphenyl (S)	%				70	31-130	
Nitrobenzene-d5 (S)	%				69	32-130	
Terphenyl-d14 (S)	%				65	24-130	
SAMPLE DUPLICATE: 3319956							
		92547702022	Dup				
Parameter	Units	Result	Result	RPD	Qualifiers		
Benzo(a)pyrene	mg/kg	ND	.0066	J			
Dibenz(a,h)anthracene	mg/kg	ND	ND	)			
2-Fluorobiphenyl (S)	%	45	42	2			
Nitrobenzene-d5 (S)	%	47	56	3			
	0/	12	1.4	1			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project:	Bram MG	3P					
Pace Project No.:	92547702	2					
QC Batch:	631943		Analysis Meth	nod:	SW-846		
QC Batch Method:	SW-846		Analysis Desc	cription:	Dry Weight/Perce	ent Moisture	
			Laboratory:		Pace Analytical S	ervices - Charlotte	
Associated Lab Sar	mples: 92 92 92	2547702001, 92547702002, 2547702008, 92547702009, 2547702015, 92547702016,	92547702003, 92 92547702010, 92 92547702017	2547702004, 2547702011,	92547702005, 92 92547702012, 92	2547702006, 92547 2547702013, 92547	702007, 702014,
SAMPLE DUPLICA	TE: 3319	737					
Parar	neter	Units	92547548001 Result	Dup Result	RPD	Qualifiers	
Percent Moisture		%	20.8	20.	9 1	N2	
SAMPLE DUPLICA	TE: 3319	738					
Parar	neter	Units	92548032002 Result	Dup Result	RPD	Qualifiers	
Percent Moisture		%	33.1	32.	7 1	N2	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project:	Bram MGP						
Pace Project No.:	92547702						
QC Batch:	631955		Analysis Meth	od:	SW-846		
QC Batch Method:	SW-846		Analysis Desc	ription:	Dry Weight/Perc	ent Moisture	
			Laboratory:		Pace Analytical	Services - Charlotte	÷
Associated Lab Sar	mples: 925477020	018, 9254770201	9, 92547702020, 92	2547702021,	92547702022, 9	2547702023, 9254	7702024
SAMPLE DUPLICA	TE: 3319850						
			92547702018	Dup			
Parar	neter	Units	Result	Result	RPD	Qualifiers	
Percent Moisture		%	21.7	21.	8	1 N2	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



#### QUALIFIERS

Project:	Bram MGP
Pace Project No.:	92547702

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### ANALYTE QUALIFIERS

- D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- N2 The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.
- S4 Surrogate recovery not evaluated against control limits due to sample dilution.



### QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:	Bram MGP
Pace Project No.:	92547702

					Analytical
Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Batch
92547702001	 R1-SB-13 (0.5-1)	EPA 3546	631967	EPA 8270E	632047
92547702002	R1-SB-14 (0.5-1)	EPA 3546	631967	EPA 8270E	632047
92547702003	R1-SB-15 (0.5-1)	EPA 3546	631967	EPA 8270E	632047
92547702004	R1-SB-16 (0.5-1)	EPA 3546	631967	EPA 8270E	632047
92547702005	R1-SB-17 (0.5-1)	EPA 3546	631967	EPA 8270E	632047
92547702006	R1-SB-18 (0.5-1)	EPA 3546	631967	EPA 8270E	632047
92547702007	R1-SB-19 (0.5-1)	EPA 3546	631967	EPA 8270E	632047
92547702008	R1-SB-20 (0.5-1)	EPA 3546	631967	EPA 8270E	632047
92547702009	R1-SB-21 (0.5-1)	EPA 3546	631967	EPA 8270E	632047
92547702010	R1-SB-22 (0.5-1)	EPA 3546	631967	EPA 8270E	632047
92547702011	R1-SB-23 (0.5-1)	EPA 3546	631967	EPA 8270E	632047
92547702012	R1-SB-24 (0.5-1)	EPA 3546	631967	EPA 8270E	632047
92547702013	R1-SB-25 (0.5-1)	EPA 3546	631967	EPA 8270E	632047
92547702014	R1-SB-26 (0.5-1)	EPA 3546	631967	EPA 8270E	632047
92547702015	R1-SB-27 (0.5-1)	EPA 3546	631967	EPA 8270E	632047
92547702016	R1-SB-28 (0.5-1)	EPA 3546	631967	EPA 8270E	632047
92547702017	R1-SB-29 (0.5-1)	EPA 3546	631967	EPA 8270E	632047
92547702018	R1-SB-30 (0.5-1)	EPA 3546	631967	EPA 8270E	632047
92547702019	R1-SB-31 (0.5-1)	EPA 3546	631967	EPA 8270E	632047
92547702020	R1-SB-32 (0.5-1)	EPA 3546	631967	EPA 8270E	632047
92547702021	R1-SB-33 (0.5-1)	EPA 3546	631968	EPA 8270E	632048
92547702022	R1-SB-34 (0.5-1)	EPA 3546	631968	EPA 8270E	632048
92547702023	R1-SB-35 (0.5-1)	EPA 3546	631968	EPA 8270E	632048
92547702024	R1-SB-36 (0.5-1)	EPA 3546	631968	EPA 8270E	632048
92547702001	R1-SB-13 (0.5-1)	SW-846	631943		
92547702002	R1-SB-14 (0.5-1)	SW-846	631943		
92547702003	R1-SB-15 (0.5-1)	SW-846	631943		
92547702004	R1-SB-16 (0.5-1)	SW-846	631943		
92547702005	R1-SB-17 (0.5-1)	SW-846	631943		
92547702006	R1-SB-18 (0.5-1)	SW-846	631943		
92547702007	R1-SB-19 (0.5-1)	SW-846	631943		
92547702008	R1-SB-20 (0.5-1)	SW-846	631943		
92547702009	R1-SB-21 (0.5-1)	SW-846	631943		
92547702010	R1-SB-22 (0.5-1)	SW-846	631943		
92547702011	R1-SB-23 (0.5-1)	SW-846	631943		
92547702012	R1-SB-24 (0.5-1)	SW-846	631943		
92547702013	R1-SB-25 (0.5-1)	SW-846	631943		
92547702014	R1-SB-26 (0.5-1)	SW-846	631943		
92547702015	R1-SB-27 (0.5-1)	SW-846	631943		
92547702016	R1-SB-28 (0.5-1)	SW-846	631943		
92547702017	R1-SB-29 (0.5-1)	SW-846	631943		
92547702018	R1-SB-30 (0.5-1)	SW-846	631955		
92547702019	R1-SB-31 (0.5-1)	SW-846	631955		
92547702020	R1-SB-32 (0.5-1)	SW-846	631955		
92547702021	R1-SB-33 (0.5-1)	SW-846	631955		
92547702022	R1-SB-34 (0.5-1)	SW-846	631955		
92547702023	R1-SB-35 (0.5-1)	SW-846	631955		



### QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Pace Project No.:	Bram MGP 92547702				
Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92547702024	R1-SB-36 (0.5-1)	SW-846	631955		

Pace Analytical"	Document Sample Condition Up Documen F-CAR-CS-03	Name: on Receipt t No.: 3-Rev.07	(SCUR)	Document Revised: October 28, 2020 Page 1 of 2 Issuing Authority: Pace Carolinas Quality Office
oratory receiving samples: heville Eden Greenwood	Huntersville	] Raleig	;h[] N	Aechanicsville Atlanta Kernersville
ample Condition Client Name: Jpon Receipt Grant		F	Project #	WO#:92547702
commercial	UPS USPS Other:		ent	92547702
dy Seal Present? Yes 100	Seals Intact? Yes	ENo		Date/Initials Person Examining Contents $\frac{7/2}{2}$
ng Material: Bubble Wrap nometer: DIR Gun ID: <u>43To</u> 71 Correction	Bubble Bags None Type of Ice:	e 🗌 O Wet 🗆 B	ther Ilue 🗌	Biological Tissue Frozen? Yes No N/A
Temp: <u>3.3</u> Add/Subtr Temp Corrected (°C): Regulated Soil ( N/A, water sample) mples originate in a quarantine zone within th Yes No	act (°C) 3, e United States: CA, NY, o	C)check ma	Te ips)? Dia inc	mp should be above freezing to 6°C Samples out of temp criteria. Samples on ice, cooling process has begun d samples originate from a foreign source (internationally, cluding Hawaii and Puerto Rico)? Yes
		<b></b>	1	Comments Distreponer.
Chain of Custody Present?	Yes No		1.	
amples Arrived within Hold Time?	Yes No		2.	
nort Hold Time Analysis (<72 hr.)?	Ves No		4	
ish Turn Around Time Requested?	LIYes INO			
ifficient Volume?	Yes No		5.	
orrect Containers Used? -Pace Containers Used?	Yes No		Б.	
Containers Intact?	Yes No		1.	
vissolved analysis: Samples Field Filtered? ample Labels Match COC?	Yes No		9.	
-Includes Date/Time/ID/Analysis Matrix:	36			
leadspace in VOA Vials (>5-6mm)?	Ves No	EN/A	10.	
rip Blank Present?	Yes No	<b>N/A</b>	11.	
rip Blank Custody Seals Present?	Yes No	DINTA		
MMENTS/SAMPLE DISCREPANCY				Field Data Required? Yes No
NT NOTIFICATION/RESOLUTION			Lot II	D of split containers:
rson contacted:		Date/T	ime:	
Project Manager SCURF Review:				Date:
Project Manager SRF Review:				Date:

			P	Pac	) ce Ana	alytic	al"			San	nple C	Dor Condi Do F-CAI	cume tion l ocum R-CS-(	nt Na Jpon ent N 033-R	me: Recel o.: ev.07	pt(SC	UR)	T	Doc	Pace	nt Rev P Issui Caro	vised: age 2 ng Au linas	Octo of 2 othori Quali	ber 2 ity: ty Of	8, 202 fice	20		
* V S E *	Che verifi amp xcept *Bo	ck mi ed au oles. ions: V ttom	ark te nd w VOA, C half	op h ithin olifor of b	alf o the m, TO ox is	of bo acce acce ac, oil s to l	x if p epta and ( ist n	oH an nce i Grease umb	nd/o rang e, DRC per o	or der e for 0/8019 f bot	chlor pres 5 (wat ctles	rinat serva er) Do	ion l atior	is 1 Hg		Pro	ject	#		D# BV	: 9	<b>9</b> 2-s	25 YNT	Due ERR	7 Da	7 <b>C</b> te:	07	/07/:
Item#	BP4U-125 mL Plastic Unpreserved (N/A) (Cl-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP4S-125 mL Plastic H2SO4 (pH < 2) (CI-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP4Z-125 mL Plastic ZN Acetate & NaOH (>9)	BP4C-125 mL Plastic NaOH (pH > 12) (CI-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCI (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (Cl-)	AG1S-1 liter Amber H2SO4 (pH < 2)	AG3S-250 mL Amber H2SO4 (pH < 2)	AG3A(DG3A)-250 mL Amber NH4CI (N/A)(CI-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na25203 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SPST-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A – lab)		BP3A-250 mL Plastic (NH2)2504 (9.3-9.7)	AGOU-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1						1	1		2						1									$\sum$	$\sum$			
2	1					1	1	1	2					$\backslash$	1									$\backslash$	$\sum$			
5						1	1	1	2		1																	
1	1					1	1	1	2		1													$\backslash$	$\square$			
1	K					1	1	1	2															$\backslash$	$\sum$			
;						1	1	1	2																$\sum$			
,						1	1	1	2																$\sum$			
3						1	1		2				$\backslash$	$\backslash$	$\backslash$									1	$\square$			
)						1	1	1	2				$\backslash$	$\backslash$	$\backslash$									1	$\square$			
0						1	1	1	2	-				$\backslash$	$\bigwedge$									1				
11							1	1			1		$\backslash$	$\backslash$	$\backslash$									1	$\square$			
2						1	1				1		$\backslash$	$\sum$	$\square$							_		1	$\sum$			
_									pН	Adj	ustr	nen	t Lo	g fo	r Pre	ser	ved	Sam	nple	s					lus	T	Lot #	
S	ample	D	Туре	e of Pr	eservi	ative	pł	ł upor	n rece	ipt	Date	prese	ervatio	on adj	usted		ime p ac	djuste	vation		Am		added	servat	IVE			
																-		_					_					_
_		-			_	-	-	-		-						-				-	_					-		_
_	-	1				_										Call to 1		dll ba	conti	a the	Morth	Caral	an DI	LIND 7	ortitic	ation	office	(L.e.

		P	Pac	e And	alytic	cal*			Sar	nple (	Do Condi Do F-CA	tion l cume cum R-CS-I	nt Na Jpon ent N 033-R	me: Recei o.: lev.07	pt(SC	UR)	+	Doc	Pace	Issul	age 2 ng Au	Octo of 2 ithori	ty:	8, 202	20	2	
Chec erifie mpl ceptic Bot	k ma ed ar es. ons: V tom	ark to nd wi 'OA, C half	oph ithin olifor of b	alf o the m, TO ox is	of bo acc acc acc, oil acc, oil acc, oil	epta and ( list n	oH a nce Greas	nd/c rang e, DRC per o	or de e for 0/801 of bot	chlor pre: 5 (wat ttles	rinat serv ser) D	ion l atior DC, LL	is 1 Hg		Pro	ject	PC		BV INT:	92	-SY	INTE	4 Due ERR	Dat	U .e:	07,	/07/2
P4U-125 mL Plastic Unpreserved (N/A) (CI-)	P3U-250 mL Plastic Unpreserved (N/A)	sP2U-500 mL Plastic Unpreserved (N/A)	3P1U-1 liter Plastic Unpreserved (N/A)	3P4S-12S mL Plastic H2SO4 (pH < 2) (Cl-)	3P3N-250 mL plastic HNO3 (pH < 2)	8P4Z-125 mL Plastic ZN Acetate & NaOH (>9)	3P4C-12S mL Plastic NaOH (pH > 12) (Cl-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCI (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG1S-1 liter Amber H2SO4 (pH < 2)	AG3S-250 mL Amber H2SO4 (pH < 2)	AG3A(DG3A)-250 mL Amber NH4Cl (N/A)(Cl-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na25203 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SP5T-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A – lab)		BP3A-250 mL Plastic (NH2)2504 (9.3-9.7)	AGOU-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
-	8	8	•	1	8	-	-	1	4	1		1	1	1		-							1	1			
1			_	7	1	1	7	2		1		1	1											1	1.1		
				1	1	1	1	2				7	1										7	7			
				1	1		7	2				7	2	$\sum$					-					1	-		_
1			_	1	7		7	2				7	1		-				-		-			-			
Y		-	_	1	2		2	2	-	$\left \right\rangle$		-	-						-	-		-	2	7			-
Y				-	-		-	3			-	-	2	2									1	1			
$\overline{)}$	-		-	1	-	-	-	20			-	1	1	1				-					1	1			
1				1	7	7	7	20		1		1	7	1													
1			-	1	7	1	7	9				1	Z	Z													
1			-		1	1	1					1											$\backslash$				
	_	_	_					pH	Adj	ustr	nen	t Lo	g fo	r Pre	ser	/ed	Sam	ples	s		_						
nple l	D	Туре	ofPr	eserva	ative	pł	l upor	n rece	ipt	Date	prese	ervatio	on adj	usted	1	ime p ac	reserv ljuster	vation d		Ame	a	dded	ervat	ve		LOU	
	-			-		-	_			-																	
																											_
14/6-		there	ie a di	icere e	2004	ffecti		rth Ca	rolina	comp	iance	samo	es, a	copy o	f this i	orm v	vill be	sent t	o the	North	Caroli	na DE	HNR C	ertific	ation	Office	(i.e.
of hold	, inco	rrect p	reserv	vative,	, out o	oftem	p, inco	orrect	contai	ners.				-14.5	0.010	2007		1.000.1.3									
_																											

a xc	rified and within the acceptance ran mples. ceptions: VOA, Coliform, TOC, Oil and Grease, DI Bottom half of box is to list number							e, DRC	e for preservation /8015 (water) DOC, LLHg bottles								PMCL	0 : E	H SV NT:	Due Date 92-SYNTERRA						<b>JZ</b> : 07/07/21			
	BP4U-125 mL Plastic Unpreserved (N/A) (Cl-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP4S-125 mL Plastic H2SO4 (pH < 2) (Cl-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP4Z-125 mL Plastic ZN Acetate & NaOH (>9)	BP4C-125 mL Plastic NaOH {pH > 12} (Cl-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCI (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	<b>AG1S-1</b> liter Amber H2SO4 (pH < 2)	AG3S-250 mL Amber H2SO4 (pH < 2)	AG3A(DG3A)-250 mL Amber NH4Cl (N/A)(Cl-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na25203 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SPST-125 mL Sterile Plastic (N/A – lab)	SP2T-2S0 mL Sterile Plastic (N/A – lab)		BP3A-250 mL Plastic (NH2)2504 (9.3-9.7)	AGOU-100 mL Amber Unpreserved vials (N/A)	vsGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)	
					1	1	1	1	2		1			1										7				_	
					1	1	1	1	2		$\sum$		2	1	$\square$														
					7	1	7	1	2		$\sum$			$\sum$											$\left \right\rangle$			-	
					7	1	1	$\geq$	2						$\sum$			-	-	-						-		-	
	$\left  \right $	-			7	-	-	$\geq$	-				2	1	P									1	K				
~			-		7	1	1	1			1	-	1	1	1									1	N				
	1				7	1	1	1			K		1												$\square$				
1	1				7	1																	_		$\square$				
					1			$\sum$			$\square$				$\sum$								_		$\square$				
					7	2	$\sum$			Ľ	$\square$				$\sum$	_		-	-	-	-	-			$\left \right\rangle$	-		-	
					7	$\sum$		$\backslash$							$\square$								_					_	
ar	nple	D	Туре	e of Pr	eserv	ative	pł	Hupo	pH n rece	ipt	Date	pres	ervation	g fo on adj	r Pre	eser	rime p	San	vation	n	Am	ounto	of Pres	servat	ive	-	Lot #	_	
						-									-	aujusteu											-		
			-	_	-		-		-	-	-	-		_				_	_	-		_	-					-	
-	_	-11																				0		LIND	Contific	I	Offica	11.0	
k Receipt Temp. 3. 2. C	rcle) (Yes) No Ice Pac	LAB USE ONLY Received on ice (Ci		om receipt	ed for four weeks fingements are made	Note: All samples are retain unless other arrar																							
---------------------------	-------------------------------------------------	---------------------------------------------------	--------------------------------------------------	--------------------------------------	---------------------------------------	-----------------------------------------------------------------------------																							
Date Time	ed by	4. Laboratory receiv	Time	Date		nquished by L																							
Date Time		3. Received by	e h & 11_1	1.2.21		nuisted by C. Perce																							
Date ' Time 7.2.21 115	- Pure	2. Received by	Time 15	-2.21	11les 7	navisned by Choscone / Shale																							
Strayer Celzali Time UST	- Luyes	1. Received by	Time 11/159	1/10/21	1	quished by My																							
Deison Unknown	ntification	Possible Hazard Ider	Disposal by Lab	e Disposal rn to Client 🛇	for expedited TAT.) Samp	ound Time Required (Prior lab approval required land 'S, Rush (Specify)																							
	7		2 2	53 6	V 15	-56-72 (0.5-1)																							
	×		2	43 6	21 1	513-71 (05-1)																							
60	7.		2 2	56	153	16-20 (0.5-1)																							
Cer (hou-14	*		× 2	21 6	15	(1-5.9) PL 202																							
006	×		8 2	09 G	1 15	58.48 (6.5-1)																							
(D)	×		o 2	1 1	149	·ss-17(0.5-1)																							
004 Min 100	×		8 2	11 6	41	(A-11, (D.S-1)																							
200	*		× 2	56	14	- 54- 15 (0.5-1)																							
0.2	×		×	7 6	1 141	54 - 14 (65-1)																							
OOI PERET 5	×		× ¢	59	6/30/21 140	55-13 (0.5-1)																							
Flemants / Cools	82	H2SO4 HNO3 HCI NaOH 5035 Kit	Solid Non- Aqueous Unpres.	G=C C=Con Aqueous	Date Tim	Sample ID / Description rs for each sample may be combined on one line.)																							
	706	No of Containers by Preservative Type	Matrix	Brab nposile	P.O. No.	12731, 00, 64																							
Laboratory Lot N	50	5	PLATIN	000	1	vame																							
	m		S	d Name	24482 Min	State Zip																							
Page 1 of			N	1		Divir St.																							
more space is needed)	Andlysis (Attach that it		ot inter	DO PU	Sam	Terra																							
11 BCH 420 BUSO Quote No.	Telephone No. / E-ma			rt to Contact	Repo																								
Number 102547 9254770	<b>ICES, INC.</b> I, SC 29172 03-791-9111	• West Columbia 9700 Fax No. 8 1ealylab.com	NVIRONM Point Drive lo. 803-791- www.sh	IEALY EI 06 Vantage elephone N	Record I	H Chain of Custody + (NVOILE SY)																							

0	بر در	Sea No Ice Pack Receipt Ten	LAB USE ONLY Received on ice (Circle)	t	eks from receip	ined for four we	Note: All samples are reta
Time	Date	y	4. Laboratory received by	Time	Date		ed by
Time	Date		3. Received by	134	Date .2.	R	and I have
	7.2.21	- Per	2 Beceived by	Time 1115	2 (Bare - 2)	11/12	the Stores / 12
Time / la ST	Color 1	auga thomas @	1. Received by	Tigne 1657	Date (1/20/11		A apple
	5	able	Non-Hazard    Flamma	Disposal by La	Return to Client	rea for expedited IAL,	B Rush (Specify) 4 8 No.
ments (Specify)	OC Requir	×	Possible Harard Identifies	5	INHAR		51-354 6.5-1)
01	25				0 1 5 41	¥	1-20 10:2-11
0	2	*		*	ind C	_	1k_3/
00	0	×		×	ICA G	_	(2) ( 2:5-1)
	10	×		×	1514 6		5-29 (0.5-1)
6 (low 12	Q	×		8	1530 5		- 28 (0.5-1)
5 000	01	×		*	1544 G	-	1-27 (0.5-1)
1 and	2	*		4	1552 6		3-26(0.5-1)
S Dibinz(a,	2	*		8	1604 6		,-75 ( 0.5-1)
2 pyra	G	×		×	110 6		- 24 ( 8.5-1)
1 Report	Q	*		×	1601 6	(0)30 Zi	5-23 (0.5-1)
Remarks / Cool		82	H2SO4 H1NO3 HCI N2OH 5035 Kit	Solid Non- Aquious	Time G=Con C=Con	Date	ample ID / Description ach sample may be combined on one line.)
		70	No of Containers by Preservative Type	Matrix	Brab	P.O. No.	431,00,04
Laboratory Lot N		6		opintu-	Toon A	- <del>2</del>	and the MGP
		SIM		N	Printing Name	29USA	nuille State
Page 2 of 3		Milaliysis (Audori Jiscin Indre Space is noo			Sampler's Signatu		stime si.
P. (877)	Hard Warse	8 4 4 VO SUSC S		かっと	Todd No		Kra
Quote No.	E PL	Telephone No. / E-mail Trladi			Henort to Contact	NTC	INVOICE
- 85187 54-5797	Numbe	C 29172 791-9111	e • West Columbia, SC I-9700 Fax No. 803-7 shealylab.com	e Point Driv No. 803-791 www.s	106 Vantag Telephone	y Record	Chain of Custod
			AFAITAI CEDVICI				

Page 41 of 42

Pack Receipt Temp. 2. 2. C	Laboratory received by	Time 4.	Date s from receipt	ed for four week	Note: All samples are retain
1 Date Time	Received the	1340 s.	Date 7.22	X	ad by U.J. Back
	Recorded by	Time 2.	(22-2)	6	Stra Dorana / Ph
dry (2) Dates 11 Time 14	Syntain (LUN So	Time 1.	Dates U		the last
Poison Unknown OC Requilements (Specify)	ssible Hazard Identification Non-Hazard	Pos Posal by Lab	Ample Disposal Return to Client D: L	f for expedited TAT.) Si	Time Required (Prior lab approval required Rysh (Specify) 48 AbJ
(Low					
	,	L .	418 0		5-36 (0.3-1)
20 000 1000 1000 1000 1000 1000 1000 10	4 74	2 × 1	tiq G		5-35 (0.5-1)
COC Ditro	× ×	2 4	120 5	1. 10	5-34 (6.5-1)
OUL KFRAT	. 7	2 4	170 G	(130/2) 14	3-33 (0.5-1)
Remarks / C	нноз нсі NaOH 5035 Кіі ВZ	Solid Non- Aqueous Unpres. H2SO4	G=C C=Con Aqueous	Date	ample ID / Description ach sample may be combined on one line.)
	No of Containers	Matrix b	Grab nposite	P.O. No.	-731,00,04
Laboratory Lu	51	NITA	1000 1		an hill MGP
	n	Ø	nined Name	Code 29089	state Zip
list invnore space is needeed) Page 3 of	Analysis (Attach	All o	ampler's Signature		ver st
E-mail	Telephone No. /	1 miles	TODO P		(in)
Number 85176	VIAL SERVICES, INC. Vest Columbia, SC 29172 00 Fax No. 803-791-9111 lylab.com	Point Drive • V o. 803-791-97( www.shea	106 Vantage Telephone N	Record S 10	Chain of Custody